2-5520 Theory of Mechanisms

Glossary

for bachelors study in 3rd year-classis, summer semester Lecturer: Assoc. Prof. František Palčák, PhD., ÚAMM 02010

Lecture 5: Velocities during simultaneous motions

Sections in Lecture 5:

- S1 Resulting angular velocity
- S2 Simultaneous motions
- S3 Resal's angular acceleration and resulting angular acceleration

S1 Resulting angular velocity

Angular velocities The position vector \overline{r}_{B31} of the point B_{31} from PAR3 has components expressed in space $\{1\}$. Let us differentiate vector \overline{r}_{B31} with respect to time in different spaces $\{2\}$, and $\{3\}$

$$\left[\overline{\mathbf{r}}_{B31}\right]_{1}^{\bullet} = \left[\overline{\mathbf{r}}_{B31}\right]_{3}^{\bullet} + \overline{w}_{31} \times \overline{\mathbf{r}}_{B31} \tag{1}$$

$$\left[\overline{\mathbf{r}}_{B31}\right]_{1}^{\bullet} = \left[\overline{\mathbf{r}}_{B31}\right]_{2}^{\bullet} + \overline{w}_{21} \times \overline{\mathbf{r}}_{B31} \tag{2}$$

$$\left[\overline{\mathbf{r}}_{B31}\right]_{2}^{\bullet} = \left[\overline{\mathbf{r}}_{B31}\right]_{3}^{\bullet} + \overline{w}_{32} \times \overline{\mathbf{r}}_{B31} \tag{3}$$

Comparing (1), (2) and and substituting (3) we obtain

$$\overline{W}_{31} \times \overline{T}_{B31} = \overline{W}_{32} \times \overline{T}_{B31} + \overline{W}_{21} \times \overline{T}_{B31}$$
(4)

From equation (4) yield that resulting instantaneous angular velocity \overline{w}_{31} of the of general planar motion 3/1 of the PAR3 (coupler in the piston–crank mechanism) wrt PAR1 in mechanism can be expressed as sum

$$\overline{W}_{31} = \overline{W}_{32} + \overline{W}_{21} \tag{5}$$

of instantaneous angular velocities \overline{w}_{32} , \overline{w}_{21} . It is the decomposition of general planar motion 3/1 of the PAR 3 wrt PAR1 (ground) when PAR3 is displaced from its initial position A_1B_1 to the final position A_2B_2 by fictive subsequent, or real simultaneous rotations 2/1 and 3/2. So general planar motion 3/1 of the PAR3 can be decomposed to the carrying motion 2/1 and local relative motion 3/2.

The instantaneous angular velocity \overline{w}_{31} in the equation (5) we denote as the instantaneous resulting angular velocity and it is the sum of instantaneous local relative angular velocity \overline{w}_{32} and instantaneous carrying angular velocity \overline{w}_{21} .

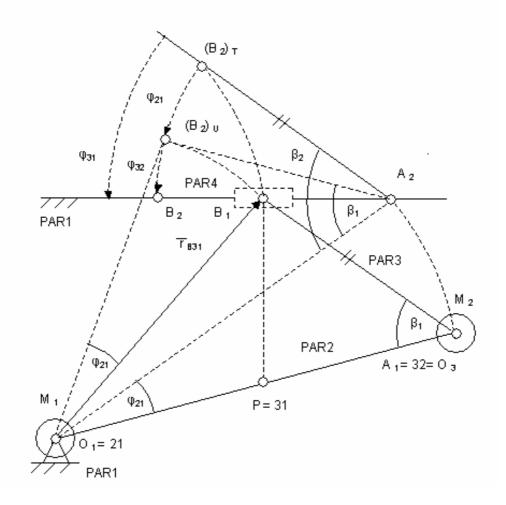


Fig.1 The open mechanism with arm PAR2 actuated by motor M1 and arm PAR3 actuated by motor M2.

S2 Simultaneous motions

Simultaneous motions General plane motion 3/1 of the PAR3 can be decomposed to the fictive carrying motion 2/1 and fictive local relative motion 3/2. Realization of this decomposition is demonstrated by open mechanism on Fig. 1 with arm PAR2 actuated by motor M1 and arm PAR3 actuated by motor M2. The PAR3 can be displaced from its initial position A_1B_1 to the final position A_2B_2 by subsequent, or simultaneous rotations 2/1 and 3/2. During fictive carrying motion 2/1 about point O₁ by a finite angle j_{21} the PAR3 is fixed to PAR2 (3 = 2) and PAR3 is displaced from its initial position A_1B_1 to the the position $A_2(B_2)_U$.

During fictive local relative rotation 3/2 the PAR3 is displaced about point O₃ by a finite angle j_{32} from the position $A_2(B_2)_U$ to the final position A_2B_2 .

For constant angular velocity w = const. of rotation the slew angle is j = wt and considering the time t = 1 is also j = w. Then resulting finite angle is the sum

$$j_{31} = j_{32} + j_{21}$$
 (6)

and corresponding fictive constant angular velocities, by which arms PAR2 and PAR3 in open mechanism rotates, are

$$\overline{W}_{31F} = \overline{W}_{32F} + \overline{W}_{21F} \tag{7}$$

The fictive constant angular velocities from Eq. (7) becomes actual angular velocities as are in the Eq. (5) for infinitesimal small angles in the Eq. (6).

The instantaneous angular velocity \overline{w}_{31} in the equation (5) we denote as the instantaneous resulting angular velocity and it is the sum of instantaneous local relative angular velocity \overline{w}_{32} and instantaneous carrying angular velocity \overline{w}_{21} .

S3 Resal's angular acceleration and resulting angular acceleration

Angular accelerations Resulting angular acceleration \overline{a}_{31} we obtain via time derivative of equation (5)

$$\begin{bmatrix} \overline{W}_{31} \end{bmatrix}_{1}^{\bullet} = \begin{bmatrix} \overline{W}_{32} \end{bmatrix}_{1}^{\bullet} + \begin{bmatrix} \overline{W}_{21} \end{bmatrix}_{1}^{\bullet}$$
(8)

By direct time derivative we obtain $\begin{bmatrix} \overline{w}_{31} \end{bmatrix}_{1}^{\bullet} = \overline{a}_{31}$ (9) and time derivative of \overline{w}_{32} in different space $\{1\}$ is

$$\begin{bmatrix} \overline{W}_{32} \end{bmatrix}_{1}^{\bullet} = \begin{bmatrix} \overline{W}_{32} \end{bmatrix}_{2}^{\bullet} + \overline{W}_{21} \times \overline{W}_{32}$$
(10)

where
$$\begin{bmatrix} \overline{w}_{32} \end{bmatrix}_{2}^{\bullet} = \overline{a}_{32}$$
 (11)

The cross product $\overline{w}_{21} \times \overline{w}_{32}$ is known as Resal's angular acceleration

$$\bar{a}_{\rm R} = \bar{w}_{21} \times \bar{w}_{32} \tag{12}$$

Substituting (9) - (12) into (8) we obtain equation for resulting angular acceleration

$$\bar{a}_{31} = \bar{a}_{32} + \bar{a}_{21} + \bar{a}_{R} \tag{13}$$