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Preface

Technical physics — The collection of solved problems is a textbook for students of the first

and second year of bachelor’s study at the Faculty of Mechanical Engineering of the Slo-

vak University of Technology in Bratislava. The textbook is used to practice and supplement

the curriculum of the compulsory courses Technical Physics I and Technical Physics II, as well

as the elective courses Physics Seminar II and Physics Seminar III. The textbook contains 90

solved problems from classical physics, covering the areas of mechanics, thermodynamics,

electricity, magnetism, oscillations, waves and optics. The selection of the problems is in line

with the content of the courses mentioned above, thus, they correspond in their difficulty

to an introductory university course in the scope of two semesters at a technical university.

The Slovak edition [1] of this textbook was published in 2023. After two years of successful

use among Slovak students, there was a need to create the English edition for students study-

ing in English. The textbook responds to the strong need for students to have a collection

of sample solutions to problems to facilitate their study and preparation for exams.

In preparing the textbook, it was necessary to decide whether to include a theoretical intro-

duction at the beginning of each chapter that would summarise the basic theoretical knowl-

edge needed to solve the problems. Since the explanation of the theory is sufficiently covered

in university textbooks [2, 3, 4], students can also use some of the world-famous physics text-

books [5, 6, 7, 8, 9, 10] or refer to the evergreen physics classics [11], theoretical introductions

were not included in this textbook. The second question was whether the problems would

be general or also include specific numerical values. Given that this is a collection of prob-

lems intended for engineering students, it is preferable that numerical values are included

in the problems and that the problems are solved with a finite numerical result. There is also

the advantage of practising numerical calculations, as this ability has been declining among

students in recent years, it is common to find that "as many results as students" when more

difficult mathematical expressions are added. The general decline in mathematical ability is
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also the reason why intermediate steps are given for more complex mathematical steps.

It is advisable to use the textbook in such a way that after reading the assignment of the prob-

lem, the students first try to solve the problem independently. Solving the example indepen-

dently, i.e. without looking at the model solution, allows the students to check that they un-

derstand the problem, can apply the physics knowledge to the solution, and finally can solve

similar problems independently in an exam. Only when the students conclude that solving

the problem is beyond their capabilities is it a good time to look at the typical solution given

in this textbook. It is usual for physics problems that there is not just one correct way to solve

the problem. For example, some problems in mechanics can be solved using Newton’s force

law or using the law of conservation of mechanical energy. Another example is some prob-

lems in magnetism, which can be solved using the Biot-Savart-Laplace law or Ampère’s law

of total current. Therefore, even if a student solves a problem by a procedure other than that

given in this textbook, his solution may be correct.

If students want to practice and test their knowledge and skills on other problems, it is advis-

able to reach for a more comprehensive collection of problems from university physics [12, 13,

14], or try to solve other problems that are published on the website of the Institute of Math-

ematics and Physics of the Faculty of Mechanical Engineering STU [15].

The authors are aware that, despite their best efforts and repeated checking, many errors

have made their way into the textbook. Therefore, they will be very grateful to anyone who

brings these errors to their attention and sends them information about the errors to the e-mail

address: jozef.leja@stuba.sk

The publication of the textbook was financed from the funds of the KEGA project

(024STU-4/2023) "Building a laboratory of medical metrology".
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1 Kinematics of a point particle

1.1 The position vector of a point particle depends on time according to the relation r⃗ =

i⃗ A cos bt + j⃗ A sin bt, where A = 5m, b = π/4 s−1. Express its components, coordi-

nates, magnitude and direction cosines at any time and at time t = 2 s.

The position vector can be decomposed into components

r⃗ = x⃗+ y⃗ ,

where the components of the position vector are

x⃗ = i⃗ A cos bt ,

y⃗ = j⃗ A sin bt .

At time t = 2 s, the components of the position vector have the values

x⃗ = i⃗ 5m . cos
(
π/4 s−1 . 2 s

)
= 0 i⃗ ,

y⃗ = j⃗ 5m . sin
(
π/4 s−1 . 2 s

)
= 5m j⃗ .

The position vector can be written using coordinates

r⃗ = x⃗i+ yj⃗ ,

where the coordinates of the position vector are

x = A cos bt ,

y = A sin bt .

At time t = 2 s, the coordinates of the position vector have the values

x = 5m . cos
(
π/4 s−1 . 2 s

)
= 0 ,
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y = 5m . sin
(
π/4 s−1 . 2 s

)
= 5m .

The magnitude of the position vector is constant

r =
√

x2 + y2 =
√

(A sin bt)2 + (A cos bt)2 = A = 5m .

The direction cosines of the position vector are

cosα =
x

r
=

A cos bt

A
= cos bt ,

cos β =
y

r
=

A sin bt

A
= sin bt .

At time t = 2 s, the direction cosines have values

cosα = cos
(
π/4 s−1 . 2 s

)
= 0 ,

cos β = sin
(
π/4 s−1 . 2 s

)
= 1 .

1.2 Two bodies that are d = 100m apart started moving in a straight line opposite each other.

The first body is moving uniformly with velocity v = 3m s−1. The second body is moving

uniformly accelerated with an initial velocity v0 = 7ms−1 and acceleration a = 4ms−2.

Find the time and place of their meeting.

The distance travelled by the first body in uniform motion will be

s1 = vt .

The distance travelled by the second body in uniformly accelerated motion will be

s2 = v0t+
at2

2
.

The bodies meet when the sum of the paths they have travelled equals their initial dis-

tance

s1 + s2 = d ,

vt+ v0t+
at2

2
= d .

By adding the numerical values, the quadratic equation can be obtained

3m s−1 t+ 7ms−1 t+
4ms−2 t2

2
= 100m ,
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the time of the meeting of the bodies is thus the root of the quadratic equation

2t2 + 10t− 100 = 0 ,

which has two solutions

t1 = 5 s ,

t2 = −10 s .

The physically meaningful solution of the problem corresponds to the positive solution

of the quadratic equation

t = 5 s .

The point at which the bodies meet will be distant from the first body

s1 = vt = 3m s−1 . 5 s = 15m

and will be distant from the other body

s2 = d− s1 = 100m− 15m = 85m .

1.3 The train starts from rest with a uniformly accelerated motion so that in time t1 = 30 s

it passes a path s1 = 90m. What path will it pass, what its instantaneous and average

velocity will be in time t2 = 60 s?

For the path s1 that the train passes in time t1 in uniformly accelerated motion, the fo-

llowing holds

s1 =
at21
2

,

from which the acceleration of the train can be calculated

a =
2s1
t21

=
2 . 90m

(30 s)2
= 0.2m s−2 .

The path of the train at time t2 will be

s2 =
at22
2

=
0.2m s−2 . (60s)2

2
= 360m .

The instantaneous velocity of the train at time t2 will be

v2 = at2 = 0.2m s−2 . 60 s = 12m s−1 .

The average speed of the train over time t2 will be

vp =
s2
t2

=
360m

60 s
= 6m s−1 .
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1.4 The position vector of a point particle has the form r⃗ = (A1t
2+B1)⃗i+(A2t

2+B2)⃗j, where

A1 = 0.2m s−2, B1 = 0.05m, A2 = 0.15m s−2, B2 = −0.03m. Find the magnitude

and direction of the velocity and acceleration of the point particle at time t1 = 2 s. Express

the direction using the angle to the x-axis.

The coordinates of the position vector are

x = A1t
2 +B1 ,

y = A2t
2 +B2 .

For the velocity vector, it is stated

v⃗ =
dr⃗

dt
.

The coordinates of the velocity vector will be

vx =
dx

dt
=

d(A1t
2 +B1)

dt
= 2A1t ,

vy =
dy

dt
=

d(A2t
2 +B2)

dt
= 2A2t .

The magnitude of the velocity vector will be

v =
√
v2x + v2y =

√
(2A1t)2 + (2A2t)2 = 2t

√
A2

1 + A2
2 .

The magnitude of the velocity vector at time t1 = 2 s will be

v = 2 . 2 s .
√

(0.2m s−2)2 + (0.15m s−2)2 = 1m s−1 .

The direction cosine of the velocity vector will be constant

cosαv =
vx
v

=
2A1t

2t
√

A2
1 + A2

2

=
A1√

A2
1 + A2

2

and its value will be

cosαv =
0.2m s−2√

(0.2m s−2)2 + (0.15m s−2)2
= 0.8 ,

which implies that the angle between the velocity vector and the x-axis will be

αv = arccos 0.8 = 36.6◦ .
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For the acceleration vector, it is stated

a⃗ =
dv⃗

dt
.

The coordinates of the acceleration vector will be

ax =
dvx
dt

=
d(2A1t)

dt
= 2A1 ,

ay =
dvy
dt

=
d(2A2t)

dt
= 2A2 .

The magnitude of the acceleration vector will be constant

a =
√

a2x + a2y =
√
(2A1)2 + (2A2)2 = 2

√
A2

1 + A2
2

and its value will be

a = 2 .
√

(0.2m s−2)2 + (0.15m s−2)2 = 0.5m s−2 .

The direction cosine of the acceleration vector will be constant

cosαa =
ax
a

=
2A1

2
√

A2
1 + A2

2

=
A1√

A2
1 + A2

2

and its value will be

cosαa =
0.2m s−2√

(0.2m s−2)2 + (0.15m s−2)2
= 0.8 ,

which implies that the angle between the acceleration vector and the x-axis will be

αa = arccos 0.8 = 36.6◦ .

1.5 The wheel started to rotate from rest with a constant angular acceleration α = 5 s−2. How

many times has the wheel rotated in the time t1 = 10 s since the start of the motion?

The angular velocity at constant angular acceleration is

ω =

∫
α dt = αt+ c1 .

If the starting angular velocity is zero, then the integration constant is zero

ω(t = 0 s) = 0 =⇒ c1 = 0

10



and the angular velocity will be

ω = αt .

The angular displacement at constant angular acceleration is

φ =

∫
ω dt =

∫
αt dt =

αt2

2
+ c2 .

If the starting angular displacement is zero, then the integration constant is zero

φ(t = 0 s) = 0 =⇒ c2 = 0

and the angular displacement will be

φ =
αt2

2
.

The angular distance of one revolution is 2π, so the number of revolutions of the wheel

will be

n =
φ

2π
=

αt2

4π

and the number of revolutions of the wheel in time t1 will be

n1 =
αt21
4π

=
5 s−2 . (10 s)2

4π
= 39.8 .

1.6 The magnitude of the train speed after leaving the station gradually increased from zero

to v1 = 20m s−1 at time t1 = 180 s. The track is curved with a radius of curvature

R = 800m. Calculate the magnitudes of the tangential, normal, and total accelerations

at time t2 = 120 s.

Tangential acceleration indicates the change in magnitude of the velocity

at =
dv

dt
,

for constant at it is

at =
v1
t1

=
20m s−1

180 s
= 0.111m s−2 .

The magnitude of the velocity at time t2 will be

v2 = att2 =
v1t2
t1

.
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The normal acceleration indicates the change in direction of the velocity

an =
v2

R
.

At time t2, the normal acceleration will be

an =
v21t

2
2

Rt21
=

(20m s−1)2 . (120 s)2

800m . (180 s)2
= 0.222m s−2 .

The total acceleration is the vector sum of the tangential and normal accelerations

a⃗ = a⃗t + a⃗n .

The magnitude of the total acceleration will be

a =
√

a2t + a2n ,

thus, the total acceleration at time t2 will be

a =

√(
v1
t1

)2

+

(
v21t

2
2

Rt21

)2

and its value will be

a =

√(
20m s−1

180 s

)2

+

(
(20m s−1)2 . (120 s)2

800m . (180 s)2

)2

= 0.248m s−2 .

1.7 The point particle started moving in a circle with constant angular acceleration α =

0.25 s−2. At what time from the start of the motion will the angle between the particle’s

acceleration and the particle’s velocity be γ = 45◦?

v⃗a⃗ t
γ

a⃗n a⃗

Fig. 1
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In circular motion, the tangential acceleration is

at =
dv

dt
=

d(Rω)

dt
= R

dω

dt
= Rα .

The angular velocity at constant angular acceleration is

ω = αt .

The normal acceleration can be expressed as

an =
v2

R
=

(ωR)2

R
=

α2t2R2

R
= α2t2R .

The angle between the velocity and acceleration (Fig. 1) is

tan γ =
an
at

=
α2t2R

Rα
= αt2 ,

which implies for time

t =

√
tan γ

α
=

√
tan 45◦

0.25 s−2
= 2 s .

1.8 A wheel with radius R = 0.1m rotates such that the dependence of the angle of rotation

on time is given by the functionφ = A+Bt+Ct3 , whereB = 2 s−1,C = 1 s−3. For points

that lie on the circumference of the wheel, calculate their velocity, angular velocity, angular

acceleration, tangential acceleration and normal acceleration at time t1 = 2 s.

The magnitude of the angular velocity can be calculated using the definition

ω =
dφ

dt
,

which implies

ω =
d(A+Bt+ Ct3)

dt
= B + 3Ct2 =

[
2 s−1 + 3 . (1 s−3) . (2 s)2

]
= 14 s−1 .

The magnitude of the angular acceleration can be calculated using the definition

α =
dω

dt
,

which implies

α =
d(B + 3Ct2)

dt
= 6Ct = 6 . (1 s−3) . (2 s) = 12 s−2 .
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The magnitude of the velocity is

v = ωR = (B + 3Ct2)R =
[
2 s−1 + 3 . (1 s−3) . (2 s)2

]
. 0.1m = 1.4m s−1 .

The magnitude of the tangential acceleration is

at = αR = 12 s−2 0.1m = 1.2m s−2 .

The magnitude of the normal acceleration is

an =
v2

R
=

(1.4m s−1)2

0.1m
= 19.6m s−2 .

1.9 A point particle moves in a straight line so that its acceleration increases uniformly

with time, and in time t1 = 10 s it increases from zero to a1 = 5m s−2. What is the speed

of the point particle at time t2 = 20 s, and what is the path the point particle travelled

in this time when it was initially at rest?

The acceleration of the material point increases uniformly

a = kt ,

the acceleration from zero to a1 increases in time t1, that is

a1 = kt1 =⇒ k =
a1
t1

,

therefore, the acceleration will be

a =
a1
t1
t .

The speed of the point particle is

v =

∫
a dt =

∫
a1
t1
t dt =

a1t
2

2t1
+ c1 .

If the speed is initially zero

v(t = 0 s) = 0 =⇒ c1 = 0 ,

the speed at time t2 will be

v2 =
a1t

2
2

2t1
=

5ms−2 . (20 s)2

2 . 10 s
= 100m s−1 .
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The path of the point particle is

s =

∫
v dt =

∫
a1t

2

2t1
dt =

a1t
3

6t1
+ c2 ,

if the initial path is zero

s(t = 0 s) = 0 =⇒ c2 = 0 .

The path at time t2 will be

s2 =
a1t

3
2

6t1
=

5ms−2 . (20 s)3

6 . 10 s
= 667m .

1.10 The particle moves on a circle with angular deceleration that increases with time according

to the relation α = kt , where k = −6 rad s−3. The initial angular velocity was ω0 =

30 rad s−1. Through what angle does the particle rotate in time t1 = 5 s?

The angular deceleration of the particle increases uniformly

α = kt .

The angular velocity of the particle is

ω =

∫
α dt =

∫
kt dt =

kt2

2
+ c1 ,

because the initial angular velocity of the particle was ω0

ω(t = 0 s) = ω0 =⇒ c1 = ω0 ,

the angular velocity will be

ω =
kt2

2
+ ω0 .

The angular displacement of the particle is

φ =

∫
ω dt =

∫ (
kt2

2
+ ω0

)
dt =

kt3

6
+ ω0t+ c2 ,

because the initial angular displacement of the particle was zero

φ(t = 0 s) = 0 =⇒ c2 = 0 ,

the angular path will be

φ =
kt3

6
+ ω0t .

