2-5520 Theory of Mechanisms

Glossary

for bachelors study in 3rd year-classis, summer semester Lecturer: Assoc. Prof. František Palčák, PhD., ÚAMM 02010

Lecture 10: General spatial motion of a body.

Sections in lecture 10:

- S1 Poissont's decomposition of general spatial motion of a body to the fictive translation of a body represented by reference point and to the fictive spherical motion of a body about reference point.
- S2 Chasle's decomposition of general spatial motion of a body by instantaneous tangential screw motion of a body wrt axis of viration.
- S3 Applications of general spatial motion of a body in mechanisms.

S1 Poissont's decomposition of general spatial motion of a body

- Spatial motion The position of the free (unconstrained) body $P \equiv E$ in the space wrt reference part ground, can be specified by the six mutually independent position coordinates $(x,y,z), (\phi_x, \phi_y, \phi_z)$ because the number of mutually independent position coordinates is equal to the mobility $n_v = 6$ (or degrees of freedom DOF) of the free (unconstrained) body.
- Poissont's method The open mechanism on Fig.1 consisting from number u = 7 of links, number $s_{22} = 3(T) + 3(R)$ of geometrical constraint and with mobility n = 6 is used for demonstration of Poissont's decomposition of general spatial motion of a body $P \equiv E$ from given initial $P_I \equiv E_I$ position $S_I(x_{E1}, y_{E1}, z_{E1})$ to the final $P_{II} \equiv E_{II}$ position $S_{II}(x_{E2}, y_{E2}, z_{E2})$.

For fictive translation is body $P \equiv E$ represented by it's reference point S (the origin of the local coordination system (LCS) of the body $P \equiv E$). During fictive translation of the body $P \equiv E$ from given initial $P_I \equiv E_I$ to the final $P_{II} \equiv E_{II}$ position the reference point S is dispalced stepwise along axes x_1, y_1, z_1 by the three longitudinal displacements x,y,z resulting from coresponding Carthesian position coordinates $S_{II}(x,y,z)$.

Fig.1 Position of the body $P \equiv E$ frame is determined by three Carthesian position coordinates (x,y,z) of it's reference point S and Cardan's angles (ϕ_x, ϕ_y, ϕ_z) derived from given initial $P_I \equiv E_I$ and final $P_{II} \equiv E_{II}$ position of the body $P \equiv E$.

Cardan's angles The fictive spherical displacement of a body $P \equiv E$ about reference point S_{II} is realized as a sequence of three slews by three Cardan's angles (ϕ_x, ϕ_y, ϕ_z) . On the Fig.1 the position of the line $u \equiv (y_{EI}, z_{EI}) \times (x_{EI}, z_{E2})$ of intersection of both frame planes provide the first angle $\phi_x \equiv (z_{EI}, u)$, the second angle is $\phi_y \equiv (u, z_{E2})$, and last one is $\phi_z \equiv (x_{EI}, \phi_y)$. There are so-called 12-3 Cardan's angles (ϕ_x, ϕ_y, ϕ_z) , advantageous for description of small values of angles.

Euler's angles It is possible uniquely describe given final position $(O_2, x_2, y_2, z_2)_{II}$ of the body E after spherical displacement of a body $P \equiv E$ about reference point S_{π} from given initial $P_{T} \equiv E_{T}$ position $S_{I}(x_{E1}, y_{E1}, z_{E1})$ to the final $P_{II} \equiv E_{II}$ position $S_{II}(x_{E2}, y_{E2}, z_{E2})$ as a sequence of three slews by three independent position coordinates Euler's angles (so-called 3-1-3 y,q,j). The line $\mathbf{x}_{\psi} \equiv (\mathbf{x}_1, \mathbf{y}_1) \times (\mathbf{x}_2, \mathbf{y}_2)$ of intersection of both frame planes provides us by angle $y \equiv (x_1, x_w)$, or $y \equiv (y_1, y_w)$, which should be applied as a first slew (precession) of local frame of body E about axis z_1 . The angle $q \equiv (z_1, z_2)$ which yield from mutual position of axes z_1, z_2 or $q \equiv (y_w, y_\theta)$ is applied for a second slew (nutation) of local frame of body E about axis x_{ψ} . The local frame of body E will achieve it's final position $(O_2, x_2, y_2, z_2)_{II}$ after application of third slew (spin) about axis z₂ by angle $\mathbf{y} \equiv (\mathbf{x}_{\Psi}, \mathbf{x}_{2}), \text{ or } \mathbf{y} \equiv (\mathbf{y}_{\theta}, \mathbf{y}_{2})$.

S2 Chasle's decomposition of general spatial motion of a body by instantaneous tangential screw motion of a body wrt axis of viration.

