Priebeh uhla zbiehavosti mechanizmu zavesenia kolesa prepojeného s mechanizmom riadenia

Mechanizmus zavesenia kolesa a mechanizmus riadenia má nasledovné časti:

Nosič kolesa s kolesom – (Wheel carrier) Spindle_Wheel Dolné rameno - Lower Arm Horné rameno - Upper Arm Dolná časť pružiacej jednotky s tlmičom - Strut Lower Horná časť pružiacej jednotky s tlmičom - Strut Upper Spojovacia tyč nosiča s ozubenou tyčou riadenia -Tie Rod Ozubená tyč riadenia - Steering Rack Ukotvená karoséria - Body-Ground

Hriadeľ riadenia – Steering Shaft Zalomený hriadeľ riadenia – Intermittent shaft Stĺpik riadenia s volantom - Steering Wheel Column

- 1. Úloha: Načítajte povelový súbor suspension_start.cmd, ktorý vygeneruje model_1 mechanizmu zavesenia kolesa a doplňte potrebné väzby
 - Zobrazte si tabuľku na utváranie konštrukčných bodov (Points, Hardpoints HP): MB: Edit, Modify, DN, ground, HP1, Table Editor for Points.
 - Skontrolujte utvorené geometrické väzby
 - Doplňte geometrické väzby. Sférické spojenie pre spjovací člen (Tie Rod), s nosičom (HP8) 2Bod-1Loc, Normal to Grid. Hookov kĺb pre spjovací člen s ozubenou tyčou riadenia (HP7), 2Bod-1Loc, Pick Feature, First direction from (HP7) to (HP8), Second direction from (HP7) to (HP13),
 - Doplňte kinematickú väzbu (predpísaný pohyb pre prepruženie nosiča kolesa voči telesu ground v smere osi y). Do markera .Spindle_Wheel.Center vložte Point Motion, (2Bod-1Loc, Pick Feature) s funkciou Displacement (time)= 80*sin(360d *time).

- Doplňte kinematickú väzbu (posúvanie ozubnej tyče zamedzite tak, že do translačného spojenia predpíšete funkciu 0*time). MB, Edit, Modify, rck_body_joint, Impose Motion, TraZ, disp(time), 0*time.
- Verifikujte model a simulujte: end time=1sec, ste=50.
- Premenujte východiskový model_1 na model_2. MB, Edit, rename, DN, OK, Object: model_1, New Name: model_2.
- Uložte model_2 do súboru suspension_compl, MB, File, Export, File Name: suspension_compl, Model Name: model_2
- 2. Úloha: Preskúmajte priebeh uhla zbiehavosti (Toe Angle) kolesa v závislosti na prepružení (Jounce – Rebound) mechanizmu zavesenia kolesa

- Načítajte povelový súbor suspension_compl.cmd, ktorý vygeneruje model_2
- Prepruzenie pre priemet stredu Utvorte merač dráhv kolesa I MARKER Center do zvislého smeru Y_G pri prepružení 80mm nosiča kolesa nahor - Jounce (Bump) aj nadol - Rebound, ktoré bude tiež 80mm od strednei východiskovej polohy. MTB, Measure, Point to Point Kinematics. Characteristic: Displacement, Component: Global Y, From Point, DN, Ground, WH ref, To Point, Spindle Wheel, Center, Standardný názov MEA PT2PT 1 premenujeme na Prepruzenie, MB, Edit, Rename, DN.
- Uskutočnite simuláciu end time=1sec, ste=50.na overenie správnosti merača prepruženia.
- Podľa obrázka utvorte merač priebehu Uhol_zbiehavosti počas prepruženia nosiča kolesa. Využite dvojargumentovú funkciu ATAN2, ktorá poskytuje výpočet uhla TA podľa vzťahu TA= tan⁻¹(DZ/DX), kde DZ je priemet úsečky DM do pozdľžnej osi vozidla Z_G a DX je priemet úsečky DM do priečnej osi vozidla X_G. MB, Build, Measure, New, FB, Function, All Functions, ATAN2(x1,x2), Distance along Z, DZ(To Marker, From Marker, Along Marker), Využívame Getting Object data: To Marker= Center, From Marker: TA_ref. Ak

nezadáme Along Marker, automaticky je to ground. Štandardný názov FUNCTION_MEA_ 1 premenujeme na Uhol_zbiehavosti.

- Uskutočnite simuláciu end time=1sec, ste=50.na overenie správnosti merača uhla zbiehavosti.
- V prostredí PostProcesora utvorte priebeh uhla zbiehavosti v závislosti na prepružení tak, že nastavíte Independent Axis to Data (Uhol_zbiehavosti), teda na horizontálnej osi x bude Uhol_zbiehavosti, na zvislú os zadáme Prepruženie.
- Nahraďte zjednodušené tvary nosiča a kolesa realistickejšími tvarmi importovaním súborov knuckle.shl a wheel.shl. MB, File, Import, File Type: Render.. Po načítaní vypnite viditeľnosť pôvodných geometrických objektov, MB, Edit, DN, Appearance, Visibility off.
- Premenujte model_2 na model_3 MB, Edit, rename, DN, OK, Object: model_2, New Name: model_3.
- Uložte model_3 do súboru suspension, MB, File, Export, File Name: suspension, Model Name: model_3