The angular displacement of the particle at time t1 will be

φ1 =
kt31
6

+ ω0t1 =
−6 rad s−3 . (5 s)3

6
+ 30 rad s−1 . 5 s = 25 rad .
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2 Dynamics of a point particle

2.1 Three bodies with masses mA = 10 kg, mB = 15 kg, mC = 20 kg, lying on a horizontal

support and connected by a wire, are subject to a force F = 100N in the horizontal direc-

tion. The mass of the wire and the friction between the bodies and the support are negligible.

Calculate the acceleration of the system and the force acting at each joint.

x

mA mB mC

y

i⃗

j⃗
G⃗A

G⃗B G⃗C

N⃗ A N⃗ B N⃗CT⃗ AB T⃗ BA T⃗ BC T⃗ CB F⃗

a⃗

Fig. 2

The motion of bodies is described by Newton’s law of force
n∑

i=1

F⃗i = ma⃗ .

If the distance between the bodies does not change, the acceleration of all the bodies is

equal

a⃗A = a⃗B = a⃗C = a⃗ .

The bodies (Fig. 2) are subject to gravitational forces G⃗A, G⃗B , G⃗C , normal forces N⃗A,

N⃗B , N⃗C , the tensile forces of the wire T⃗AB , T⃗BA, T⃗BC , T⃗CB and the external force F⃗ ,

therefore, Newton’s force law will be

T⃗AB + G⃗A + N⃗A = mAa⃗ ,
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T⃗BA + T⃗BC + G⃗B + N⃗B = mBa⃗ ,

F⃗ + T⃗CB + G⃗C + N⃗C = mC a⃗ .

After scalar multiplication of the equations by the unit vectors i⃗ and j⃗ and using

the equations

i⃗ · i⃗ = 1 ,

j⃗ · j⃗ = 1 ,

i⃗ · j⃗ = 0 ,

the equations take the scalar form

TAB = mAa ,

NA −GA = 0 ,

−TBA + TBC = mBa ,

NB −GB = 0 ,

F − TCB = mCa ,

NC −GC = 0 .

In the vertical direction, the acceleration is zero, therefore

NA = GA ,

NB = GB ,

NC = GC .

Newton’s law of action and reaction implies

T⃗AB = −T⃗BA ,

TAB = TBA ,

T⃗BC = −T⃗CB ,

TBC = TCB .

Therefore, in the horizontal direction

TAB = mAa ,
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−TAB + TBC = mBa ,

F − TBC = mCa .

By summing all the equations, the acceleration of the system can be expressed

a =
F

mA +mB +mC

and then modifying the individual equations of the force between the bodies

TAB =
FmA

mA +mB +mC

,

TBC =
F (mA +mB)

mA +mB +mC

.

After substituting the values, the numerical solution will be

a =
100N

10 kg + 15 kg + 20 kg
= 2.2m s−2 ,

TAB =
100N . 10 kg

10 kg + 15 kg + 20 kg
= 22.2N ,

TBC =
100N . (10 kg + 15 kg)

10 kg + 15 kg + 20 kg
= 55.6N .

2.2 Two bodies with equal masses m = 5kg are connected by a wire passing through a freely

rotating pulley. The first body hangs freely on the wire, the second lies on an inclined

plane which makes an angle α = 30◦ with the horizontal plane. Calculate the accelera-

tion of the bodies and the force acting on the wire if there is no friction between the body

and the inclined plane, and if there is friction between the body and the inclined plane,

and the friction factor is µ = 0.2.

α

m

T⃗ A

G⃗
a⃗

G⃗⊥

G⃗∥

α

N⃗T⃗ B

F⃗T
m

G⃗

Fig. 3
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The gravitational force of a body on an inclined plane (Fig. 3) can be decomposed into

a component parallel to the inclined plane and a component perpendicular to the in-

clined plane

G⃗ = G⃗∥ + G⃗⊥ .

The component parallel to the inclined plane will have the magnitude

G∥ = G sinα

and the component perpendicular to the inclined plane

G⊥ = G cosα .

The magnitude of the frictional force between the body and the inclined plane is

FT = µG⊥ = µG cosα .

Newton’s law of force
n∑

i=1

F⃗i = ma⃗ ,

for a hanging body is

G⃗+ T⃗A = ma⃗A

and for a body on an inclined plane is

G⃗∥ + G⃗⊥ + N⃗ + T⃗B + F⃗T = ma⃗B .

Newton’s law of action and reaction implies

TA = TB = T .

The length of the wire does not change, therefore,

aA = aB = a .

The force of gravity can be calculated using the acceleration of gravity as

G⃗ = mg⃗ .
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Newton’s law of force for bodies has a scalar form

mg − T = ma ,

−mg sinα + T − µmg cosα = ma .

By solving the system of equations, it is possible to express the acceleration of the system

a =
g(1− sinα− µ cosα)

2
,

and the force acting on the wire

mg − T = ma =⇒ T = mg −ma ,

T =
mg(1 + sinα + µ cosα)

2
.

If the friction between the body and the inclined plane is negligible

µ = 0 ,

the acceleration of the system will be

a =
g(1− sinα)

2

and the force acting on the wire will be

T =
mg(1 + sinα)

2
.

After substituting the numerical values

a =
9.81m s−2 . (1− sin 30◦)

2
= 2.45m s−2 ,

T =
5kg . 9.81m s−2 . (1 + sin 30◦)

2
= 36.79N .

If the friction between the body and the inclined plane is not negligible

µ = 0.1 ,

the acceleration of the system will be

a =
g(1− sinα− µ cosα)

2

and the force acting on the wire will be

T =
mg(1 + sinα + µ cosα)

2
.

After substituting the numerical values

a =
9.81m s−2 . (1− sin 30◦ − 0.2 . cos 30◦)

2
= 1.60m s−2 ,

T =
5kg . 9.81m s−2 . (1 + sin 30◦ + 0.2 . cos 30◦)

2
= 41.04N .
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2.3 A weight of massm = 5kg hanging on a wire of length l = 1m swings with a maximum

angular deflection α = 60◦. What force F1 is acting on the wire at the extreme positions

and what force F2 is acting on the wire at the lowest position?

α

α
G⃗ G⃗∥

G⃗⊥a⃗

T⃗ 1

T⃗ 2

G⃗

v⃗

a⃗dh

l

F⃗1

F⃗2

Fig. 4

The weight in the extreme position (Fig. 4) is acted upon by the gravitational force G⃗

and the force of the wire T⃗1. Newton’s law of force will therefore have the form

G⃗+ T⃗1 = ma⃗ .

The gravitational force can be resolved into a component parallel to the direction

of the wire and a component perpendicular to the direction of the wire

G⃗ = G⃗∥ + G⃗⊥ .

The component of the gravitational force acting in the direction parallel to the direction

of the wire is

G∥ = G cosα ,

from Newton’s law of forces for components in the direction of the wire implies

G∥ − T1 = 0 ,

mg cosα− T1 = 0 ,

21



from which it is possible to express the force that the wire acts on the weight

T1 = mg cosα .

According to Newton’s law of action and reaction, the force that the weight acts

on the wire is equal in magnitude and in the opposite direction to the force that the wire

acts on the weight

F⃗1 = −T⃗1 ,

therefore, the magnitude of the force that acts on the wire at its extreme position will be

F1 = mg cosα ,

after substituting numerical values

F1 = 5kg . 9.81m s−2 . cos 60◦ = 24.53N .

The height of the weight at its extreme position relative to the lowest position can be

expressed as

h = l − l cosα .

The law of conservation of mechanical energy for a weight in the extreme and lowest

position has the form

Ep1 + Ek1 = Ep2 + Ek2 ,

if in the extreme position, the kinetic energy is zero

Ek1 = 0

and in the lowest position, the potential energy is zero

Ep2 = 0 ,

the law of conservation of mechanical energy takes the form

Ep1 = Ek2 ,

mgh =
mv2

2
,
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from which it is possible to express the velocity of the weight in the lowest position as

v =
√

2gh .

The weight will move in a circle with radius l and will be acted upon by the gravitational

force G⃗ and the force of the wire T⃗2. Newton’s law of force for the body at its lowest

position will be

G⃗+ T⃗2 = ma⃗d ,

at the lowest position in the direction of the wire, it states

mg − T2 = −mad .

The magnitude of the centripetal acceleration at its lowest position can be expressed

using the velocity of the weight

ad =
v2

R
=

2gh

l
= 2g(1− cosα) .

The force stretching the wire at its lowest point will be

T2 = mg +mad = mg(3− 2 cosα) .

The force exerted by the weight on the wire is equal in magnitude and opposite in di-

rection to the force exerted by the wire on the weight.

F⃗2 = −T⃗2 ,

therefore, the magnitude of the force that acts on the wire in the lowest position will be

F2 = mg(3− 2 cosα) ,

after substituting numerical values

F2 = 5kg . 9.81m s−2 . (3− 2 . cos 60◦) = 98.1N .

2.4 What impulse will the wall give to an elastic ball with mass m = 1kg and velocity v0 =

10ms−1 that hits the wall in a direction making an angle α = 60◦ with the normal?
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p⃗1
p⃗2

− p⃗1

I⃗ α
α

Fig. 5

By definition, the impulse of a force expresses the time effect of a force

I⃗ =

∫ t2

t1

F⃗ (t) dt ,

to calculate it, the impulse theorem can also be used

I⃗ = p⃗2 − p⃗1 .

In an elastic collision, the kinetic energy of the ball does not change

Ek2 = Ek1 ,

mv22
2

=
mv21
2

,

therefore, the magnitude of the velocity does not change

v2 = v1 = v

and therefore the magnitude of the momentum does not change either

p2 = p1 = p = mv .

From the figure (Fig. 5) it follows

cosα =
I

2p
,

from which it is possible to express the impulse of the force

I = 2p cosα = 2mv cosα ,

after substituting numerical values

I = 2 . 1 kg . 10ms−1 . cos 60◦ = 10N s .
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2.5 A body lying on a horizontal surface is acted upon in the horizontal direction by a force

whose time dependence is F (t) = A + Bt + Ct2, where A = 0.2N, B = 0.4N s−1,

C = 0.6N s−2. Calculate the impulse of the force for the time t0 = 5 s?

The impulse of a force expresses the time effect of a force

I⃗ =

∫ t0

0

F⃗ (t) dt .

In the case of linear motion, the magnitude of the impulse of a force will be

I =

∫ t0

0

F (t) dt =

∫ t0

0

(A+Bt+Ct2) dt =

[
At+B

t2

2
+ C

t3

3

]t0
0

= At0+B
t20
2
+C

t30
3
.

Substituting numerical values

I = 0.2N . 5 s + 0.4N s−1 .
(5 s)2

2
+ 0.6N s−2 .

(5 s)3

3
= 31N s .

2.6 A point particle of massm = 5kg is moved by a force such that its path changes with time

as x(t) = A + Bt + Ct2 + Dt3, where C = 2ms−2, D = −0.2m s−3. Calculate

the magnitude of the force acting on the mass point at time t0 = 2 s and find the time

when the force will be zero.

Velocity in a linear motion can be expressed from its definition as

v(t) =
dx(t)

dt
=

d(A+Bt+ Ct2 +Dt3)

dt
= B + 2Ct+ 3Dt2 .

Acceleration in a linear motion can be expressed from its definition as

a(t) =
dv(t)

dt
=

d(B + 2Ct+ 3Dt2)

dt
= 2C + 6Dt .

The force can be calculated from Newton’s law of force

F (t) = ma(t) = m(2C + 6Dt) .

At time t0 the force will be

F (t = t0) = m(2C + 6Dt0) .

After substituting numerical values

F (t = 2 s) = 5 kg .
[
2 . 2m s−2 + 6 . (−0.2m s−3) . 2 s

]
= 8N .
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From the condition that the force is zero

F (t) = 0 ,

it follows

m(2C + 6Dt) = 0 ,

from which it is possible to express the time when the force will be zero

t =
−C

3D

and after substituting numerical values

t =
−2m s−2

3 . (−0.2m s−3)
= 3.33 s .

2.7 A force F = F0+kt acts on a body of massm = 5kg, where F0 = 10N and k = 0.1N s−1

are constants. Express the acceleration, velocity, and position of the body at time t = 10 s

if the body initially had a velocity v0 = 2m s−1 and a the starting position was x0 = 2m.

From Newton’s law of force

F⃗ = ma⃗ ,

for the acceleration of a body in linear motion follows

a =
F

m
=

F0

m
+

kt

m
,

after substituting numerical values, the acceleration at time t = 10 s will be

a =
10N

5 kg
+

0.1N s−1 . 10 s

5 kg
= 2.2m s−2 .

The velocity of a point particle can be calculated using the acceleration

v =

∫
a dt =

∫ (
F0

m
+

kt

m

)
dt =

F0t

m
+

kt2

2m
+ c1 .

If the initial velocity was v0, the integration constant c1 will be

v(t = 0 s) = v0 =⇒ c1 = v0
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and the velocity of the point particle will be

v =
F0t

m
+

kt2

2m
+ v0 ,

after substituting numerical values, the velocity at time t = 10 s will be

v =
10N . 10 s

5 kg
+

0.1N s−1 . (10 s)2

2 . 5 kg
+ 2m s−1 = 23m s−1 .

The position of a mass point can be calculated using the velocity

x =

∫
v dt =

∫ (
F0t

m
+

kt2

2m
+ v0

)
dt =

F0t
2

2m
+

kt3

6m
+ v0t+ c2 ,

if the initial position was x0, the integration constant c2 will be

x(t = 0 s) = x0 =⇒ c2 = x0

and the position of the mass point will be

x =
F0t

2

2m
+

kt3

6m
+ v0t+ x0 ,

after substituting numerical values, the position at time t = 10 s will be

x =
10N . (10 s)2

2 . 5 kg
+

0.1N s−1 . (10 s)3

6 . 5 kg
+ 2m s−1 . 10 s + 2m = 125.33m .

2.8 What work must be done to compress the buffer spring of a wagon by x0 = 10 cm, when

a force of F1 = 25 000N is required to compress it by x1 = 1 cm and the force is directly

proportional to the shortening of the spiral.

x

y

d r⃗ r⃗ 2

F⃗

Fig. 6

The magnitude of the external force exerted on a spring (Fig. 6) is directly proportional

to the compression of the spring, it means

F = kx .
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If a force of F1 is required to compress a spring by x1, the spring stiffness will be

F1 = kx1 =⇒ k =
F1

x1

.

Mechanical work expresses the path effect of a force

A =

∫ r⃗2

r⃗1

F⃗ · d⃗r ,

if the displacement vector and the force vector have the same direction, then

F⃗ · d⃗r = Fdr cos 0◦ = Fdr .

If the x-axis has its origin at the point where the uncompressed spring is located

and the direction of the x-axis is the same as the direction of compression of the spring,

then

dr = dx ,

r1 = 0 ,

r2 = x0 .

The mechanical work will be

A =

∫ r2

r1

F dr =

∫ x0

0

F dx =

∫ x0

0

kx dx =
kx2

0

2

and after substituting, the spring stiffness will be

A =
F1x

2
0

2x1

.

After substituting numerical values

A =
25 000N . (0.10m)2

2 . 0.01m
= 12 500 J = 12.5 kJ .

2.9 A ball is suspended on a wire of length l = 0.5m. What is the smallest horizontal velocity

that must be given to it so that it can be deflected to its highest position while keeping

the string taut?
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l

m
v⃗0

v⃗

G⃗
a⃗d

Fig. 7

If the ball at the highest position (Fig. 7) has a velocity of v⃗ and moves in a circle with

radius l, it will have a centripetal acceleration of the magnitude

a = m
v2

l
.

