Kinematická simulácia pracovných režimov robota IRB6000 (firma ABB)

Cieľom tohto cvičenia je oboznámenie sa pracovným postupom a modelovacími prvkami programu MSC.ADAMS\View. Našou úlohou bude vykonať kinematickú analýzu pracovného režimu predloženého robota. Pracovný režim si rozdelíme na tri časti (fázy):

- 1. Prípravná fáza
- 2. Zváranie
- 3. Zakončenie (návrat do východiskovej polohy)

1. FÁZA - Príprava

1. Určujúce body

Ako prvé je potrebné určiť polohy kľúčových bodov, ktoré nám charakterizujú hlavné črty mechanizmu (rozmery jednotlivých ramien, polohy rotačných spojení ...)

Sú to nasledujúce body:

- 1. Marker_1 [0.0, 150.0, 0.0]
- 2. Marker_2 [150.0, 486.5, 200.0]
- 3. Marker_3 [150.0, 1186.5, 150.0]
- 4. Marker_4 [150.0, 1186.5, 0.0]
- 5. Marker_5 [464.0, 1186.5, 0]
- 6. Marker_6 [750.0, 1186.5, 0]
- 7. Marker_7 [815.0, 1186.5, 0.0]
- 8. Marker_8 [1060.0, 1222.0, 0.0]
- 9. Marker_9 [1159.0, 1098.0, 0.0]
- 10. Marker_10 [1212.6954, 832.8807, -106.0]
- 11. Marker_11 [1550.0, 950.0, 0.0]
- 12. Marker_12 [1080.0, 614.0, -306.0]
- 2. Vytvorenie geometrie

Najprv si utvoríme tzv. drôtový model geometrie robota. Jednotlivé geometrické reprezentácie telies budú tvorené nehmotnými lomenými čiarami. Tento konštrukčný prvok má názov Construction Geometry: Polyline a tvoríme ho výberom príslušných markerov. Pre vytváranie neuzavretých lomených priamok odškrtnite v Main Toolboxe políčko Closed. Markery vyberáme ľavým tlačidlom myši (Ľ) a tvorenie lomených čiar ukončujeme pravým tlačidlom (R). Po utvorení telesa pomocou lomenej čiary nám program oznámi, že dané teleso nemá žiadnu hmotnosť, teda nie je možné vykonať dynamickú analýzu. Tieto oznamy môžeme ignorovať, pretože budeme vykonávať iba analýzy kinematické. Postup:

- 1. Base Ground (nie je potrebné modelovať)
- 2. Column (Marker_1 Marker_2)
- 3. Arm_1 (*Marker_2 Marker_3*)
- 4. Arm_2 (*Marker_4 Marker_5*)
- 5. Arm_3 (*Marker_5 Marker_6*)
- 6. Bracket (*Marker_6 Marker_7*)

- 7. Welding_Torch (Marker_7 Marker_8 Marker_9)
 - i. V mieste Markera_7 vytvoríme Marker_700 patriaci telesu Welding_Torch (Zväčšíme jeho ikonu)
- 3. Vytvorenie geometrických väzieb medzi jednotlivými telesami robota

Pre určenie osi rotácie jednotlivých rotačných spojení je treba v Main Toolboxe prepnúť položku Normal to Grid na Pick feature.

- 1. Joint_1 (*Joint: Revolute*, Pick Feature, Column Base, Marker_1, Marker_1.Y)
- 2. Joint_2 (*Joint: Revolute*, Pick Feature, Arm_1 Column, Marker_2, Marker_2.Z)
- 3. Joint_3 (*Joint: Revolute*, Pick Feature, Arm_2 Arm_1, Marker_3, Marker_3.Z)
- 4. Joint_4 (*Joint: Revolute*, Pick Feature, Arm_3 Arm_2, Marker_5, Marker_5.X)
- 5. Joint_5 (*Joint: Revolute*, Pick Feature, Bracket Arm_3, Marker_6, Marker_6.Z)
- 6. Joint_6 (Joint: Revolute, Tool Bracket, Marker_7, Marker_7.X)
- 4. Výpočet počtu stupňov voľnosti (DOF)
 - 1. (R) List information about database object (modré písmeno " i " vpravo dole)
 - 2. Verfy the model, ... (fajka)
 - 3. Report:

VERIFY MODEL: .model

6 Gruebler Count (approximate degrees of freedom)6 Moving Parts (not including ground)6 Revolute Joints

This model has one or more degree of freedom and there are parts without mass properties. Check the following parts to ensure that they are valid without mass properties specified: Part .model.Column has no center-of-mass marker Part .model.Column has no mass Part .model.Arm_1 has no center-of-mass marker Part .model.Arm_2 has no center-of-mass marker Part .model.Arm_2 has no center-of-mass marker Part .model.Arm_2 has no center-of-mass marker Part .model.Arm_3 has no center-of-mass marker Part .model.Arm_3 has no center-of-mass marker Part .model.Bracket has no center-of-mass marker Part .model.Bracket has no center-of-mass marker Part .model.Bracket has no mass Part .model.Welding_Torch has no center-of-mass marker Part .model.Welding_Torch has no mass

6 Degrees of Freedom for .model

There are no redundant constraint equations.

Model verified successfully

5. Vytvorenie kinematických väzieb

- 1. Motion_1 (*Rotational Joint Motion*, Joint_1)
- 2. Motion_2 (*Rotational Joint Motion*, Joint_2)
- 3. Motion_3 (*Rotational Joint Motion*, Joint_3)
- 4. Motion_4 (*Rotational Joint Motion*, Joint_4)
- 5. Motion_5 (*Rotational Joint Motion*, Joint_5)
- 6. Motion_6 (*Rotational Joint Motion*, Joint_6)

Keďže sme modelu odobrali všetkých 6 stupňov voľnosti kinematickými väzbami môžeme v tejto fáze spustiť kinematickú analýzu. Dĺžka simulácie je 1 sekunda a počet krokov 500.

Keďže sme nedefinovali predpisy funkcií pohybu, program zadal do každej kinematickej väzby predpis f = 30d*time pre funkciu premiestnenia (displacement). Pre predpísaný pohyb robota je však potrebné zadefinovať konkrétny priebeh natočenia pre každý teleso. Na tento účel použijeme funkciu step (použiť Help).

6. Import geometrie obrobku a prípravku

Obrobok (Workpiece) a prípravok (Fixture) modelovať nebudeme, ale importujeme si pripravenú zostavu obrobku a prípravku vo formáte parasolid (*.xmt_txt):

Main Menu: File >> Import >> File Type: Parasolid, File to Read: ... \Fixture_Assembly.xmt_txt, Model Name: model Ďalej vytvoríme rotačnú geometrickú väzbu medzi prípravkom a rámom:

Joint_7 (*Joint: Revolute*, Fixture – Ground, Marker_12, Marker_12.Z) a obrobok spojíme napevno s prípravkom:

Joint_8 (*Joint: Fixed*, Workpiece – Fixture, napr. poloha 750,0,0) Nakoniec predpíšeme pohyb telesu obrobku v rotačnej väzbe:

Motion_7 (*Rotational Joint Motion*, Joint_7)

s funkciou

Motion_6 - 0

Po spustení simulácie s časom 10 sekúnd a 500 krokov sa presvedčíme, že model vykonáva vyžadovaný pohyb.

2. FÁZA – Zváranie

V tejto fáze musíme pridať do modelu dve prídavné geometrické väzby, ktoré nám zabezpečia správnu polohu zváracieho horáka (Welding Torch) k obrobku (Workpiece) počas procesu zvárania. Horák si musí počas celého procesu zvárania udržiavať konštantnú vzdialenosť a natočenie voči pohybujúcemu sa obrobku. Tieto podmienky nám zaručia <u>sférická väzba</u> medzi horákom a obrobkom a <u>primárna väzba</u> udržujúca natočenie horáka v konštantnej polohe voči rámu. Tieto geometrické väzby však nie sú aktívne počas prípravnej prvej fázy, preto ich musíme aktivizovať až vtedy, keď sa zvárací horák priblíži na predpísanú vzdialenosť k obrobku. Ak chceme celý pracovný proces namodelovať v jednom slede, musíme použiť riadenie simulácie pomocou simulačného skriptu, ktorým riadime priebeh simulácie. Taktiež si musíme uvedomiť, že markery definujúce prídavné geometrické väzby musíme lokalizovať a orientovať tak, aby na začiatku druhej fázy mali zhodnú polohu a orientáciu so svojím partnerom v spojení.