Chasle's method On the Fig.2 is depicted the Chasle's decomposition of general spatial motion of a body P represented by radius vector AL into fictive translation of a body P along instantaneous axis o_{ω} of viration and into fictive instantaneous rotation of a body P about instantaneous axis o_{ω} of viration. The general spatial motion of a body P is then represented by the instantaneous tangential screw motion wrt axis of viration o_{ω} characterized by couple $\overline{\omega}$ and \overline{v}_{c} of collinear vectors.

Fig.2 Tangential screw motion of a body P about the axis of viration o_{ω} , line of action of the couple $\overline{\omega}$, \overline{v}_{c} of collinear vectors.

Screw motion

Applying the method of Poissont's decomposition on general motion of a body P with points A and L, the instantaneous velocity \overline{v}_L of the point L can be composed from instantaneous velocity \overline{v}_A of reference point A, representing translation of a body P and from velocity $\overline{v}_{LA} = \overline{\omega} \times \overline{r}_{LA}$ of rotating radius vector \overline{r}_{LA} in the form

$$\overline{\mathbf{v}}_{\mathrm{L}} = \overline{\mathbf{v}}_{\mathrm{A}} + \overline{\boldsymbol{\omega}} \times \overline{\mathbf{r}}_{\mathrm{LA}} \tag{1}$$

or

 $\overline{v}_{L} = \overline{v}_{A} + \overline{v}_{LA}$

After dot product of Eq.1 by unit vector \overline{e} we obtain the generalized Kováč's invariant property for rotational field of velocities of body P points

$$(\overline{v}_{L} g\overline{e})\overline{e} = (\overline{v}_{A} g\overline{e})\overline{e} = \text{const} = \overline{v}_{\min} = \overline{v}_{C}$$
 (2)

Now it is to find the position of point C from body P for which is valid the condition of collinearity:

$$\overline{\omega} \times \overline{v}_{c} = \overline{0} \tag{3}$$

Again from the Poissont's decomposition for point C we obtain

$$\overline{\mathbf{v}}_{\mathrm{C}} = \overline{\mathbf{v}}_{\mathrm{A}} + \overline{\mathbf{\omega}} \times \overline{\mathbf{r}}_{\mathrm{CA}} \tag{4}$$

Aplying cross product on Eq.4 by $\overline{\omega} \times$ from left yield

$$\overline{\omega} \times \overline{v}_{c} = \overline{\omega} \times \overline{v}_{A} + \overline{\omega} \times (\overline{\omega} \times \overline{r}_{CA})$$
(5)

Considering the condition (3) we obtain the position vector of the point C wrt point A:

$$\overline{\mathbf{r}}_{\mathrm{CA}} = \frac{\overline{\boldsymbol{\omega}} \times \overline{\mathbf{v}}_{\mathrm{A}}}{\boldsymbol{\omega}^2} \tag{6}$$

The point C lays on the axis of viration o_{ω} , line of action for couple $\overline{\omega}$ and \overline{v}_{c} of collinear vectors. Instantaneous velocity \overline{v}_{c} of translation of body P and angular velocity $\overline{\omega}$ of rotation of body P about axis of viration are related by slope k_{o} of screw trajectories of all points of body P out of axis of viration, so $\overline{v}_{c} = k_{0}\overline{\omega}$ which characterize tangential screw motion of a body P.

S3 Applications of general spatial motion of a body in mechanisms.

Axoids Axoids on Fig.3 are locus of axes o_{ω} of a viration in space of a moving body 3, respectively of a reference body 2. Axis of viration o_{ω} is line of action of instantaneous angular velocity \overline{W} which is tangent of a movable axoidal hypoid h_3 performing screw motion against reference axoidal hypoid h_2 during spatial motion of hypoid h_3 wrt reference hypoid h_2 .

Applications The hypoid pump on Fig.3 is an application of Chasle's decomposition of general spatial motion of a body in mechanisms into the instantaneous tangential screw motion.

Fig.3 Axis of viration o_{ω} as tangent of axoidal hypoid h_3 performing screw motion against reference axoidal hypoid h_2

The hypoid pump The principle of hypoid pump from Fig.3 is mutual tangential screw motion of a movable axoidal hypoid h_3 rotating by angular velocity \overline{w}_{31} and performing screw motion 3/2 against reference axoidal hypoid h_2 rotating by angular velocity \overline{w}_{21} .

Fig.4 Axes o_{31} and o_{21} are skew lines with transversal AL. The couple \overline{w}_{32} and \overline{v}_{C32} of collinear vectors lay on the axis of viration o_{00} .

Authorized Training Center for MSC.ADAMS, STU Bratislava; http://www.sjf.stuba.sk

Fig.5 Instantaneous tangential screw motion of a wheel carrier of the front suspension with axis of viration o_{ω} as steering axis

Fig.6 Instantaneous screw motion of a wheel carrier of the rear suspension with axis of viration o_{ω} as steering axis. Points A, B, C belongs to the wheel carrier.