If it is also acted upon by a gravitational force

G⃗ = mg⃗ ,

then Newton’s law of force will have the form

G⃗ = ma⃗ ,

in scalar form

mg = m
v2

l
,

from which it is possible to express the velocity of the ball at the highest position

v =
√

gl .

If the lowest position is a place with zero potential energy, then the total mechanical

energy of the ball at the lowest position will be

Ep0 + Ek0 =
mv20
2

and at the highest position the total mechanical energy of the ball will be

Ep + Ek = mgh+
mv2

2
,
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where the height of the ball will be

h = 2l .

From the law of conservation of mechanical energy, it follows

Ep0 + Ek0 = Ep + Ek ,

mv20
2

= 2mgl +
mv2

2
,

from which it is possible to calculate the velocity of the ball in the lowest position

v0 =
√

5gl ,

after substituting numerical values

v0 =
√
5 . 9.81m s−2 . 0.5m = 4.95m s−1 .

2.10 Calculate the power of a car engine with a mass of m = 1200 kg when the car is moving

at a constant speed of v = 50 kmh−1 on a road with a five percent gradient.

α

v⃗

G⃗

α

F⃗

G⃗⊥

G⃗∥

5 m

100 m

Fig. 8

The speed of the car is

v = 50 kmh−1 = 13.9m s−1 .

Afive percent road gradientmeans that over a distance of 100m the roadwill rise by 5m,

therefore (Fig. 8)

tanα =
5m

100m
= 0.05
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and the angle of a road inclination will be

α = arctan 0.05 = 2.86◦ .

The engine power expresses the rate of work

P =
dA

dt
,

if the force is constant, the engine power can be calculated as

P =
d(F⃗ · s⃗)

dt
= F⃗ · ds⃗

dt
= F⃗ · v⃗ .

The force of the engine and the speed of car have the same direction, so

P = Fv cos 0◦ = Fv .

If the car is moving uniformly, the resulting force acting on the car must be zero,

so the force of the engine must be equal to the component of gravity that is parallel

to the road

F = G∥ = mg sinα .

The power of engine will therefore be

P = Fv = mgv sinα ,

after substituting numerical values

P = 1200 kg . 9.81m s−2 . 13.9m s−1 . sin 2.86◦ = 8164W .
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3 Mechanics of a rigid body

3.1 Find the position of the centre of gravity of a body formed by cutting a semicircle with radius

b/2 from a homogeneous rectangle with sides a, b, on a side of length b and attaching it

to the opposite side of the rectangle.

y2
T [x * , y *]T 1[x1 , y2] T 2[x2 , y2]

a

b

y

x

Fig. 9

It is advisable to choose the coordinate system so that its origin is located in the centre

of the original rectangle, the x-axis is parallel to the side a and the y-axis to the side b

of the rectangle. The position of the centre of gravity of the body can be determined

as the common centre of gravity of two symmetrical bodies, whose centres of gravity

are located at their centres of symmetry (Fig. 9). The first body will have the shape

of a rectangle with semicircular cutouts on the sides with a length of b. The coordinates

of the centre of gravity of the first body will be

x1 = 0 ,

y1 = 0 .
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The mass of the first body can be calculated as

m1 = S1hρ =

[
ab− π

(
b

2

)2
]
hρ ,

where h denotes the thickness of the body and ρ its density. The second body will be

a circle with radius b/2. The coordinates of the centre of mass of the second body are

x2 =
a

2
,

y2 = 0 .

The mass of the second body can be calculated as

m2 = S2hρ = π

(
b

2

)2

hρ .

For the position of the common centre of gravity of two bodies

r⃗∗ =

∑
i

mir⃗i∑
i

mi

=
m1r⃗1 +m2r⃗2
m1 +m2

,

therefore, the coordinates of the common centre of gravity of these two bodies will be

x∗ =
m1x1 +m2x2

m1 +m2

=
π
(
b
2

)2
hρa

2[
ab− π

(
b
2

)2]
hρ+ π

(
b
2

)2
hρ

=
πb

8
,

y∗ = 0 .

3.2 Find the position of the centre of gravity of a homogeneous hemisphere with radius R =

10 cm.

T [x * , y *]

x

y

dy

Fig. 10
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It is advisable to choose the coordinate system so that its origin is located in the centre

of the circular base of the hemisphere and the x and z axes lie in its plane (Fig. 10). The y-

axis is the axis of symmetry of the body, therefore, the centre of gravity of the body will

be located on this axis and it will be valid for it

x∗ = 0 ,

z∗ = 0 .

The position of the centre of gravity of the body is

r⃗∗ =
1

M

∫
M

r⃗ dm ,

where M is the mass of the body. For the coordinate of the centre of gravity in the di-

rection of the y-axis, therefore

y∗ =
1

M

∫
M

y dm =
1

V ρ

∫
V

yρ dV =
1

V

∫
V

y dV ,

where ρ is the density of the hemisphere and the volume of the hemisphere is

V =
2

3
πR3 .

The volume element of the hemisphere has the shape of a circular disc with radius x

and thickness dy

dV = πx2dy = π(R2 − y2)dy ,

where the Pythagorean theorem was used

R2 = x2 + y2 .

The position of the centre of mass in the direction of the y-axis will therefore be

y∗ =
3

2πR3

R∫
0

yπ(R2 − y2)dy =
3

2πR3

[
πR2y

2

2
− π

y4

4

]R
0

=

=
3

2πR3

(
π
R4

2
− π

R4

4

)
=

3

8
R .

After substituting numerical values

y∗ =
3

8
10 cm = 3.78 cm .
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3.3 A father and a son carry a load on a rod of length l = 2m. How far from the father’s

end of the rod should the load be hung so that the father carries three times as much force

as the son? Compared to the mass of the load, the mass of the rod is negligible.

3 F⃗

x⃗

l⃗
F⃗

G⃗

Fig. 11

A body is in equilibrium if the vector sum of all external forces acting on the body is

equal to zero∑
i

F⃗i = 0

and simultaneously the vector sum of the moments of all external forces with respect

to an arbitrary point is equal to zero∑
i

M⃗i = 0 ,

∑
i

r⃗i × F⃗i = 0 .

The external forces acting on the rod (Fig. 11) are the gravity of the load G⃗, the force

of the son F⃗ , and the force of the father 3F⃗ . The equilibrium condition for these forces

implies

G⃗+ F⃗ + 3F⃗ = 0 .

Since the forces of the son and father have opposite directions to the gravitational force,

the magnitudes of the forces will be

G− 4F = 0 ,
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which implies

F =
G

4
.

The equilibrium condition for the moments of the forces with respect to the point

at the father will be

x⃗× G⃗+ l⃗ × F⃗ = 0 ,

the magnitudes of the moments of the forces will be

xG sin 90◦ + lF sin(−90◦) = 0 ,

xG− lF = 0 .

After substituting from the first equilibrium condition

xG− l
G

4
= 0 ,

it is possible to express the distance from the father

x =
l

4
.

After substituting numerical values

x =
2m

4
= 0.5m .

3.4 A homogeneous narrow board with length l = 5m and mass m = 30 kg is loaded at one

end with a load of mass m′ = 10 kg. At what distance from this end should a support be

placed so that the plate remains horizontal?

G⃗ G⃗ '

x⃗ m '
m

l
F⃗

r⃗

Fig. 12
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A body is in equilibrium if the vector sum of all external forces acting on the body is

equal to zero∑
i

F⃗i = 0

and simultaneously the vector sum of the moments of all external forces with respect

to an arbitrary point is equal to zero∑
i

M⃗i = 0 ,

∑
i

r⃗i × F⃗i = 0 ,

The external forces acting on the board (Fig. 12) are the gravity of the board G⃗

and the gravity of the load G⃗′ and the force of the support F . The equilibrium con-

dition for these forces implies

G⃗+ G⃗′ + F⃗ = 0 .

Since the gravity and the force of the support have opposite directions, the magnitudes

of the forces will be

G+G′ − F = 0 ,

which implies

F = G+G′ .

The equilibrium condition for the moments of the forces with respect to the point

at the load will be

r⃗ × G⃗+ x⃗× F⃗ = 0 ,

for magnitudes of the moments of the forces, follow

l

2
G sin 90◦ + xF sin(−90◦) = 0 ,

l

2
G− xF = 0 .

After substituting from the first equilibrium condition

l

2
G− x(G+G′) = 0 ,
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it is possible to express the distance from the load

x =
Gl

2(G+G′)
=

mgl

2(mg +m′g)
=

ml

2(m+m′)
,

after substituting numerical values

x =
30 kg . 5m

2(30 kg + 10 kg)
= 1.875m .

3.5 Calculate themoment of inertia of a homogeneous rod of length l = 3m andmassm = 5kg

with respect to an axis passing through the centre of gravity of the rod and with respect

to an axis passing through the end of the rod.

dm m

l

xdx

Fig. 13

The moment of inertia for a rigid body can be calculated using the definition

J =

∫
m

r2dm .

If the coordinate system has its origin at the centre of the rod and the direction of the x-

axis is the same as the direction of the rod (Fig. 13), the moment of inertia will be

J =

∫
m

x2dm .

Since the rod is homogeneous, its length density is

λ =
m

l
,

which can be used to express the mass element

dm = λdx .

The moment of inertia of the rod about the axis through the centre of gravity will there-

fore be

J∗ = λ

+ l
2∫

− l
2

x2dx = λ

[
x3

3

]+ l
2

− l
2

= λ

(
l3

24
+

l3

24

)
= λ

l3

12
.
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After substituting the length density, the moment of inertia will be

J∗ =
ml2

12

and after substituting the numerical values

J∗ =
5kg . (3m)2

12
= 3.75 kgm2 .

Themoment of inertia about an axis passing through the end of the rod can be calculated

using Steiner’s theorem

J = J∗ +ma2 ,

where the distance between the centre of gravity and the end of the rod ist

a =
l

2
.

The moment of inertia of the rod about the axis passing through the end of the rod will

be

J =
ml2

12
+m

(
l

2

)2

=
ml2

3
.

After substituting numerical values

J∗ =
5kg . (3m)2

3
= 15 kgm2 .

3.6 Calculate the moment of inertia of a homogeneous cylinder of mass m = 5kg with radius

R = 1m with respect to both the axis identical to the axis of symmetry of the cylinder

and the parallel axis passing through the edge of the cylinder.

r dr

R

m h

Fig. 14
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The moment of inertia of a rigid body can be calculated by the definition

J =

∫
m

r2dm .

If the cylinder is homogeneous, its density can be expressed as

ρ =
m

V
=

m

πR2h
,

where h is the height of the cylinder. The mass element (Fig. 14) will be the shell

of the cylinder with radius r and thickness dr

dm = ρdV = ρ2πrhdr .

Themoment of inertia of the cylinder with respect to the axis passing through the centre

of cylinder will be

J∗ = ρ

R∫
0

r22πrh dr = ρ

[
πh

r4

2

]R
0

= ρπh
R4

2
,

after substituting the density of the cylinder

J∗ =
mR2

2

and after substituting the numerical values

J∗ =
5kg . (1m)2

2
= 2.5 kgm2 .

When calculating the moment of inertia with respect to the axis passing through

the edge of the cylinder, it is possible to use Steiner’s theorem

J = J∗ +ma2 ,

where a is the distance between the axes of rotation passing through the centre

and the edge of the cylinder

a = R .

The moment of inertia with respect to the axis passing through the edge of the cylinder

will be

J =
mR2

2
+mR2 =

3mR2

2
,

and after substituting numerical values

J∗ =
3 . 5 kg . (1m)2

2
= 7.5 kgm2 .
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3.7 A figure skater rotates with a frequency of f1 = 3 s−1. At what frequency will the figure

skater rotate if he doubles his moment of inertia by extending his arms?

In an isolated system, the law of conservation of angular momentum states

L⃗1 = L⃗2 ,

which implies

J1ω⃗1 = J2ω⃗2 ,

where J1, J2 are the moments of inertia and ω⃗1, ω⃗2 are the angular velocities of the body

before and after the arms are extended. The direction of the angular velocity does not

change. From the law of conservation of angular momentum follows

J1ω1 = J2ω2 .

The angular velocity can be expressed using the frequency

ω = 2πf ,

then it will be valid

J12πf1 = J22πf2 ,

J1f1 = J2f2 .

If the moment of inertia is doubled

J2 = 2J1 ,

the resulting frequency will be halved

f2 = f1
J1
J2

=
f1
2

,

after substituting numerical values

f2 =
3 s−1

2
= 1.5 s−1 .
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3.8 A gyroscope with a moment of inertia J = 10 kgm2 is rotated from rest by a force, whose

moment with respect to the axis of rotation is M = 200Nm. In what time will the gyro-

scope reach a frequency f = 8 s−1 and what will be its kinetic energy then?

The motion of a gyroscope is described by the equation of motion of a rotating rigid

body

M⃗ = Jα⃗ ,

from which the magnitude of the angular acceleration is

α =
M

J
.

If the angular acceleration is constant, the angular velocity of the body is

ω =

∫
αdt = αt+ c .

Initially, the body was at rest, therefore

ω(t = 0 s) = 0 =⇒ c = 0 ,

so the angular velocity will be

ω = αt ,

which implies for the time of the rotation

t =
ω

α
,

after substituting the angular acceleration, the time of the rotation is

t = ω
J

M
.

The relationship between angular velocity and frequency

ω = 2πf ,

allows to modify the relationship for the time of the rotation to the form

t = 2πf
J

M
,
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after substituting numerical values

t = 2 π . 8 s−1 .
10 kgm2

200Nm
= 2.51 s .

The kinetic energy of the rotating gyroscope will be

Ek =
Jω2

2
=

J(2πf)2

2
= 2Jπ2f 2 ,

after substituting numerical values

Ek = 2 . 10 kgm2 . π2 . (8 s−1)2 = 12 633 J .

3.9 Calculate the kinetic energy of a cylindrical body with radius R = 10 cm and mass

m = 2kg at time t = 10 s. The body began to rotate from rest around its geometric

axis with constant angular acceleration α = π/8 s−2.

The kinetic energy of a rotating rigid body is

Ek =
Jω2

2
,

where J denotes the moment of inertia with respect to the axis of rotation and ω the an-

gular velocity of the body. The moment of inertia of a homogeneous cylindrical body

with respect to its geometric axis (Problem 3.6) can be calculated as

J =
mR2

2
.

If the angular acceleration is constant, the angular velocity of the body is

ω =

∫
αdt = αt+ c .

Initially, the body was at rest, therefore

ω(t = 0 s) = 0 =⇒ c = 0 ,

so the angular velocity of the body will be

ω = αt .

The kinetic energy of the body will be

Ek =
1

2

mR2

2
(αt)2 =

mR2α2t2

4
,

and after substituting numerical values

Ek =
2kg . (0.1m)2.

(
π
8
s−2
)2

.(10 s)2

4
= 0.077 J .
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3.10 A rod of length l = 1m hangs vertically on an axis passing through its endpoint. What

minimum velocitymust be given to the free end of the rod to bring it to a horizontal position?

T

T

l

l
2

v⃗

Fig. 15

According to the law of conservation of mechanical energy, the total mechanical energy

in an isolated system does not change

Ek1 + Ep1 = Ek2 + Ep2 .

If the rod in the vertical position has zero potential energy and the kinetic energy

of the rod in the horizontal position is zero (Fig. 15), the law of conservation of me-

chanical energy simplifies to the form

Ek1 = Ep2 .

The kinetic energy in the vertical position can be calculated as the kinetic energy of a ro-

tating rigid body

Ek1 =
Jω2

2
,

where the moment of inertia of the rod with respect to the axis passing through its

endpoint (Problem 3.5) will be

J =
ml2

3

and the angular velocity of the rotating rod can be expressed in terms of the velocity

of the rod’s endpoint as

ω =
v

l
.
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In the horizontal position, the potential energy of the rod will be

Ep2 = mgh ,

where the centre of gravity of the rod is raised to a height of

h =
l

2
.