Na tento účel si uložíme model v polohe na konci prípravnej fázy:

Main Menu: Simulate >> Interactive Control >> Tlačidlo Save the model, at the simulated position, in the database under a new name >> New Model: IRB_1600_WP, kde WP znamená Welding Position.

Analysis: .model.Last_Run,

Frame: 501.

Týmto spôsobom sme si vytvorili v našom projekte ďalší model s názvom IRB_1600_WP. Medzi jednotlivými modelmi sa prepíname:

Main Menu: View >> Model ...

V modeli IRB_1600_WP musíme teraz určiť polohy a orientácie markerov ktoré budú patriť prídavným spojeniam. Keďže prídavné väzby budú viazať teleso Welding_Torch, bude výhodné definovať tieto markery v súradnom systéme nejakého markera patriaceho telesu Welding_Torch. Z tohto dôvodu sme na začiatku vytvorili Marker_700.

Sférickú väzbu budeme polohovať v Markeri_10 (v modeli IRB1600), takže si pomocou polohovacích nástrojov určíme polohu a natočenie Markera_10 voči Marker_700 v modeli IRB_1600_WP:

Main Toolbox: Position: (R) Reposition object relative to view coordinates ... >> f (x) >> Marker_10, Marker_700.

Main Toolbox: Position: (R) Reposition object relative to view coordinates ... >> $f(\Theta) >> Marker_{10}, Marker_{700}.$

Ak teraz modifikujeme polohu a orientáciu Markera_10, zistíme, že je naviazaná na polohu Markera_700:

Location: (LOC_RELATIVE_TO({370.4424916353, -108.0640359301, -2.4319311115}, . IRB_1600_WP.Welding_Torch.MARKER_700)) Orientation: (ORI_RELATIVE_TO({180.0, 100.0, 255.0}, .IRB_1600_WP.Welding_Torch.MARKER_700))

Vrátime sa do modelu IRB1600 a vytvoríme spomínané prídavné geometrické väzby. Main Menu: View >> Model ... >> IRB1600

Joint_1 (Joint: Sperical, Workpiece – Welding_Torch, Marker_10)

Ak sa pozrieme do miesta teraz vytvorenej geometrickej väzby, vidíme, že program v tomto mieste vytvoril ďalšie dva markery patriace telesu Workpiece (Marker_38) a telesu Welding_Torch (Marker_39). Marker_39 je potrebné modifikovať, aby mal túto polohu nie na začiatku simulácie (teda v súčasnej polohe), ale až na konci prípravnej fázy. Preto Markeru_39 predpíšeme polohu a orientáciu podľa zistení z modelu IRB_1600_WP:

(R) klik Marker_39 >> Modify >>
Location: (LOC_RELATIVE_TO({370.4424916353, -108.0640359301, -2.4319311115},
.IRB_1600.Welding_Torch.MARKER_700))
Orientation: (ORI_RELATIVE_TO({180.0, 100.0, 255.0}, .
IRB_1600.Welding_Torch.MARKER_700))

Ikona sférického spojenia sa nám tým pádom rozdelí na dve polgule spojené čiarou, čo nám indikuje, že spojeniu sme zadali nenulové počiatočné podmienky. Ak by sme teraz vykonali simuláciu, program by nám oznámil chybové hlásenie, pretože sústava je preurčená, teda s danými predpísanými pohybmi a väzbami nie je schopná pohybu. Teraz vytvoríme primárnu väzbu ktorú budeme polohovať v Markeri_11 (v modeli IRB1600), takže si opäť pomocou polohovacích nástrojov určíme polohu a natočenie Markera_11 voči Markeru_700 v modeli IRB_1600_WP:

Main Toolbox: Position: (R) Reposition object relative to view coordinates ... >> f (x) >> Marker_11, Marker_700.

Main Toolbox: Position: (R) Reposition object relative to view coordinates ... >> $f(\Theta) >> Marker_{11}$, Marker_700.