3. Úloha: Načítajte povelový súbor steering_start.cmd, ktorý vygeneruje model_4 mechanizmu riadenia (steering) a doplňte potrebné väzby

- Doplňte kinematickú väzbu (predpísaný pohyb pre otáčanie stĺpika riadenia s volantom, rotačne viazanom s telesom body, ktoré je fixne spojené s telesom ground). MTB, Rotational Joint Motion, rotačná geometrická väzba je strwheel_body_rev. Štandarnú funkciu v utvorenej kinematickej väzbe MOTION_1 modifikujte tak, aby sa volant otáčal o 45° podľa funkcie 45d*sin(360d*time).
- Uskutočnite simuláciu end time=1sec, ste=50.na overenie funkčnosti mechanizmu s predpísaným pohybom.
- Doplňte kinematickú väzbu COUPLER prepojenia otáčania telesa steering_shaft vo valcovom spojení strshft_body_cyl s posúvaním telesa rack v translačnom spojení rack_body_trans. MTB, Joint (Add-on Constraint) Coupler. Prevod nastavte tak, aby sa pri pootočení telesa steering_shaft o 7° vysunulo teleso rack o 1mm. By Displacement, Rotational Displacement 7° for Driver, Translational Displacement 1mm for Rack.
- Premenujte model_4 na model_5 MB, Edit, rename, DN, OK, Object: model_4, New Name: model_5.
- Uložte model_5 do súboru steering, MB, File, Export, File Name: suspension, Model Name: model_5.

4. Úloha: Zlúčením oboch samostatných submechanizmov suspension a steering utvorte model_6 spoločného mechanizmu zavesenia a riadenia (suspension_steering_compl)

- Načítajte povelový súbor suspension.cmd, ktorý vygeneruje model_3 a povelový súbor steering.cmd, ktorý vygeneruje model_5.
- Utvorte spoločný model_6 pomocou funkcie Assemble MB, Tools, CN (Command Navigator), model, Assemble, Duplicate Parts: merge.. Zobrazte nový model_6, MB, View, Model.
- Zobrazte topológiu modelu_6, MB, DN, Graphical Topology, ground.

- Deaktivujte nadbytočnú duplicitnú geometrickú väzbu (Joint: body_grnd_fixed_2) medzi telesami ground a body, ktorá sa vyskytuje v modeli_6 po zlúčení. Kliknite pravým tlačítkom myši (R) na ikonu spojenia priamo v zobrazenej topológii, Deactivate.
- Zobrazte topológiu modelu_6, MB, DN, Graphical Topology, body.
- Deaktivujte nadbytočnú duplicitnú geometrickú väzbu (Joint:: rck_body_trans_2) medzi telesami body a rack, ktorá sa vyskytuje v modeli_6 po zlúčení. Kliknite pravým tlačítkom myši (R) na ikonu spojenia priamo v zobrazenej topológii, Deactivate.
- Odstráňte kinematickú väzbu pre posúvanie ozubnej tyče v translačnom spojení MB, Edit, Modify, General Motion, TraZ, free
- Aktualizujte zobrazovanie výstupov z meračov, MB, Build, Measure, Display, Prepruženie, Uhol zbiehavosti.
- Uskutočnite simuláciu end time=1sec, ste=50.na overenie funkčnosti spoločného mechanizmu zavesenia a riadenia.
- Premenujte model_6 na model_7 MB, Edit, rename, DN, OK, Object: model_6, New Name: model_7.
- Uložte model_7 do súboru suspension_steering_compl, MB, File, Export, File Name: suspension, Model Name: model_7

5. Úloha: Preskúmajte priebeh uhla zbiehavosti (Toe Angle) kolesa v závislosti na prepružení (Jounce – Rebound) mechanizmu zavesenia kolesa pri priamej jazde aj pri jazde v pravotočivej a l'avotočivej zákrute.

- Načítajte povelový súbor suspension_steering_compl, ktorý vygeneruje model_7.
- Pre simuláciu prepruženia pri jazde v pravotočivej zákrute zmeňte funkciu 45d*sin(360d*time) pre kinematickú väzbu MOTION_1_2 v geometrickej väzbe strwheel_body_rev na 45d, (R), MOTION_1_2, Modify, Function(time), 45d.
- Aby bolo možné porovnať priebehy uhla zbiehavosti pri priamej jazde aj pri jazde v pravotočivej a ľavotočivej zákrute, jednotlivé simulácie ukladajte pod samostatným názvom. MB, Simulate, Interactive Control, Save the last simulation results to the database under a new name.(pravotociva pre 45d, priama pre 0d, lavotociva pre -45d).
- V prostredí PostProcesora zobrazte do jedného grafu všetky tri priebehy uhla zbiehavosti v závislosti na prepružení tak, že nastavíte Independent Axis to Data (Uhol_zbiehavosti), teda na horizontálnej osi x bude Uhol_zbiehavosti, vyznačíte všetky tri simulácie (stlačte Ctrl, pravotociva, priama, lavotociva) a na zvislú os zadáte Prepruženie.
- Premenujte model_7 na model_8 MB, Edit, rename, DN, OK, Object: model_7, New Name: model_8.
- Uložte model_8 do súboru suspension_steering, MB, File, Export, File Name: suspension, Model Name: model_8.

Authorized Training Center for MSC.ADAMS, STU Bratislava; http://www.ktm.sjf.stuba.sk/atc