From the law of conservation of mechanical energy, it follows

1

2

ml2

3

(v
l

)2
= mg

l

2
,

from which it is possible to express the velocity of the end point of the rod

v =
√

3gl

and after substituting numerical values

v =
√
3 . 9.81m s−2 . 1m = 5.42m s−1 .
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4 Gravitational field

4.1 How far is Mars from the Sun if its orbital period is TM = 1.9 y and the distance between

the Sun and the Earth is aE = 1AU?

Kepler’s third law can be used
T 2
E

T 2
M

=
a3E
a3M

,

which implies

a3M = a3E
T 2
M

T 2
E

.

Therefore, the distance of Mars from the Sun is

aM = aE
3

√
T 2
M

T 2
E

,

when substituted

aM = 1AU 3

√
(1.9 y)2

(1 y)2
= 1AU

3
√
1.92 = 1.53AU .

4.2 The spacecraft is located between the Earth and the Moon, how far away from the Earth

should the spacecraft be so that the resulting gravitational force on it from the Earth

and the Moon is zero? The distance between the Earth and the Moon is d = 384 000 km

and the mass of the Earth is 81 times the mass of the Moon.

mE

mM

F⃗E F⃗Mx
d

m

Fig. 16
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Newton’s law of gravity can be used

F⃗ = −κ
m1m2

r3
r⃗ .

The resulting gravitational force must be zero

F⃗E + F⃗M = 0 ,

because the forces are in opposite directions, their magnitudes must be equal

FE = FM ,

thus, for forces acting on a spacecraft of mass m located at a distance x from the Earth

(Fig. 16), the following must be true

κ
mEm

x2
= κ

mMm

(d− x)2
.

If the ratio between the masses of the Earth and the Moon is

mE = 81mM ,

then it applies

81

x2
=

1

(d− x)2

and the distance of the spacecraft from Earth will be

x =
9

10
d ,

when substituted

x =
9

10
. 384 000 km = 345 600 km .

4.3 Two spherical bodies with masses m and 4m are at a distance d from each other. At what

point between them will the resulting gravitational field be zero, and what will be the po-

tential of the gravitational field at that point?

m

4m

d
x E⃗m E⃗4m

Fig. 17
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The gravitational field of a spherical body of massm at a point with position vector r⃗ is

E⃗ = −κ
m

r3
r⃗ .

If the resulting gravitational field at the point between the two bodies is zero

E⃗m + E⃗4m = 0 ,

since the intensities are in opposite directions, their magnitudes must be equal (Fig. 17)

Em = E4m ,

therefore must apply

κ
m

x2
= κ

4m

(d− x)2
,

from where the distance to a body of massm can be expressed

x =
d

3
.

The gravitational potential

V = −κ
m

r
,

is a scalar quantity and the resulting potential is the sum of the potentials at a given

location from the individual bodies

V = Vm + V4m ,

therefore, the resulting potential will be

V = −κ
m

x
− κ

4m

d− x
= −κ

3m

d
− κ

12m

2d
= −κ

9m

d
.

4.4 From a homogeneous sphere of radius R and mass M , a new body was created by drilling

a spherical cavity into the sphere with radius R/2 and centred at a distance R/2

from the centre of the original sphere. What will be the gravitational force exerted

by the new body on a point of massm located in the direction of the cavity at a distance d

from the centre of the original sphere?

48



d

R
2

m

M

R

Fig. 18

The gravitational force exerted on the mass point by the original sphere F⃗0 was the sum

of the gravitational force exerted by the new body F⃗ and the gravitational force exerted

by the drilled part F⃗ ′ (Fig. 18), therefore

F⃗0 = F⃗ + F⃗ ′ .

The magnitude of the gravitational force exerted by the original sphere can be expressed

from Newton’s law of gravitation as

F0 = κ
mM

d2
.

The density of the material is

ρ =
M

V
=

M
4
3
πR3

,

therefore, the weight of the drilled part was

m′ = ρV ′ =
M

4
3
πR3

4

3
π

(
R

2

)3

=
M

8

and the magnitude of the gravitational force exerted by the drilled part was

F ′ = κ
mm′(
d− R

2

)2 = κ
mM

8
(
d− R

2

)2 .

The gravitational force exerted by a new body can be expressed as

F = F0 − F ′ = κ
mM

d2
− κ

mM

8
(
d− R

2

)2 = κmM

[
1

d2
− 1

8
(
d− R

2

)2
]
.
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4.5 Calculate the potential and the gravitational field of a rod of massm and length l at a point

lying on an extension of the rod at a distance a from its end.

ρ⃗x
dx

m
al

Fig. 19

The length density of the rod is

λ =
m

l
,

therefore the mass element will be

dm = λdx =
m

l
dx

and the potential of the mass element (Fig. 19) will be

dV = −κ
dm

x+ a
= −κ

m

l

dx

x+ a
.

The potential of the whole rod can be calculated by integration over the whole mass

of the rod

V =

∫
m

dV = −κ
m

l

l∫
0

dx

x+ a
= −κ

m

l
[ln (x+ a)]l0 = −κ

m

l
ln

l + a

a
.

The relationship between the gravitational field and the gravitational potential is

E⃗ = −grad V ,

therefore the gravitational field of the whole bar will be

E⃗ = −dV

da
ρ⃗ = −κ

m

l

a

l + a

a− l − a

a2
ρ⃗ = κ

m

a(l + a)
ρ⃗ .

where ρ⃗ is the unit vector in the direction of the gravitational field. The rules

for the derivative of the composite function and the derivative of the fraction of func-

tions were used.
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4.6 Calculate the potential and the gravitational field of a disk of mass m and radius R

at a point on the axis of the disk at a distance a from its centre.

a

r
x

R

dx

ρ⃗

m

Fig. 20

The areal density of the disk is

σ =
m

S
=

m

πR2

and the element of the area (Fig. 20) of the intermediate circle is

dS = 2πxdx ,

then the mass element will be

dm = σdS =
m

πR2
2πxdx =

2m

R2
xdx .

The magnitude of the position vector can be expressed using the Pythagorean theorem

r2 = x2 + a2 ,

the potential of the mass element will be

dV = −κ
dm

r
= −κ

2m

R2
x
dx

r
= −κ

2m

R2
x

dx√
x2 + a2

.

The potential of the whole disk can be calculated by integrating over the whole mass

of the disk

V =

∫
m

dV = −κ
2m

R2

R∫
0

xdx√
x2 + a2

= −κ
2m

R2
[
√
x2 + a2]R0 = −κ

2m

R2

(√
R2 + a2 − a

)
.

51



The relationship between the gravitational field and the gravitational potential is

E⃗ = −grad V ,

therefore the gravitational field of the whole disk will be

E⃗ = −dV

da
ρ⃗ = −κ

2m

R2

(
a√

R2 + a2
− 1

)
ρ⃗ = κ

2m

R2

(
1− a√

R2 + a2

)
ρ⃗ .

where ρ⃗ is the unit vector in the direction of the gravitational field.

4.7 At what speed must a body be thrown from the surface of the Earth to fly beyond the range

of the Earth’s gravitational pull?

When a body flies out of the Earth’s gravitational pull and comes to rest, it will have both

zero gravitational potential energy and zero kinetic energy. The law of conservation

of mechanical energy will therefore take the form

Ep + Ek = 0 .

The gravitational potential energy of a body of massm on the surface of the Earth is

Ep = −κ
mME

RE

,

whereME is the mass of the Earth andRE is the radius of the Earth. The kinetic energy

of a body ejected at velocity v from the surface of the Earth is

Ek =
mv2

2
,

therefore, the law of conservation of mechanical energy implies

−κ
mME

RE

+
mv2

2
= 0 ,

from which it is possible to express the velocity of the body as

v =

√
2κME

RE

.

The result can also be expressed using the gravitational acceleration

g = κ
ME

R2
E

,

which for the velocity of the body implies

v =
√

2gRE

and after inserting the numerical values

v =
√
2 . 9.81m s−2 . 6 378 000m = 11 186m s−1 .
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4.8 The projectile was fired from the Earth’s surface at a velocity of v = 1600m s−1. Calculate

the difference in altitudes the body would have reached assuming the gravitational field is

homogeneous and assuming the gravitational field is radial.

The solution can be found using the law of conservation of mechanical energy

Ek1 + Ep1 = Ek2 + Ep2 .

In a homogeneous gravitational field, the potential energy at the Earth’s surfaceEp1 can

be chosen as the point with zero potential energy, and the body’s velocity decreases until

the body comes to rest, so its kinetic energy Ek2 will be zero. The law of conservation

of mechanical energy will therefore take the form

Ek1 = Ep2 ,

thus applies

mv2

2
= mghh ,

from which it is possible to express the altitude of the projectile in a homogeneous grav-

itational field as

hh =
v2

2g
.

In a radial gravitational field, the potential energy Ep1 will be at the surface of the Earth

and at hr the potential energy Ep2 will be at the height hr. Therefore, the law of con-

servation of mechanical energy in a radial gravitational field will be

Ek1 + Ep1 = Ep2 ,

thus applies

mv2

2
− κ

mME

RE

= −κ
mME

RE + hr

,

using the gravitational acceleration

g = κ
ME

R2
E

,

the relation can be modified to the form

mv2

2
= mgRE

hr

RE + hr

,
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fromwhich it is possible to express the altitude of the projectile in the radial gravitational

field as

hr =
v2RE

2gRE − v2
.

The difference in altitudes in the homogeneous and radial field will therefore be

∆h = hr − hh =
v2RE

2gRE − v2
− v2

2g
,

and after inserting the numerical values

∆h =
(1600m s−1)2 . 6.378 · 106m

2 . 9.81m s−2 . 6.378 · 106m− (1600m s−1)2
− (1600m s−1)2

2 . 9.81m s−2
= 2725m .

4.9 Calculate the kinetic energy of a body with mass m = 70 kg that hits the surface

of the Earth from a height h = 10 km, if the Earth’s gravitational field is assumed to be

radial.

The solution can be found using the law of conservation of mechanical energy

Ek1 + Ep1 = Ek2 + Ep2 .

If the initial kinetic energy of the bodyEk1 is zero, the law of conservation of mechanical

energy takes the form

Ep1 = Ek2 + Ep2 .

The potential energy of a body at a height h above the surface of the Earth is equal to

Ep1 = −κ
mME

RE + h

and the potential energy of a body on the Earth’s surface is equal to

Ep2 = −κ
mME

RE

.

The law of conservation of mechanical energy will therefore take the form

−κ
mME

RE + h
= Ek2 − κ

mME

RE

,

which implies for the kinetic energy at impact

Ek = −κmME

(
1

RE + h
− 1

RE

)
.
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Using gravitational acceleration

g = κ
ME

R2
E

the kinetic energy can be expressed as

Ek = mgRE
h

RE + h
,

after inserting the numerical values

Ek = 70 kg . 9.81m s−2 . 6.378 · 106m .
104m

6.378 · 106m+ 104m
= 6.856 · 106 J .

4.10 How high does a satellite have to be above the equator to be over the same place all the time

as it moves?

A satellite with mass m moves on a circle with radius RE + h, the gravitational force

of the Earth acts on the satellite as a centripetal force, thus

Fg = Fc ,

which can be rewritten into the form

κ
mME

(RE + h)2
= m

v2

RE + h
,

where ME is the mass and RE is the radius of the Earth. For the speed of the satellite,

it follows

v =

√
κME

RE + h
.

For a satellite to be over the same place all the time, its angular velocity must be the same

as the angular velocity of the Earth

ωs = ωE ,

therefore must apply

v

RE + h
=

2π

TE

,

after inserting the speed of the satellite√
κME

(RE + h)3
=

2π

TE

.
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For the height of the satellite, it follows

h =
3

√
κMET 2

E

4π2
−RE ,

after inserting the numerical values

h =
3

√
6.67 · 10−11Nm2 kg−2 . 5.972 · 1024 kg . (3.1536 · 107 s)2

4π2
− 6.371 · 106m ,

the height of the satellite will be

h = 35.8 · 106m .
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5 Thermodynamics and molecular

physics

5.1 The density of air under normal conditions, that is, pressure p0 = 101 325Pa and tem-

perature t0 = 0 ◦C is ρ0 = 1.293 kgm−3. What will be the density of air at pressure

p = 0.5MPa and temperature t = 50 ◦C?

The problem can be solved using the equation of state of an ideal gas

pV = nRT ,

where R is the universal gas constant, and the amount of substance is

n =
m

M
,

whereM denotes the molar mass. The equation of state takes the form

pV =
m

M
RT .

From the density of air

ρ =
m

V
,

it is possible to express the mass of air

m = ρV ,

and the equation of state will take the form

pV =
ρV

M
RT ,

from which the density can be expressed as

ρ =
pM

RT
.

57



The density of the gas under normal conditions will be

ρ0 =
p0M

RT0

.

By dividing the equations, the density of the gas can be expressed using the relation

ρ = ρ0
pT0

p0T
.

After inserting the numerical values

ρ = 1.293 kgm3 .
0.5 · 106 Pa . 273.15K

1.013 25 · 105 Pa . 323.15K
= 5.39 kgm−3 ,

where the gas temperatures in the thermodynamic scale have been converted

from the Celsius scale using the relationship

T [K] = t[◦C] + 273.15K .

5.2 The pressure in the cylinder of a steam engine with volume V = 20 l is reduced by ∆p =

0.5MPawhen the valve is opened. What mass of steam has been released from the cylinder

if the steam temperature t = 100 ◦C has not changed?

The solution of the problem is possible using the equation of state of an ideal gas

pV = nRT ,

where R is the universal gas constant, and the amount of substance is

n =
m

M
,

whereM denotes the molar mass. The equation of state takes the form

pV =
m

M
RT .

Before the steam was released, the equation of state described the gas is

p1V =
m1

M
RT ,

After the steam was released, the equation of state described the gas is

p2V =
m2

M
RT .
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By subtracting the equations of state, it is possible to obtain the equation

(p1 − p2)V = (m1 −m2)
RT

M
,

in which the mass of the released steam is

∆m = m1 −m2 ,

and the reduction of pressure is

∆p = p1 − p2 .

The equation can therefore be written as

∆pV = ∆m
RT

M
,

from which it is possible to express the mass of the released steam

∆m =
MV

RT
∆p ,

and after inserting the numerical values

∆m =
0.018 kgmol−1 . 0.02m3

8.314 JK−1mol−1 . 373.15K
. 5 · 105 Pa = 0.058 kg = 58 g ,

where the gas temperatures in the thermodynamic scale have been converted

from the Celsius scale using the relationship

T [K] = t[◦C] + 273.15K .

5.3 The same gas is in two containers separated by a cap. In the first container with volume

V1 = 2 l, the pressure of the gas is p1 = 0.2MPa. In the second container with volume

V2 = 4 l, the pressure of the gas is p2 = 0.4MPa. What will be the resulting pressure

when the cap is opened, if the temperature in the containers is the same and it will remain

the same after joining?

From the equation of state for the gas in the first container

p1V1 = n1RT ,

follows the amount of gas in the first container is

n1 =
p1V1

RT
.

59



From the equation of state for the gas in the second container

p2V2 = n2RT ,

follows the amount of gas in the second container is

n2 =
p2V2

RT
.

When the cap is opened, the equation of state for the gas will be

p(V1 + V2) = (n1 + n2)RT ,

when substituted for the amounts of substance, the equation of state takes the form

p(V1 + V2) =

(
p1V1

RT
+

p2V2

RT

)
RT ,

which can be simplified to the equation

p(V1 + V2) = p1V1 + p2V2 ,

from which the resulting pressure can be calculated as

p =
p1V1 + p2V2

V1 + V2

,

and after inserting the numerical values, the resulting pressure is

p =
0.2 · 106 Pa . 2 · 10−3m3 + 0.4 · 106 Pa . 4 · 10−3m3

2 · 10−3m3 + 4 · 10−3m3
= 0.33 · 106 Pa .