Ak teraz modifikujeme polohu a orientáciu Markera_11, zistíme, že je naviazaná na polohu Markera_700:

Location: (LOC_RELATIVE_TO({344.6147894891, -65.5146855537, -371.5522450987}, .IRB_1600_WP.Welding_Torch.MARKER_700))

Orientation: (ORI_RELATIVE_TO({180.0, 100.0, 255.0},

.IRB_1600_WP.Welding_Torch.MARKER_700))

Vrátime sa do modelu IRB1600 a vytvoríme spomínanú primárnu geometrickú väzbu:

Main Menu: View >> Model ... >> IRB1600

Main Toolbox: (R) Joint: Revolute >> Joint: Palette >> Joint Primitive: Orientation (Welding_Torch, ground, Marker_11)

Ak sa pozrieme opäť do miesta práve vytvorenej geometrickej väzby, vidíme, že program v tomto mieste vytvoril ďalšie dva markery patriace telesu Welding_Torch (Marker_40) a rámu (Marker_41). Marker_40 je opäť potrebné modifikovať, aby mal túto polohu nie na začiatku simulácie (teda v súčasnej polohe), ale až na konci prípravnej fázy. Preto Markeru_40 predpíšeme polohu a orientáciu podľa zistení z modelu IRB_1600_WP:

(R) klik Marker_40 >> Modify >>
Location: (LOC_RELATIVE_TO({344.6147894891, -65.5146855537, -371.5522450987},
.IRB_1600.Welding_Torch.MARKER_700))
Orientation: (ORI_RELATIVE_TO({180.0, 100.0, 255.0},
.IRB_1600.Welding_Torch.MARKER_700))

Opäť sledujeme zmenu ikony spojenia, čo indikuje vložené začiatočné podmienky.

Model si uložíme pod pracovným názvom IRB_1600_1.bin.

Keďže v momentálnom stave nemôžeme spustiť simuláciu pracovných režimov robota interaktívne v jednom slede, vytvoríme simulačný skript, v ktorom budú zadefinované jednotlivé pracovné režimy pomocou príkazov pre ADAMS/Solver. Najpodstatnejšou časťou nášho simulačného skriptu budú príkazy na aktiváciu a deaktiváciu jednotlivých geometrických väzieb, konkrétne prídavnej sférickej a prídavnej primárnej geometrickej väzby. Jednotlivé entity sa v programe ADAMS dajú deaktivovať a aktivovať aj "ručne": (R) na entitu a zvoliť poslednú položku (De)active.

Ešte pred samotnou tvorbou simulačného scriptu si vytvoríme merač natáčania obrobku (dôležité je, aby sa obrobok počas zvárania otočil o 360° okolo svojej osi – teda aby bol zavarený po celom obvode):

Utvoríme marker potrebný na meranie natočenia obrobku Main Toolbox: Construction Geometry: Maker (Add to part: Workpiece, poloha: Marker_10) Práve vytvorený marker premenujeme na Makrer_400.

Utvoríme merač natočenia obrobku

Main Menu: Build >> Measure >> Function >> New ...

Do prostredia Function Builderu napíšeme funkciu: AZ(MARKER_400), čo znamená Angle about Z of Marker_400. Názov bude mať MEA_WP_Angle a jednotky treba prepnúť na angle.

Ďalej je potrebné vytvoriť senzor, ktorý zastaví pohyb prípravku, ak sa prípravok otočí práve o 360°. Aby sme dosiahli čo najväčšiu presnosť, tesne pred dosiahnutím natočenia obrobku na 360° zjemníme simulačný krok na 0.001 sekundy. To dosiahneme použitím ďalšieho senzora.

Postup pri vytváraní senzorov: Main Menu: Simulate >> Sensor >> New ...

Zjemnenie simulačného kroku

Modify sensor	🏷 Modify sensor	
Name SENSOR_STEP	Name SENSOR_WP_Angle	
Event Definition: Run-Time Expression	Event Definition: Run-Time Expression 💌	
Expression .IRB_1600.MEA_WP_Angle	Expression IRB_1600.MEA_WP_Angle	
Event Evaluation: None	Event Evaluation: None	
C Non-Angular Values C Angular Values	C Non-Angular Values C Angular Values	
equal _	equal _	
Value 357.0	Value 360.0	
Error Tolerance 1.0E-003	Error Tolerance 1.0E-003	
Standard Actions:	Standard Actions:	
Generate additional Output Step at event	☐ Generate additional Output Step at event	
I Set Output Stepsize 0.001 □ Set Output Stepsize		
Terminate current simulation step and	Terminate current simulation step and	
	C Stop C Continue simulation script or ACF file.	
Special Actions:	Special Actions:	
Set Integration Stepsize	Set Integration Stepsize	
Restart Integrator Restart Integrator		
Refactorize Jacobian	Refactorize Jacobian	
Dump State Variable Vector	Dump State Variable Vector	
I W		
OK Apply Cancel	OK Apply Cancel	

Zastavenie pohybu prípravku

Teraz už môžeme pristúpiť k vytvoreniu simulačného scriptu.