5.4 What is the internal energy of nitrogen, which at pressure p = 0.5MPa occupies volume

V = 5 l?

The internal energy of a gas is the sum of the kinetic energies of all N gas molecules

U = Nϵm ,

where the equipartition theorem for the mean kinetic energy of one molecule implies

ϵm =
i

2
kT ,

where i denotes the number of degrees of freedom of the molecule and k is the Boltz-

mann constant. Thus, the kinetic energy of all molecules will be

U =
i

2
NkT .
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The number of gas molecules will be

N = nNA ,

where NA is Avogadro’s constant, and the expression for Boltzmann’s constant is

k =
R

NA

,

therefore, the internal energy of a gas can also be expressed as

U =
i

2
nRT .

Using the equation of state

pV = nRT ,

the internal energy of a gas can be expressed in terms of pressure and volume as

U =
i

2
pV ,

Since nitrogen is a diatomic gas, i = 5, and the internal energy of the gas will be

U =
5

2
pV ,

and after inserting the numerical values, the internal energy is

U =
5

2
. 0.5 · 106 Pa . 5 · 10−3m3 = 6250 J .

5.5 How does the mean kinetic energy of an argon gas molecule with mass m = 500 g change

if we supply the gas with heat Q = 5000 J, and at the same time, the gas does work A′ =

2000 J? The molar mass of argon isM = 39.9 gmol−1.

The internal energy of a gas is the sum of the kinetic energies of all N gas molecules

U = Nϵm ,

therefore, the change in the internal energy of the gas will also be the change in themean

kinetic energy of all the molecules

∆U = N∆ϵm .
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The number of molecules can be calculated from the amount of substance

N = nNA ,

which can be calculated from the mass of the gas

n =
m

M
.

The change in the internal energy of a gas can therefore be written as

∆U =
mNA

M
∆ϵs ,

from which the change in the mean kinetic energy of the molecule will be

∆ϵm =
M

mNA

∆U .

According to the first law of thermodynamics

∆U = Q+ A ,

the change in the internal energy of the gas is equal to the sum of the heat input

and the external mechanical work. If the work is done by the gas

A = −A′ ,

the change in internal energy will be

∆U = Q− A′ .

The change in the mean kinetic energy of a molecule can thus be expressed as

∆ϵm =
M

mNA

(Q− A′)

and after inserting the numerical values

∆ϵm =
39.9 · 10−3 kgmol−1

0.5 kg . 6.022 · 1023mol−1 . (5000 J− 2000 J) = 3.98 · 10−22 J .

5.6 A container of volume V = 0.05m3 contains hydrogen at temperature t0 = 27 ◦C and pres-

sure p0 = 100 kPa. Calculate the pressure and temperature of the gas if the hydrogen

received heat Q = 1.5 kJ.

62



The change in the internal energy of a gas can be expressed using the temperature dif-

ference as

∆U =
i

2
Nk∆T =

i

2
Nk(T − T0) ,

where the number of particles can be calculated using the amount of substance

N = nNA

and the Boltzmann constant is

k =
R

NA

,

this implies for the change of the internal energy of the gas

∆U =
i

2
nR(T − T0) .

Using the equation of state

p0V = nRT0 ,

pV = nRT ,

the change of the internal energy can be written in the form

∆U =
i

2
(pV − p0V ) .

According to the first law of thermodynamics

∆U = Q+ A ,

the change in the internal energy of the gas is equal to the sum of the heat input

and the external mechanical work. If the volume of the gas is constant, the mechan-

ical work is zero

dA = −pdV =⇒ A = 0

and the change in internal energy is equal to the heat input

∆U = Q .

It is therefore valid

Q =
i

2
(pV − p0V ) ,
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from which the gas pressure can be calculated

p =
Q+ i

2
p0V

i
2
V

.

Because hydrogen is a diatomic gas, the number of degrees of freedom of its molecule

is i = 5 and

p =
1500 J + 5

2
100 000Pa . 0.05m3

5
2
. 0.05m3

= 112 000Pa = 112 kPa .

For the isochoric process, Charles’ law states

p0
T0

=
p

T
,

which gives the resulting temperature

T =
p

p0
T0

and after inserting the numerical values

T =
112 000Pa

100 000Pa
. 300.15K = 336.17K = 63.02 ◦C .

5.7 In nitrogen with mass m = 200 g, initial temperature t1 = 27 ◦C and pressure p1 =

0.4MPa, a thermodynamic process took place in which the pressure of nitrogen decreased

to p2 = 0.3MPa. How much heat was added to the nitrogen, what work did the gas

do, and how did its internal energy change if the process was a) isochoric, b) isothermal,

c) adiabatic? Draw all these processes in p-V diagrams.

a) For an isochoric process (Fig. 21), the volume of the gas is constant

V = const. =⇒ dV = 0 ,

which implies that the work of the gas is zero

dA′ = pdV =⇒ A′ = 0 .

According to the first law of thermodynamics, the heat delivered to a gas is equal

to the sum of the change in its internal energy and the work done by the gas

Q = ∆U + A′ ,
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thus, for an isochoric process

Q = ∆U .

The change in the internal energy of a gas can be expressed in terms of the temperature

change as

∆U =
i

2
nR∆T =

i

2

m

M
R(T2 − T1) ,

whereM = 28 gmol−1 is the molar mass of nitrogen. From Charles’ law

p1
T1

=
p2
T2

,

follows

T2 =
p2
p1
T1

and the change in internal energy can be expressed as

∆U =
i

2

m

M
RT1

(
p2
p1

− 1

)
,

after inserting the numerical values

∆U =
5 . 0.2 kg

2 . 28 · 10−3 kgmol−1 . 8.314 JK−1mol−1 . 300.15K

(
0.3 · 106 Pa
0.4 · 106 Pa

− 1

)
=

= −11 140 J = −11.14 kJ .

The heat added to the gas is equal to the change in internal energy

Q = ∆U = −11.14 kJ .

VV 1=V 2

p

p2

p1

Fig. 21
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b) For an isothermal process (Fig. 22), the temperature of the gas is constant

T = const. =⇒ ∆T = 0 ,

therefore, the change in internal energy of the gas is zero

∆U =
i

2
nR∆T = 0 ,

and from the first law of thermodynamics

Q = ∆U + A′ ,

follows

Q = A′ .

From the Boyle-Mariott law

pV = p1V1 ,

follows

p =
p1V1

V
,

and from the equation of state

p1V1 = nRT1 ,

follows

p =
nRT1

V
=

m

M

RT1

V
.

The work of the gas can be calculated as

A′ =

∫ V2

V1

pdV =
m

M
RT1

∫ V2

V1

1

V
dV =

m

M
RT1 [lnV ]V2

V1
=

=
m

M
RT1(lnV2 − lnV1) =

m

M
RT1 ln

V2

V1

=
m

M
RT1 ln

p1
p2

.

After inserting the numerical values

A′ =
0.2 kg

28 · 10−3 gmol−1 . 8.314 JKmol−1 . 300.15K . ln
0.4 · 106 Pa
0.3 · 106 Pa

=

= 5128 J = 5.128 kJ .

The heat added to the gas is equal to the work of the gas

Q = A′ = 5.128 kJ .
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p

p1

p2

V 1 V 2

A '

V

Fig. 22

c) In an adiabatic process (Fig. 23), there is no heat exchange between the gas and the sur-

roundings

Q = 0 .

From the first law of thermodynamics

Q = ∆U + A′ ,

follows

∆U = −A′ .

The change in the internal energy of a gas can be expressed as

∆U =
i

2

m

M
R(T2 − T1) =

i

2

m

M
RT1

(
T2

T1

− 1

)
.

From the Poisson’s equation

p1V
κ
1 = p2V

κ
2 ,

can be expressed

p1
p2

=

(
V2

V1

)κ

=⇒
(
p1
p2

) 1
κ

=
V2

V1

,

and from the equation of state

p1V1

T1

=
p2V2

T2

,
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can be expressed

T2

T1

=
p2V2

p1V1

,

which can be transformed into the form

T2

T1

=

(
p1
p2

)−1(
p1
p2

) 1
κ

=

(
p1
p2

) 1−κ
κ

.

Using Mayer’s equation

Cp = Cv +R ,

the Poisson constant can be expressed in terms of the number of degrees of freedom

κ =
Cp

Cv

=
Cv +R

Cv

=
i
2
R +R
i
2
R

=
i+ 2

i
.

The change of internal energy can therefore be calculated as

∆U =
i

2

m

M
RT1

[(
p1
p2

)− 2
i+2

− 1

]
=

i

2

m

M
RT1

[(
p2
p1

) 2
i+2

− 1

]
.

Inserting numerical values

∆U =
5 . 0.2 kg

2 . 28 · 10−3 kgmol−1 . 8.314 JK−1 . 300.15K

[(
0.3 · 106 Pa
0.4 · 106 Pa

) 2
7

− 1

]
=

= −3516 J = −3.516 kJ .

The work of the gas will be

A′ = −∆U = 3.516 kJ .

p

V 2V 1 V

T 1

A 'p2

p1
T 2

Fig. 23
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5.8 To air of temperature t1 = 20 ◦C, which occupies at pressure p1 = 0.1MPa a volume

V1 = 2m3, a heat Q = 400 kJ has been added. Calculate the change in internal energy,

external work and final state quantities if the action was a) isochoric b) isobaric c) isother-

mal. The Poisson constant of air is κ = 1.4.

a) In an isochoric process the volume of a gas is constant, therefore, the gas does not

produce the mechanical work

V = const. =⇒ A′ = 0

and from the first law of thermodynamics

Q = ∆U + A′ ,

follows that the change in internal energy of a gas is equal to the added heat

∆U = Q = 400 kJ .

From the equation of state

p1V1 = nRT1 ,

the amount of substance can be expressed as

n =
p1V1

RT1

and from Poisson’s constant

κ =
i+ 2

i
,

the number of degrees of freedom is

i =
2

κ− 1
.

The change of the internal energy of a gas can be expressed as

∆U =
i

2
nR(T2 − T1) =

1

κ− 1

p1V1

T1

(T2 − T1) ,

because

Q =
1

κ− 1

p1V1

T1

(T2 − T1) ,
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the resulting temperature can be calculated as

T2 =
Q+ 1

κ−1
p1V1

1
κ−1

p1V1

T1

= T1

[
(κ− 1)Q

p1V1

+ 1

]
and after inserting the numerical values

T2 = 293.15K .

[
(1.4− 1) . 400 · 103 J
0.1 · 106 Pa . 2m3

+ 1

]
= 527.67K .

From Charles’s law

p1
T1

=
p2
T2

,

follows the resulting pressure

p2 = p1
T2

T1

,

which can be modified to the form

p2 = p1

[
(κ− 1)Q

p1V1

+ 1

]
,

and after inserting the numerical values

p2 = T2 = 0.1 · 106 Pa .
[
(1.4− 1) . 400 · 103 J
0.1 · 106 Pa . 2m3

+ 1

]
= 0.18 · 106 Pa .

b) In an isobaric process the pressure of the gas is constant

p = const. .

The amount of substance is

n =
p1V1

RT1

and the number of degrees of freedom is

i =
2

κ− 1
.

The change of internal energy of gas can then be expressed as

∆U =
i

2
nR(T2 − T1) =

1

κ− 1

p1V1

RT1

R(T2 − T1) =
1

κ− 1
p1V1

(
T2

T1

− 1

)
.

From Gay-Lussac’s law

V1

T1

=
V2

T2

,
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follows

T2

T1

=
V2

V1

,

by which the change of internal energy can be calculated as

∆U =
1

κ− 1
p1V1

(
V2

V1

− 1

)
.

The work of the gas at constant pressure is

A′ =

∫ V2

V1

p1dV = p1(V2 − V1) .

From the first law of thermodynamics

Q = ∆U + A′ ,

follows

Q =
1

κ− 1
p1V1

(
V2

V1

− 1

)
+ p1(V2 − V1) ,

which can be modified to the form

Q(κ− 1) + p1V1κ = p1V2κ ,

from which the resulting volume can be expressed as

V2 = V1

[
Q(κ− 1)

κp1V1

+ 1

]
,

after inserting the numerical values

V2 = 2m3 .

[
400 · 103 J . (1.4− 1)

1.4 . 0.1 · 106 Pa . 2m3
+ 1

]
= 3.14m3 .

From Gay-Lussac’s law

V1

T1

=
V2

T2

,

for the resulting temperature follows

T2 = T1
V2

V1

,

which can be transformed to the form

T2 = T1

[
Q(κ− 1)

κp1V1

+ 1

]
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and after inserting the numerical values

T2 = 293.15K .

[
400 · 103 J . (1.4− 1)

1.4 . 0.1 · 106 Pa . 2m3
+ 1

]
= 460.66K .

c) In an isothermal process the temperature of the gas is constant

T = const. ,

therefore the change of the internal energy of the gas is zero

∆U = 0 .

From the first law of thermodynamics

Q = ∆U + A′ ,

follows that the work of the gas is equal to the added heat

A′ = Q = 400 kJ .

From Boyle-Mariott’s law

p1V1 = p2V2 = pV ,

it is possible to express the pressure of a gas

p =
p1V1

V
,

which can be used to express the work of the gas

A′ =

∫ V2

V1

pdV =

∫ V2

V1

p1V1

V
dV = p1V1[lnV ]V2

V1
= p1V1 ln

V2

V1

.

Because it applies

p1V1 ln
V2

V1

= Q ,

the resulting volume will be

V2 = V1e
Q

p1V1 ,

after inserting the numerical values

V2 = 2m3 . e
400·103 J

0.1·106 Pa . 2m3 = 14.78m3 .
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The resulting pressure will then be

p2 = p1
V1

V2

= p1e
− Q

p1V1

and after adding the numerical values

p2 = 0.1 · 106 Pa . e
−400·103 J

0.1·106 Pa . 2m3 = 13 533Pa .

5.9 Heliumwith the amount of substancen = 2kmol expands isobarically and increases its vol-

ume threefold. What is the change of entropy for this action?

The change of entropy for reversible processes is defined as

dS =
dQ

T
,

for an isobaric event, when the system goes from the 1 state to the 2 state, the total

entropy change will be

∆S =

∫ 2

1

dQ

T
=

∫ 2

1

nCpdT

T
.

The molar heat capacity at constant volume is

CV =
i

2
R ,

using Mayer’s relation

Cp = CV +R ,

the molar heat capacity at constant pressure can be expressed as

Cp =
i

2
R +R =

i+ 2

2
R .

The entropy change will then be

∆S = n
i+ 2

2
R

∫ 2

1

dT

T
= n

i+ 2

2
R[lnT ]T2

T1
= n

i+ 2

2
R ln

T2

T1

.

From Gay-Lussac’s law

V1

T1

=
V2

T2

,

follows

T2

T1

=
V2

V1

,
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by which the entropy change can be expressed as

∆S = n
i+ 2

2
R ln

V2

V1

and after adding the numerical values

∆S = 2 · 103mol .
3 + 2

2
. 8.314 JK−1mol−1 . ln 3 = 45 669 JK−1 .

5.10 Calculate the change of entropy of an ideal gas that is isothermally expanded from a volume

V0 = 2 l into a vacuum to a total volume V1 = 8 l. The gas is helium with massm = 20 g.

The change of entropy is defined as

dS =
dQ

T
.

From the first law of thermodynamics

dQ = dU + dA′ = nCvdT + pdV ,

for the isothermal process

dT = 0 ,

follows

dQ = pdV .

From the equation of state

pV = nRT

it is possible to express the pressure of the gas

p =
nRT

V
,

by which the first law of thermodynamics will have the form

dQ =
nRT

V
dV

and the change of entropy can be expressed as

dS =
nRT

V

dV

T
= nR

dV

V
.
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The amount of substance will be

n =
m

M
,

thus, the entropy change can be written as

dS =
m

M
R
dV

V

and the total change of entropy in isothermal expansion will be

∆S =
m

M
R

∫ V1

V0

dV

V
=

m

M
R [lnV ]V1

V0
=

m

M
R ln

V1

V0

,

after inserting the numerical values

∆S =
0.02 kg

4 · 10−3 kgmol−1 . 8.314 JK−1mol−1 . ln
8 · 10−3m3

2 · 10−3m3
= 57.63 JK−1 .
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6 Electric field and electric current

6.1 In a vacuum, there are two balls at a distance d = 10 cm, from each other, which have

electric charges Q1 = 20 · 10−6C and Q2 = −10 · 10−6C. What force are they attracted

and what force will they repel each other when they touch and then move apart again

to their original distance?

Q1 Q2r

F⃗12 F⃗21

Fig. 24

The force exerted by the ball (Fig. 24) with chargeQ1 on the ball with chargeQ2 is given

by Coulomb’s law

F⃗12 =
1

4πϵ0

Q1Q2

r3
r⃗12 ,

where ϵ0 = 8.854·10−12C2N−1m−2 is the electric constant and r⃗12 is the position vector

of the ball with charge Q2 with respect to the ball with charge Q1. Likewise, the force

exerted by the ball with chargeQ2 on the ball with chargeQ1 is given by Coulomb’s law

F⃗21 =
1

4πϵ0

Q1Q2

r3
r⃗21 ,

where r⃗21 is the position vector of the ball with charge Q1 with respect to the ball with

charge Q2. The forces have an attractive direction, and from Coulomb’s law for their

magnitudes follows

F12 = F21 =
1

4πϵ0

|Q1||Q2|
r2

,

after inserting numerical values

F12 = F21 =
1

4π . 8.854 · 10−12C2N−1m−2
.
20 · 10−6C . 10 · 10−6C

(0.1m)2
= 179.8N .
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If the balls touch, the resulting electric charge will be

Q = Q1 +Q2 = 20 · 10−6C + (−10 · 10−6C) = 10 · 10−6C

and after separating the balls, each ball retains the same electric charge

Q∗ =
Q

2
=

10 · 10−6C

2
= 5 · 10−6C .

The forces will have a repulsive direction and from Coulomb’s law for their magnitudes

follows

F ∗
12 = F ∗

21 =
1

4πϵ0

|Q∗||Q∗|
r2

,

after inserting numerical values

F ∗
12 = F ∗

21 =
1

4π . 8.854 · 10−12C2N−1m−2
.
5 · 10−6C . 5 · 10−6C

(0.1m)2
= 22.5N .

6.2 Calculate the electric potential and intensity of the electric field of a rod with an electric

charge Q and length l at a point lying on the extension of the rod at a distance a from its

end.

E⃗

x
dx

al

V
Q

Fig. 25

The linear density of electric charge of the rod is

λ =
Q

l
,

therefore, the element of electric charge (Fig. 25) of the rod will be

dQ = λdx =
Q

l
dx

and the electric potential of this element at a point located at a distance a from the end

of the rod will be

dV =
1

4πϵ0

dQ

x+ a
=

1

4πϵ0

Q

l

dx

x+ a
.
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The electric potential of the entire rod can be calculated by integrating over the entire

electric charge of the rod as

V =

∫
Q

dV =
1

4πϵ0

Q

l

l∫
0

dx

x+ a
=

1

4πϵ0

Q

l
[ln (x+ a)]l0 =

1

4πϵ0

Q

l
ln

l + a

a
.

The relationship between the electric field and the electric potential is

E⃗ = −grad V ,

therefore, the electric field of the rod will be:

E⃗ = −dV

da
ρ⃗ = − 1

4πϵ0

Q

l

a

l + a

a− l − a

a2
ρ⃗ =

1

4πϵ0

Q

a(l + a)
ρ⃗ ,

where ρ⃗ is a unit vector in the direction of the electric field, and the rules for the deriva-

tive of a composite function and the derivative of a fraction of functions were used.

6.3 A particle with an electric chargeQ′ = 5µC is located in a vacuum at a distance r = 2 cm

from an electrically charged straight thin conductor with a linear electric charge density

λ = 3µCm−1. What is the electric force acting on this particle?

λ
E⃗

l Q '

r

d⃗Sbottom

d⃗S top

d⃗Sshell

Fig. 26

According to Gauss’s law of electrostatics, the electric flux through any closed surface is

equal to the ratio of the electric charge inside the closed surface and the electric constant∮
S

E⃗ · dS⃗ =
Q

ϵ0
.
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If the closed surface is chosen as the surface of a cylinder whose axis of symmetry is

located on the electric conductor and the radius of the cylinder is equal to the distance

of the particle from the electric conductor (Fig. 26), the total electric flux can be expressed

as the sum of the electric fluxes through the upper base, the lower base and the shell

of the cylinder∮
S

E⃗ · dS⃗ =

∫
Stop

E⃗ · dS⃗top +

∫
Sbottom

E⃗ · dS⃗bottom +

∫
Sshell

E⃗ · dS⃗shell ,

because both dS⃗top and dS⃗bottom are perpendicular to E⃗ their scalar products are

E⃗ · dS⃗top = E⃗ · dS⃗bottom = 0 ,

because dS⃗shell is parallel to E⃗ their scalar product is

E⃗ · dS⃗shell = EdSshell ,

because the magnitude of the electric field E at a distance r is constant, it is valid∫
Sshell

EdSshell = E

∫
Sshell

dSshell = E2πrl

and the electric charge inside the cylinder can be expressed as

Q = λl .

From Gauss’ law of electrostatics follows

E2πrl =
λl

ϵ0
,

from which it is possible to express the electric field of the conductor in the place where

the charged particle is located

E =
λ

2πrϵ0
.

The force acting at this location on a particle with charge Q′ will be

F = EQ′ =
λ

2πrϵ0
Q′ ,

after substitution of numerical values

F =
3 · 10−6Cm−1

2π . 0.02m . 8.854 · 10−12C2N−1m−2
. 5 · 10−6C = 13.5N .
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6.4 Two capacitors with electrical capacitances C1 = 1µF and C2 = 2µF are connected in se-

ries and connected to a voltage source U = 600V. Calculate the charge and the voltage

on each of them. We then disconnect the charged capacitors from the source and each other

and reconnect them in parallel by connecting the positive and negative electrodes of the ca-

pacitors. Calculate the charge and the voltage will be on each of them after the stabilization.

U

C1 C2

Q+ Q+Q- Q-

U 1 U 2

Fig. 27

When capacitors are connected in series (Fig. 27), the charge on the capacitors is equal

Q = Q1 = Q2

and the total voltage on the capacitors is the sum of the voltages on the individual ca-

pacitors

U = U1 + U2 .

From the definition of the capacitance, the voltage follows

U =
Q

C
,

using this formula, the sum of the voltages can be written in the form

Q

C
=

Q

C1

+
Q

C2

,

from which it is possible to express the resulting capacitance

C =
C1C2

C1 + C2

,
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and then calculates the charge on the capacitors

Q = CU =
C1C2

C1 + C2

U .

After substitution

Q =
1µF . 2µF

1µF + 2µF
. 600V = 400µC ,

the voltage on the first capacitor will be

U1 =
Q

C1

,

after substitution

U1 =
400µC

1µF
= 400V

and the voltage on the second capacitor will be

U2 =
Q

C2

,

after substitution

U2 =
400µC

2µF
= 200V .

U '

C1

C2

Q '1
+

Q '2
+ Q '2

-

Q '1
-

Fig. 28

When the capacitors are connected in parallel (Fig. 28), the voltage on the capacitors is

equal

U ′ = U ′
1 = U ′

2
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and the total charge on the capacitors is the sum of the charges on the individual capac-

itors

Q′ = Q′
1 +Q′

2 = 2Q .

From the definition of the capacitance for the charge follows

Q = CU ,

using this formula, the sum of the charges can be written in the form

C ′U ′ = C1U
′ + C2U

′ ,

from which it is possible to express the resulting capacitance

C ′ = C1 + C2

and then calculates the voltage on the capacitors

U ′ =
Q′

C ′ =
2Q

C1 + C2

,

after substitution

U ′ =
2 . 400µC

1µF + 2µF
= 266.7V ,

the charge on the first capacitor will be

Q′
1 = C1U

′ ,

after substitution

Q′
1 = 1µF . 266.7V = 266.7µC ,

and the charge on the second capacitor will be

Q′
2 = C2U

′ ,

after substitution

Q′
2 = 2µF . 266.7V = 533.4µC .

6.5 Calculate the capacitance of the cylindrical capacitor, which is formed by two coaxial con-

ductive cylindrical surfaces in a vacuum. The height of both is h = 2 cm, the radius

of the inner electrode is r1 = 0.5mm, the radius of the outer electrode is r2 = 5mm.
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E⃗

h
r⃗

d⃗Sbottom

d⃗S top

d⃗Sshell

r2
r1

+Q -Q

Fig. 29

The electric field between the electrodes of the capacitor can be expressed using

the Gauss’ law of electrostatics, which states that the electric flux through any closed

surface is equal to the ratio of the electric charge inside the closed surface and the electric

constant∮
S

E⃗ · dS⃗ =
Q

ϵ0
.

If the closed surface is chosen as the surface of a cylinder whose axis of symmetry is

located on the axis of the capacitor (Fig. 29), the total electric flux can be expressed

as the sum of the electric fluxes through the upper base, the lower base and the shell

of the cylinder∮
S

E⃗ · dS⃗ =

∫
Stop

E⃗ · dS⃗top +

∫
Sbottom

E⃗ · dS⃗bottom +

∫
Sshell

E⃗ · dS⃗shell .

Because both dS⃗top and dS⃗bottom are perpendicular to E⃗ their scalar products are

E⃗ · dS⃗top = E⃗ · dS⃗bottom = 0 ,

because dS⃗shell is parallel to E⃗ their scalar product is

E⃗ · dS⃗shell = EdSshell ,
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because the magnitude of the electric field E at a distance r is constant, it is valid∫
Sshell

EdSshell = E

∫
Sshell

dSshell = E2πrh .

From Gauss’ law of electrostatics follows

E2πrh =
Q

ϵ0
,

from which it is possible to express the electric field as

E =
Q

2πrhϵ0
.

The voltage between the electrodes can be calculated by integrating the electric field

U =

r⃗2∫
r⃗1

E⃗ · dr⃗ =
r2∫

r1

Edr cos 0◦ =

r2∫
r1

Q

2πrhϵ0
dr =

Q

2πhϵ0

r2∫
r1

1

r
dr =

=
Q

2πhϵ0
[ln r]r2r1 =

Q

2πhϵ0
ln

r2
r1

.

The electrical capacitance of the capacitor can now be expressed from the definition

C =
Q

U
=

2πhϵ0
ln r2

r1

,

after substitution

C =
2π . 0.02m . 8.854 · 10−12C2N−1m−2

ln 5·10−3 m
0.5·10−3 m

= 4.83 · 10−13 F = 0.483 pF .

6.6 Calculate the capacitance of the spherical capacitor, which consists of two concentric con-

ductive spherical surfaces with radius r1 = 3 cm and r2 = 4 cm, if the medium between

them is filled with a dielectric with relative permittivity ϵr = 2.6. What will be the charge

on the electrodes if the capacitor is connected to voltages U = 600V, and what will be

the energy of the capacitor?

r1

r2

r⃗

ϵr Q+ Q-

d⃗S

E⃗
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Fig. 30

The electric field between the electrodes of the capacitor can be expressed using

the Gauss’ law of electrostatics∮
S

E⃗ · dS⃗ =
Q

ϵ0ϵr
.

If the closed surface is chosen so that it is the surface of a sphere with the centre lo-

cated at the centre of the capacitor (Fig. 30), the electric field vector will have the same

direction as the surface element vector, and the magnitude of the electric field will be

constant everywhere on this surface. Therefore, it will apply∮
S

E⃗ · dS⃗ =

∮
S

EdS cos 0◦ = E

∫
S

dS = ES = E4πr2 .

Then the Gauss’ law of electrostatics will imply

E4πr2 =
Q

ϵ0ϵr
,

from which it is possible to express the electric field

E =
Q

4πr2ϵ0ϵ2
,

and the voltage between the electrodes can be calculated by integrating the electric field

U =

r⃗2∫
r⃗1

E⃗ · dr⃗ =
r2∫

r1

Edr cos 0◦ =

r2∫
r1

Q

4πr2ϵ0ϵr
dr =

Q

4πϵ0ϵr

r2∫
r1

1

r2
dr =

=
Q

4πϵ0ϵr

[
−1

r

]r2
r1

=
Q

4πϵ0ϵr

(
1

r1
− 1

r2

)
=

Q

4πϵ0ϵr

r2 − r1
r1r2

.

The electrical capacitance of the capacitor can now be expressed from the definition

C =
Q

U
= 4πϵ0ϵr

r1r2
r2 − r1

,

after substitution

C = 4π . 8.854·10−12C2N−1m−2 . 2.6 .
0.03m . 0.04m

0.04m− 0.03m
= 3.47·10−11 F = 34.7 pF .

If the capacitor is connected to an electric voltage U = 300V, the charge on its elec-

trodes will be

Q = CU = 3.47 · 10−11 F . 600V = 2.08 · 10−8C = 20.8 nC

and the energy of the electric field of the capacitor will be

W =
1

2
CU2 =

1

2
. 3.47 · 10−11 F . (600V)2 = 6.25 · 10−6 J = 6.25µJ .
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6.7 Calculate the electric field in an aluminium conductor in the shape of a straight cylinder

with a radius r0 = 2.5mm and a length L = 1m, when a stationary electric current

I = 10A flows through it. What will be the voltage at the ends of this conductor, and what

electric charge will flow through the conductor during time t′ = 10 s? The resistivity of alu-

minum is ρ = 2.828 · 10−8Ωm.

L

r0 ρ
r⃗

d⃗r
E⃗i⃗ S

Fig. 31

The solution can be found using Ohm’s law in differential form

i⃗ = γE⃗ ,

where γ is the conductivity of the conductor

γ =
1

ρ
,

and i⃗ is the electric current density, its magnitude is

i =
I

S
=

I

πr20
.

In the scalar form, it is possible to write

i = γE ,

from which it is possible to express the magnitude of the electric field

E =
i

γ
=

1

γ

I

πr20
= ρ

I

πr20
,

after substitution

E = 2.828 · 10−8Ωm .
10A

π . (0.0025m)2
= 1.44 · 10−2Vm−1 = 14.4mVm−1 .
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The voltage between the ends of the conductor (Fig. 31) will be

U =

r⃗2∫
r⃗1

E⃗ ·dr⃗ =
L∫

0

Edr = EL = 1.44 ·10−2Vm−1 . 1m = 1.44 ·10−2V = 14.4mV

and the electric charge that will flow in time t∗ will be

Q∗ =

t∗∫
0

Idt = It∗ = 10A . 10 s = 100C .

6.8 The parallel plate capacitor has electrodes with an area S = 16 cm2, the distance be-

tween the electrodes d = 0.2 cm and the space between the electrodes is filled with a di-

electric with a relative permittivity ϵr = 6.9. Calculate the capacitance of the capacitor,

the charge on the electrodes, the electric field, the electric displacement field, the energy

density and the energy of the electric field if the capacitor is connected to an electric voltage

U = 300V.