Main Menu: Simulate >> Simulation Script >> New ... Script: SIM_SCRIPT_1 Script Type: ADAMS/Solver Commands

Znenie scriptu:

! PREPARATION (Prípravná fáza)

DEACTIVATE/JOINT, ID=9!(Deaktivácia sférickej väzby)DEACTIVATE/JPRIM, ID=1!(Deaktivácia primárnej väzby)SIMULATE/TRANSIENT, END=10.0, STEPS=500!(Spustenie simulácie)

! WELDING (Zváranie)

DEACTIVATE/MOTION, ID=2,3,4,5,6!(Deaktivácia pohybov 2,3,4,5,6)ACTIVATE/JOINT, ID=9!(Aktivácia sférickej väzby)ACTIVATE/JPRIM, ID=1!(Aktivácia primárnej väzby)MOTION/7, VEL, FUN=step(time,10,0,10.001,45d)!(Spustenie pohybu prípravku)SIMULATE/TRANSIENT, END=20.0, STEPS=500!(Spustenie simulácie)

! ENDING (Ukončenie)

DEACTIVATE/JOINT, ID=9	!(Deaktivácia sférickej väzby)
DEACTIVATE/JPRIM, ID=1	!(Deaktivácia primárnej väzby)
ACTIVATE/MOTION, ID=2,3,4,5,6	!(Aktivácia pohybov 2,3,4,5,6)
DEACTIVATE/SENSOR, ID=2	!(Deaktivácia senzora)
MOT/7, VEL, FUN=0	!(Zastavenie pohybu obrobku a prípravku)
SIMULATE/TRANSIENT, END=18.2, S'	ГЕРS=100 !(<i>Spustenie simulácie</i>)

Okno simulačného skriptu zatvoríme tlačidlom OK.

Spustíme simuláciu ovládanú našim skriptom: Main Menu: Simulate >> Scripted Controls ... a tlačidlom Start Simulation spustíme simuláciu. Model robota prevedie prípravný režim a režim zvárania. Model si priebežne uložíme pod názvom IRB_1600_2.bin

3. FÁZA – Ukončenie

Aj keď simulačný script už obsahuje aj tretiu fázu (Ending), predsa treba ešte definovať telesám Arm_1, Arm_2, Bracket a Welding_Torch také pohyby, aby sa

dostali do východiskovej polohy ako na začiatku simulácie. Docielime to tým, že k jednotlivým predpísaným pohybom pripojíme nasledujúce funkcie zo skupiny step:

Motion_2 : + step(time,18.1,0,18.2,30d) Motion_3 : +step(time,18.1,0,18.2,-45d) Motion_5 : +step(time,18.1,0,18.2,90d) Motion_6 : +step(time,18.1,0,18.2,-100d)

Model si uložíme pod menom IRB_1600_3.bin

Vyhodnotenie (pohyby servomotorov)

Keďže model robota vykonal už celý pracovný cyklus, môžeme pristúpiť k vyhodnoteniu niektorých veličín. Napríklad nás zaujíma, aký má byť predpísaný pohyb telesa Arm_2 voči telesu Arm_1 počas procesu zvárania. Počas priebehu prvej a tretej fázy pracovného cyklu je tento pohyb explicitne definovaný pomocou funkcií step, no počas zvárania (2. fázy) je tento pohyb vyvolaný pôsobením prídavných geometrických väzieb, aktívnych iba počas procesu zvárania. V skutočnosti, na reálnom mechanizme robota tieto prídavné geometrické väzby neexistujú. My ich používame ako pomôcky práve na určenie vzájomných pohybov jednotlivých telies robota počas zvárania.

Určenie potrebného priebehu vzájomného natočenia telies Arm_2 a Arm_3

Na tento účel si vytvoríme merač, ktorý bude snímať vzájomné natočenie markerov patriacich telesám Arm_1 a Arm_2.