S

E⃗

ϵr

d

d⃗S

d⃗r

Q+ Q-

Fig. 32

The electric field between the electrodes of the capacitor can be expressed using

the Gauss’ law of electrostatics∮
S

E⃗ · dS⃗ =
Q

ϵrϵ0
,

the closed area around the electrode (Fig. 32) has a total area 2S, but the electric field is

only on one side of it. The electric field is constant and has the direction of the surface

element, therefore∮
S

E⃗ · dS⃗ =

∮
S

EdS = E

∮
S

dS = ES ,
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which gives the equation

ES =
Q

ϵrϵ0
,

from which it is possible to express the electric field

E =
Q

Sϵrϵ0

and the voltage between the electrodes will be

U =

r⃗2∫
r⃗1

E⃗ · dr⃗ =
r2∫

r1

Edr = E

r2∫
r1

dr = Ed =
Q

Sϵrϵ0
d .

The capacitance of the parallel plate capacitor will be

C =
Q

U
=

Sϵrϵ0
d

=
16 · 10−4m2 . 6.9 . 8.854 · 10−12C2N−1m−2

0.002m
=

= 4.89 · 10−11 F = 48.9 pF .

The charge on the electrodes will be

Q = CU = 4.89 · 10−11 F . 300V = 1.47 · 10−8C = 14.7 nC .

The electric field will be

E =
U

d
=

300V

0.002m
= 1.5 · 105Vm−1 = 150 kVm−1 .

The electric displacement field will be

D = ϵrϵ0E = 6.9 . 8.854 · 10−12C2N−1m−2 . 1.5 · 105Vm−1 =

= 9.16 · 10−6Cm−2 = 9.16µCm−2 .

The energy density of the electric field will be

w =
1

2
ED =

1

2
. 1.5 · 105Vm−1 . 9.16 · 10−6Cm−2 = 0.687 Jm−3

The energy of the electric field will be

W =
1

2
CU2 =

1

2
. 4.89 · 10−11 F . (300V)2 = 2.2 · 10−6 J = 2.2µJ .
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6.9 Two resistors with resistances R1 = 4Ω and R2 = 12Ω are connected in parallel and con-

nected to a source with electromotive voltage Ue = 9V and internal resistance Ri = 1.5Ω.

What electric currents are in the individual branches of the circuit?

R1

R2

I 1

I 2

I

U e

Rv

Fig. 33

For resistors connected in parallel (Fig. 33) with resistances R1 and R2, the following

applies

U = U1 = U2 ,

I = I1 + I2 .

From Ohm’s law

I =
U

R
,

it follows

U

R
=

U

R1

+
U

R2

and the resulting resistance will be

R =
R1R2

R1 +R2

.

The following applies to the electromotive voltage of the source

Ue = (R +Ri)I ,
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which implies for electric current

I =
Ue

R +Ri

=
Ue

R1R2

R1+R2
+Ri

=
Ue(R1 +R2)

R1R2 +Ri(R1 +R2)
,

after substitution

I =
9V . (4Ω + 12Ω)

4Ω . 12Ω + 1.5Ω . (4Ω + 12Ω)
= 2A .

The electric current through the resistor with resistance R1 will be

I1 =
U

R1

=
RI

R1

=
R1R2

R1+R2
I

R1

=
R2I

R1 +R2

,

after substitution

I1 =
12Ω . 2A

4Ω + 12Ω
= 1.5A .

The electric current through the resistor with resistance R2 will be

I2 =
U

R2

=
RI

R2

=
R1R2

R1+R2
I

R2

=
R1I

R1 +R2

,

after substitution

I2 =
4Ω . 2A

4Ω + 12Ω
= 0.5A .

6.10 The electric current in the conductor, whose electrical resistance is R = 10Ω, decreases

linearly from the value I0 = 2A to the zero value during the time t0 = 3 s. What heat

was generated in the conductor during this time, and what electric charge flowed through

the conductor during this time?

The electric current decreased linearly from the value I0, that is

I = I0 − kt ,

to a zero value at time t0, so the following applies

0 = I0 − kt0 ,

from which it is possible to express the constant

k =
I0
t0

,
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the electric current will therefore vary with time as

I = I0 −
I0
t0
t .

The following applies to heat

dQ = Pdt ,

where the power of the electric current will be

P = UI = RI2 .

The heat generated in the conductor during time t0 will be

Q =

t0∫
0

Pdt =

t0∫
0

RI2dt = R

t0∫
0

(
I0 −

I0
t0
t

)2

dt = R

t0∫
0

(
I20 − 2

I20
t0
t+

I20
t20
t2
)
dt =

= R

[
I20 t−

I20
t0
t2 +

I20
t20

t3

3

]t0
0

=
RI20 t0
3

,

after substitution

Q =
10Ω . (2A)2 . 3 s

3
= 40 J .

The following applies to electric charge

dQ = Idt .

The electric charge that flows through the conductor at time t0, will be

q =

t0∫
0

Idt =

t0∫
0

(
I0 −

I0
t0
t

)
dt =

[
I0t−

I0
t0

t2

2

]t0
0

=
I0t0
2

,

after substitution

q =
2A . 3 s

2
= 3C .
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7 Magnetic field

7.1 An electric current I = 2A flows through a long, straight conductor. What is the magnetic

induction of this conductor at a distance a = 0.5m from it?

a

d⃗l
I

B⃗

Fig. 34

The solution is possible using Ampère’s circuital law, according to which the curve in-

tegral of the magnetic induction along any closed oriented curve is equal to the product

of the magnetic constant and the electric current that flows through the area bounded

by this curve∮
B⃗ · d⃗l = µ0I .

If a circle with a radius a around the conductor with the current I is chosen as the curve

(Fig. 34), the vectors B⃗ and d⃗lwill have the same direction and themagnitude of themag-

netic induction will be constant on this curve. Therefore, it will apply∮
B⃗ · d⃗l =

∮
Bdl = B

∮
dl = B2πa ,

from Ampère’s circuital law then follows

B2πa = µ0I ,
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from which it is possible to express the magnetic induction as

B =
µ0I

2πa
.

After substituting numerical values

B =
4π · 10−7NA−2 . 2A

2π . 0.5m
= 8 · 10−7T = 0.8µT .

7.2 An electric current I = 1.5A flows through a circular conductor with radius R = 10 cm.

Calculate the magnetic induction of the conductor on its axis at a distance x = 20 cm

from the centre of the circle and at the centre of the circle.

R

x

I

d⃗l

d⃗B y

d⃗B x

α
α

r⃗ d⃗B

Fig. 35

The calculation of the magnetic induction of the conductor is possible using the Biot-

Savart-Laplace law, which allows you to calculate the contribution

dB⃗ =
µ0I

4π

d⃗l × r⃗

r3
,

to themagnetic induction from an element d⃗l at a location with position r⃗. Since the vec-

tors d⃗l and r⃗ are perpendicular, the magnitude of this contribution can be expressed as

dB =
µ0I

4π

dlr sin 90◦

r3
=

µ0I

4π

dl

r2
.

The vector dB⃗ can be decomposed into components (Fig. 35)

dB⃗ = dB⃗x + dB⃗y .
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The dB⃗y components from the d⃗l elements, which lie on the opposite sides of the cir-

cle, are the same size and oppositely oriented, therefore, they will cancel each other

and the resulting magnetic field will be given only by the sum of the dB⃗x components,

the magnitude of which is

dBx = dB sinα =
µ0I

4π

dl

r2
sinα .

The magnitude of the position vector can be expressed from the Pythagorean theorem

r =
√
R2 + x2 ,

in a right triangle, also applies

sinα =
R

r
=

R√
R2 + x2

,

from which it follows

dBx =
µ0I

4π

dl

R2 + x2

R√
R2 + x2

=
µ0I

4π

R

(R2 + x2)
3
2

dl .

The magnetic induction of the entire conductor can be calculated by integrating over

the entire length of the conductor

B =

∫
dBx =

2πR∫
0

µ0I

4π

R

(R2 + x2)
3
2

dl =
µ0I

4π

R

(R2 + x2)
3
2

2πR∫
0

dl =

=
µ0I

4π

R

(R2 + x2)
3
2

2πR =
µ0IR

2

2(R2 + x2)
3
2

,

after substitution

B =
4π · 10−7NA−2 . 2A . (0.1m)2

2 [(0.1m)2 + (0.2m)2]
3
2

= 1.12 · 10−6T = 1.12µT .

The magnetic induction in the centre of the circle can be expressed from the resulting

relation by substituting x = 0, which results in

B =
µ0I

2R
=

4π · 10−7NA−2 . 2A

2 . 0.1m
= 1.26 · 10−5T = 12.6µT .

7.3 An electric current flows through a circular conductor with a radius ofR = 5 cm, the mag-

netic induction in the centre of the circle is B = 5mT. What is its magnetic moment?
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I

m⃗

S⃗
R r⃗

d⃗l

Fig. 36

The magnetic induction of the conductor is given by the Biot-Savart-Laplace law

dB⃗ =
µ0I

4π

d⃗l × r⃗

r3
,

where an element d⃗l (Fig. 36) of a conductor with an electric current I at a location

with a position vector r⃗ contributes to the total magnetic induction by the contribution

dB⃗. Since the vectors d⃗l and r⃗ are perpendicular, it follows

dB =
µ0I

4π

dlr sin 90◦

r3
=

µ0I

4π

dl

r2
.

Since the size of the position vector is equal to the radius of the circle, it will be

dB =
µ0I

4π

dl

R2
.

The magnetic induction of the entire conductor can be calculated by integrating over

the entire length of the conductor

B =

∫
dB =

2πR∫
0

µ0I

4πR2
dl =

µ0I

4πR2

2πR∫
0

dl =
µ0I

4πR2
2πR =

µ0I

2R
,

which can be used to express the electric current in a conductor

I =
2BR

µ0

.

Themagnitude of themagnetic moment of the planar loopwith surfaceS throughwhich

the electric current I flows is

m = IS =
2BR

µ0

πR2 =
2πBR3

µ0

,

after substituting numerical values

m =
2π . 5 · 10−3T . (0.05m)3

4π · 10−7NA−2
= 3.125Am2 .

95



7.4 Two long, straight conductors, parallel to each other, carry equal electric currents. The dis-

tance between them is a = 0.5m, and the force exerted by one conductor per unit length

of the other conductor is F0 = 2 · 10−7Nm−1. Calculate the electric currents in the con-

ductors.

I I

F⃗

r⃗ B⃗d⃗l

Fig. 37

The magnetic induction created by a straight conductor with an electric current I can

be calculated using Ampère’s circuital law∮
B⃗ · d⃗l = µ0I ,

if the integration loop is a circle with a radius a with one conductor in the centre, it fol-

lows

B2πa = µ0I ,

from which it is possible to express the magnetic induction:

B =
µ0I

2πa
.

The force acting in the magnetic field B⃗ on the conductor element d⃗l through which

the electric current I flows (Fig. 37), is expressed by Ampère’s force law

dF⃗ = Id⃗l × B⃗ ,

because the conductor element d⃗l and the magnetic induction B⃗ are perpendicular

to each other, the magnitude of the force is

dF = IdlB ,
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from which it is possible to express the magnitude of the force acting per unit length

of the conductor

F0 =
dF

dl
= IB .

After inserting the magnetic induction created by the second conductor

F0 =
µ0I

2

2πa
,

from which it is possible to calculate the electric current

I =

√
2πaF0

µ0

,

after inserting numerical values

I =

√
2π . 0.5m . 2 · 10−7Nm−1

4π · 10−7NA−2
= 0.707A .

7.5 Countercurrent electric currents I1 = I2 = 5A flow through two coaxial copper tubes

in vacuum with radii R1 = 5mm and R2 = 10mm. What is the magnetic induction

at distances r2 = 3mm, r2 = 8mm and r3 = 15mm from of the common axis of the tubes?

R1

R2

r1 r2 r3

I 1

I 2

Fig. 38

The magnetic induction can be calculated using Ampère’s circuital law∮
B⃗ · d⃗l = µ0Inet .

If the integration curve (Fig. 38) is a circle with radius r1, then zero electric current flows

through this curve, which implies

B1

2πr1∮
0

dl = 0 ,
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B12πr1 = 0 .

Therefore, the magnetic induction at the distance r1 will be

B1 = 0T .

If the integration loop is a circle with radius r2, the electric current I1 flows through this

curve, which implies

B2

2πr2∮
0

dl = µ0I1 ,

B22πr2 = µ0I1 .

Therefore, the magnetic induction at the distance r2 will be

B2 =
µ0I1
2πr2

=
4π · 10−7NA−2 . 5A

2π . 0.008m
= 1.25 · 10−3T = 0.125mT .

If the integration loop is a circle with radius r3, the net electric current flows through

this curve is I1 − I2 = 0, which implies

B3

2πr3∮
0

dl = µ0(I1 − I2) ,

B32πr3 = 0 .

Therefore, the magnetic induction at the distance r3 will be

B3 = 0T .

7.6 In a homogeneous magnetic field with magnetic inductionB = 0.5T, there is a rectangular

conductor with sides a = 5 cm and b = 3 cm, through which flows an electric current

I = 1A. The conductor can rotate around an axis that passes through the centres of the sides

b and is perpendicular to the magnetic induction. What work will be done by the external

forces that turn the conductor by an angle α = 90◦ from the stable position?

a

bI .

.

S⃗

B⃗

B⃗

S⃗

α
b

- F⃗

F⃗

Fig. 39
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A magnetic field exerts a torque on a closed loop with an electric current

M⃗ = m⃗× B⃗ ,

where the magnetic moment of the loop is

m⃗ = IS⃗ .

The following applies

M⃗ = IS⃗ × B⃗ .

Themagnetic field tries to rotate the loop so that the area vector of the loop and themag-

netic induction vector have the same direction, this position is stable. For the loop to ro-

tate about its axis, it must be acted upon by a couple of external forces (Fig. 39) that do

the work when the loop rotates by dα

dA = Mdα .

The torque of the couple of external forces must be equal to the torque of the magnetic

field

M = ISB sinα ,

therefore, the work of the couple of forces when turning the loop by dα will be

dA = ISB sinαdα

and the total work during the rotation by the angle α will be

A =

α∫
0

ISB sinαdα = ISB

α∫
0

sinαdα = ISB [− cosα]α0 = ISB(1− cosα) .

Because the area of the loop is

S = ab ,

it is possible to express the work as

A = IabB(1− cosα) ,

after substitution

A = 1A . 0.05m . 0.03m . 0.5T . (1− cos 90◦) = 7.5 · 10−4 J = 0.75mJ .
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7.7 The toroid coil with a radius R = 10 cm and the cross section radius r = 1 cm has

N = 10 000 turns wound on a steel core through which an electric current I = 1A flows.

The magnetic flux through the cross section of the core is Φ = 7.5mWb. Calculate the rel-

ative permeability of the core.

r
R

μrS

d⃗l

B⃗

I

Fig. 40

The magnetic induction can be calculated using Ampère’s circuital law∮
B⃗ · d⃗l = µrµ0Inet .

If the integration curve (Fig. 40) is a circle with radius R centred at the centre

of the toroid, the net electric current flowing through this curve is

Inet = NI .

The vectors B⃗ and d⃗l have the same direction and the magnitude of the magnetic induc-

tion is constant, therefore∮
B⃗ · d⃗l =

2πR∮
0

Bdl = B

2πR∮
0

dl = B [l]2πR0 = 2πRB ,

then from Ampère’s circuital law follows

2πRB = µrµ0NI ,

from which the relative permeability can be expressed as

µr =
2πRB

µ0NI
.
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From the magnetic induction flux

Φ = BS ,

for the magnetic induction follows

B =
Φ

S
=

Φ

πr2
,

using which the relative permeability can be calculated as

µr =
2πRΦ

µ0NIπr2
=

2RΦ

µ0NIr2
,

after substitution

µr =
2 . 0.1m . 7.5 · 10−3Wb

4π · 10−7NA−2 . 10000 . 1A . (0.01m)2
= 1194 .

7.8 What is the energy of the magnetic field of a toroid with radius R = 20 cm on which

N = 5000 turns with radius r = 1 cm are wound, when an electric current I = 5mA

flows through it?