Main Toolbox: Construction Geometry: Marker (Add to part: Arm_1, poloha Marker_3, Marker premenujeme na Marker_4a)

Main Toolbox: Construction Geometry: Marker (Add to part: Arm_2, poloha Marker_3, Marker premenujeme na Marker_4b)

Vytvoríme merač natočenia osi Z Markera_4b okolo Marera_4a:

Main Menu: Build >> Measure >> Function >> New ... do prostredia Function Buildera napíšeme:

AZ(Marker_4b, Marker_4a), Názov merača bude: MEA_Joint_3 (lebo meriame natočenie v spojení Joint_3), jednotky treba nastaviť na Angle.

Výsledné vzájomné natočenie telies Arm_1 a Arm_2 vyzerá napokon takto:

Znamená to, že presne takýmto spôsobom musí servomotor natáčať teleso Arm_2 voči telesu Arm_1 počas celého pracovného procesu a špeciálne počas procesu zvárania, kde je potrebné udržiavať danú polohu horáka voči zváranému obrobku.

Záverom: Aby sme mohli nasimulovať reálny pohyb robota počas celého pracovného režimu, je potrebné odstrániť fiktívne prídavné geometrické z čoho vyplýva, že je potrebné definovať priebeh vzájomného pohybu telies v každom spojení telies mechanizmu robota (teda pre spojenia Joint_1 až Joint_6) a to napr. spôsobom akým sme ukázali pre spojenie Joint_3 (spôsobov existuje viac).

Import telies z CAD prostredia

Nakoniec nahradíme nehmotné telesá, modelované pomocou lomených čiar modelmi telies vymodelovaných v CAD programe. Použijeme formáty Stereolithography (*.stl) a STEP (*.stp). Každú jednu geometrickú reprezentáciu, ktorú budeme importovať je potrebné priradiť ku konkrétnemu telesu. Ďalej treba skontrolovať, či program automaticky prepočítava hmotnostné charakteristiky importovaného telesa, keďže ho pripájame k nehmotnej lomenej čiare. Ak by sme robili dynamickú, alebo statickú analýzu, každé jedno teleso by muselo mať vypočítané hmotnostné charakteristiky (buď zadaním materiálu alebo hustoty materiálu v menu Modify Body). Postup pri importovaní geometrie z CAD súborov:

Teleso základu (Base), patriace rámu: Main menu: File >> Import ... >> File Type: Stereolithography (*.stl), File To read: zadáme cestu k súboru Base.stl, Part Name: .IRB_1600.ground Apply

Teleso stĺpa (Column): Main menu: File >> Import ... >> File Type: Stereolithography (*.stl), File To read: zadáme cestu k súboru Column.stl, Part Name: .IRB_1600.Column Apply

Takýmto spôsobom importujeme všetky telesá až po teleso Welding_Torch. Geometria tohto telesa sa skladá z dvoch súborov a to zo súboru Welding_Torch_mount.stp a Welding_Torch.stl.

Súbor Welding_Torch_mount.stp importujeme ako doteraz: Main menu: File >> Import ... >> File Type: STEP (*.stp), File To read: zadáme cestu k súboru Welding_Torch_mount.stp , Part Name: .IRB_1600.Welding_Torch Apply

Samotné teleso horáka je ale modelované v inej polohe ako ho potrebujeme v ADAMSe. Preto ho treba hneď pri importovaní polohovať a orientovať do želanej polohy. Najprv ale treba nastaviť sekvenciu rotácií z Eulerovho systému na Cardanov systém v Main Menu: Settings >> Coordinate System ...

🔅 Coordinate System Settings
Location Coordinates
 Cartesian
C Cylindrical
C Spherical
1
Rotation Sequence 123
C Body Fixed © Space Fixed
OK Apply Cancel

Súbor Welding_Torch.stl importujeme nasledovne: Main menu: File >> Import ...

Authorized Training Center for MSC.ADAMS, SjF STU Bratislava

🊿 File Import	×
File Type	Stereolithography (*.stl)
File To Read	pbotics\ABB\IRB 1600\IRB1600_Geometria\Welding_Torch.stl
Part Name	.IRB_1600.Welding_Torch
Scale	1.0
Location	890,1188,0
Orientation	0.0, -90, -7
Relative To	.IRB_1600
	OK Apply Cancel

Na záver spustíme simuláciu a dosiahnuté výsledky môžeme prezentovať buď vo forme grafov alebo animácií. Model si uložíme pod názvom IRB_1600_full_CAD.bin