The magnetic induction can be calculated using Ampère’s circuital law∮
B⃗ · d⃗l = µ0Inet .

If the integration curve is a circle with radiusR centred at the centre of the toroid, the net

electric current flowing through this curve is

Inet = NI ,

The vectors B⃗ and d⃗l have the same direction and the magnitude of the magnetic induc-

tion is constant, therefore∮
B⃗ · d⃗l =

2πR∮
0

Bdl cos 0◦ = B

2πR∮
0

dl = B2πR ,

then from Ampère’s circuital law follows

B2πR = µ0NI ,

from which the magnetic induction can be expressed as

B =
µ0NI

2πR
.
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The magnetic flux through one turn is

Φ =

∫
S

B⃗ · dS⃗ = B

∫
S

dS = BS = Bπr2

and the magnetic flux through N turns of the toroid is

Φtotal = NΦ = NBπr2 ,

After substituting the magnetic induction, the magnetic flux is

Φtotal =
µ0N

2Ir2

2R
,

by which the inductance of the toroid can be calculated as

L =
Φtotal

I
=

µ0N
2r2

2R
.

The energy of the magnetic field in the toroid is

Wm =
1

2
LI2 =

µ0N
2r2I2

4R
,

after substitution

Wm =
4π · 10−7NA−2 . (5000)2 . (0.01m)2 . (0.005A)2

4 . 0.2m
=

= 9.81 · 10−8 J = 98.1 nJ .

7.9 A rectangular conductor with sides a = 20 cm and b = 10 cm s located in the Earth’s

magnetic field with the magnetic induction B = 45µT. The conductor can rotate about

an axis that passes through the centre of side b and is perpendicular to the magnetic induc-

tion. What is the waveform and the amplitude of the induced voltage in the conductor if

the conductor rotates in the magnetic field with a frequency of f = 50s−1.

According to Faraday’s law of induction, the induced electromotive voltage is equal

to the negative time change of the magnetic flux

Ui = −dΦ

dt
,

where the magnetic flux is defined as

Φ =

∫
S

B⃗ · dS⃗ =

∫
S

BdS cosα .
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Since the magnetic field induction is constant

Φ = B

∫
S

dS cosα = BS cosα = Bab cosα ,

and the angle between the loop surface vector and the magnetic induction vector is

α = ωt = 2πft ,

thus, the magnetic induction flux will be

Φ = Bab cos (2πft) .

Faraday’s law of electromagnetic induction, therefore, for the induced voltage follows

Ui = −d [Bab cos (2πft)]

dt
= Bab2πf sin(2πft) = U0 sin (2πft) ,

where the amplitude of the induced voltage is

U0 = Bab2πf ,

after substituting numerical values

U0 = 45 · 10−6T . 0.2m . 0.1m . 2π . 50 s−1 = 2.83 · 10−4V = 0.283mV .

7.10 Calculate the amplitude and the waveform of the induced electric current in a rectangular

copper conductor with sides a = 10 cm and b = 4 cm cross section S = 2mm2 and re-

sistivity ρ = 1.7 · 10−8Ωm, which in a homogeneous magnetic field with by induction

B = 5mT rotates with a frequency f = 100 s−1.

According to Faraday’s law of induction, the induced electromotive voltage is equal

to the negative time change of the magnetic flux through the loop

Ui = −dΦ

dt
.

where the magnetic flux through the loop is

Φ =

∫
S

B⃗ · dS⃗ =

∫
S

BdS cosα = B

∫
S

dS cosα = BS cosα = Bab cosα ,

because the angle between the loop surface vector and the magnetic induction vector is

α = ωt = 2πft ,
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the magnetic flux will be

Φ = Bab cos (2πft) .

The induced voltage then follows

Ui = −d [Bab cos (2πft)]

dt
= Bab2πf sin(2πft) .

The relationship between induced voltage and current can be expressed using Ohm’s

law

Ii =
Ui

R
,

where the electrical resistance of the conductor can be calculated as

R = ρ
l

S
= ρ

2(a+ b)

S
.

The waveform of the induced electric current will be

Ii =
BabSπf

ρ(a+ b)
sin(2πft) = I0 sin(2πft) ,

and its amplitude will be

Ii =
BabSπf

ρ(a+ b)
,

after substituting numerical values

I0 =
5 · 10−3T . 0.1m . 0.04m . 2 · 10−6m2 . π . 100 s−1

1.7 · 10−8Ωm . (0.1m + 0.04m)
= 5.28A .
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8 Oscillations and waves

8.1 Imagine a straight shaft between Europe and Australia passing through the centre

of the Earth. If a body enters the shaft, it will be acted upon by a force that is directed

towards the centre of the Earth and is directly proportional to the distance from the centre

of the Earth. Calculate how long it would take a body that was dropped into the shaft

to travel from Europe to Australia and back, and what speed the body would have

when passing through the centre of the Earth. Gravitational acceleration on the surface

of the Earth is g = 9.81m s−2 and the radius of the Earth is RE = 6370 km.

RE

xF⃗

v⃗c

Fig. 41

The body in the shaft will be acted upon by a force (Fig. 41) whose magnitude is

F = −kx ,

from Newton’s second law, it follows

ma = F ,

m
d2x

dt2
= −kx .
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On the surface of the Earth, the force is equal to the weight of the body

kRE = mg ,

from which the constant is

k = m
g

RE

,

using which it is possible to write the equation of motion in the form

d2x

dt2
= − g

RE

x ,

which is the equation of harmonic motion

d2x

dt2
= −ω2x ,

whose angular frequency is

ω =

√
g

RE

,

and its solution has the form

x = x0 cos(ωt+ α) .

Since at time t = 0 s s the position of the body was x = RE , the following applies

x0 = RE ,

α = 0 ,

so the equation describing the movement of the body will be

x = RE cos

(√
g

RE

t

)
.

The journey of a body from Europe to Australia and back is a period of motion

T =
2π

ω
= 2π

√
RE

g
,

after substituting numerical values

T = 2π

√
6.37 · 106m
9.81m s−2

= 5063 s = 84min .
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The velocity of the body can be expressed as

v =
dx

dt
=

d
[
RE cos

(√
g

RE
t
)]

dt
= −

√
REg sin

(√
g

RE

t

)
.

For a body in the centre of the Earth, the following applies

RE cos

(√
g

RE

tc

)
= 0 ,

hence, the time is

tc =
π

2

√
RZ

g
.

After substituting into the velocity of the body, the velocity of the body at the centre

of the Earth will be

vc = −
√

RZg sin

(√
g

RE

tc

)
= −

√
REg sin

(√
g

RE

π

2

√
RE

g

)
= −

√
REg ,

where the negative symbolmeans that the vs direction is opposite to the x direction, after

substituting the numerical values, the velocity of the body in the centre of the Earth will

be

vc =
√
6.37 · 106m . 9.81m s−1 = 7905m s−1 .

8.2 Two bodies with massesm1 = 5kg andm2 = 3kg are connected by a spring whose spring

constant is k = 100Nm−1. We bring the bodies closer to each other, thereby compressing

the spring and then releasing the bodies. Calculate the period of oscillation of the bodies.

m1

m1

m2

m2

x1 x2

l

l1 l2
T

Fig. 42
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If the origin of the coordinate system is in the common centre of gravity of the bodies

(Fig. 42), the following will apply

0 =
−m1l1 +m2l2

m1 +m2

,

where l1 and l2 are the distances of the centres of gravity of individual bodies from their

common centre of gravity. It follows that

m1l1 = m2l2 .

Since it is an isolated system, after compressing the spring, the position of the centre

of gravity will not change and will apply

0 =
−m1(l1 − x1) +m2(l2 − x2)

m1 +m2

,

where x1 and x2 are the deviations of the bodies from their equilibrium positions. It fol-

lows that

m1x1 = m2x2 .

The force acting on the first body will be

F1 = −k(x1 + x2) .

Because

x2 = x1
m1

m2

,

the force acting on the first body can be expressed as

F1 = −k
m1 +m2

m2

x1 = −k1x1 ,

where

k1 = k
m1 +m2

m2

.

The angular frequency of the first body will be

ω1 =

√
k1
m1

=

√
k(m1 +m2)

m1m2

and the period of the first body will be

T1 =
2π

ω1

= 2π

√
m1m2

k(m1 +m2)
,
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after substitution

T1 = 2π

√
5 kg . 3 kg

100Nm−1 . (5 kg + 3 kg)
= 0.86 s .

The force acting on the other body will be

F2 = −k(x1 + x2) .

Because

x1 = x2
m2

m1

,

it is possible to express the force acting on the second body as

F2 = −k
m1 +m2

m1

x2 = −k2x2 ,

where

k2 = k
m1 +m2

m1

.

The angular frequency of the second body’s motion will be

ω2 =

√
k2
m2

=

√
k(m1 +m2)

m1m2

and the period of motion of the second body will be

T2 =
2π

ω2

= 2π

√
m1m2

k(m1 +m2)
.

The periods of movement of the first and second bodies are therefore the same T1 =

T2 = 0.86 s.

8.3 Calculate the period of harmonic motion of a body of mass m = 100 g suspended

on a spring. A force F1 = 0.2N is needed to extend the spring by x1 = 10 cm.

The equation of motion of a body with mass m performing harmonic motion has

the form

m
d2x

dt2
= −kx ,

where x is the displacement of the body from the equilibrium position, and k is the spring

constant. The equation has a solution in the form

x = x0 cos(ωt+ α) ,
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where x0 is the amplitude and α is the phase constant of the motion. For the angular

frequency applies

ω =

√
k

m
.

A force F1 is required to extend the spring by x1, therefore

F1 = kx1 ,

for the spring constant, it follows

k =
F1

x1

.

The period of harmonic motion can be calculated as

T =
2π

ω
= 2π

√
m

k
= 2π

√
mx1

F1

,

after substitution

T = 2π .

√
0.1 kg . 0.1m

0.2N
= 1.4 s .

8.4 Mechanical work A1 = 0.25 J is required to extend the spring by x1 = 5 cm. What will be

the angular frequency of a body with massm = 0.5 kg, that will oscillate on this spring?

The force required to extend the spring by x is

F = kx .

The mechanical work when stretched by x1 will therefore be

A1 =

x1∫
0

Fdx =

x1∫
0

kxdx =

[
1

2
kx2

]x1

0

=
1

2
kx2

1 ,

from which it is possible to express the spring constant

k =
2A1

x2
1

.

The harmonic motion of a body is described by the equation of motion

m
d2x

dt2
= −kx .
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Its solution has the form

x = x0 cos(ωt+ α) ,

where x0 is the amplitude and α is the phase constant of the motion. For the angular

frequency applies

ω =

√
k

m
.

After substituting for the spring constant, the angular frequency will be

ω =

√
2A1

mx2
1

and after substituting numerical values

ω =

√
2 . 0.25 J

0.5 kg . (0.05m)2
= 20 s−1 .

8.5 A horizontal board performs a harmonic motion in the horizontal direction with a period

of T = 3 s. The body lying on the board starts to slide when the amplitude of oscilla-

tions reaches the value x0 = 0.5m. What is the coefficient of friction between the body

and the board?

A frictional force acts on the body on the board, the magnitude of which is given

by the multiplication of the coefficient of friction and the normal force

Ft = µN .

The magnitude of the normal force is equal to the product of the mass of the body

and the acceleration of gravity

N = mg ,

therefore, the magnitude of the frictional force will be

Ft = µmg .

Because the body moves together with the board, it is in a non-inertial frame of refer-

ence, and in addition to the frictional force, the body also has an inertial force

Fz = −ma .
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The motion of the board is described by the function

x = x0 cos(ωt+ α) ,

from which the speed of the plate follows

v =
dx

dt
=

d[x0 cos(ωt+ α)]

dt
= −x0ω sin(ωt+ α) ,

from which the acceleration of the board follows

a =
dv

dt
=

d[−x0ω sin(ωt+ α)]

dt
= −x0ω

2 cos(ωt+ α) ,

which can be used to express the magnitude of the inertial force

Fz = mx0ω
2 cos(ωt+ α) = Fz0 cos(ωt+ α) ,

where the amplitude of the inertial force is

Fz0 = mx0ω
2 .

The body starts to slide when the amplitude of the inertial force equals the frictional

force

Fz0 = Ft ,

that is, when it will be valid

mx0ω
2 = µmg ,

where the angular frequency can be expressed using the period

ω =
2π

T
,

from which the coefficient of friction follows

µ =
4π2x0

T 2g
,

after substitution

µ =
4π2 . 0.5m

(3 s)2 . 9.81m s−2
= 0.22 .
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8.6 The particle performs damped harmonic motion, the dependence of the particle’s position

on time is given by the function x = 5 cm e−1.4 s−1t cos(1.6π s−1t). Calculate the damping

coefficient, the logarithmic decrement of the damping, the time it takes for the amplitude

of the oscillations to drop to one-hundredth of the original value, and the angular frequency

at which the particle would oscillate if the damping force stopped acting.

The position of a particle in damped harmonic motion is described by a function

x = x0e
−bt cos(ωt+ α) ,

from which it follows that the damping coefficient is

b = 1.4 s−1 ,

and the logarithmic decrement of the damping is

δ = bT = b
2π

ω
= 1.4 s−1 2π

1.6π s−1
= 0.875 .

Time for the amplitude to drop to one hundredth

x0e
−bt1 =

x0

100
,

will be

t1 =
ln 100

b
=

ln 100

1.4 s−1
= 3.29 s .

For the angular frequency of the damped harmonic oscillator applies

ω =
√
ω2
0 − b2 ,

from which it is possible to express the angular frequency of motion without damping

ω0 =
√
ω2 + b2 =

√
(1.6π s−1)2 + (1.4 s−1)2 = 5.22 s−1 .

8.7 The result of adding two harmonic motions on a line is the motion described by the equation

x = x0 cos (2 s
−1 . t) cos (50 s−1 . t). Calculate the angular frequencies of the original

harmonic motions and the angular frequency of the shocks of the resulting motion.
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When adding two harmonic motions

x = x0 cos (ω1t) ,

x = x0 cos (ω2t) ,

based on the principle of superposition, the resulting motion is

x = x0 cos (ω1t) + x0 cos (ω2t) .

Using the relationship

cosα + cos β = 2 cos

(
α− β

2

)
cos

(
α + β

2

)
,

it is possible to write the resulting motion as

x = 2x0 cos

(
ω1 − ω2

2
t

)
cos

(
ω1 + ω2

2
t

)
.

The angular frequencies of the original motions can be obtained by solving the system

of equations
ω1 − ω2

2
= 2 s−1 ,

ω1 + ω2

2
= 50 s−1 ,

which implies

ω1 = 52 s−1 ,

ω2 = 48 s−1 .

The resulting motion can be written as a harmonic motion

x = A cos

(
ω1 + ω2

2
t

)
,

whose amplitude changes slowly

A =

∣∣∣∣2x0 cos

(
ω1 − ω2

2
t

)∣∣∣∣ ,
the period of this amplitude is

TA =
2π

|ω1−ω2|
2

=
4π

|ω1 − ω2|
.

Because two amplifications and two attenuations occur in one period of the amplitude,

that is, two shocks, for their period applies

Ts =
TA

2
=

2π

|ω1 − ω2|
and the angular frequency of the shocks is

ωs =
2π

Ts

= |ω1 − ω2| =
∣∣52 s−1 − 48 s−1

∣∣ = 4 s−1 .
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8.8 The wave travels through a medium, the displacement of medium particles is described by

the function u = A cos 2π(bt − hx), where A = 2 · 10−6m, b = 5000 s−1 a h = 1m−1.

Calculate the wavelength, frequency, period, amplitude, velocity of the wave, the maxi-

mum value of the velocity and acceleration of particle oscillations and write a function

for the same wave travelling in the opposite direction.

A function describing the wave in the direction of the x-axis

u = u0 cos(ωt− kx) ,

where k is the wave number

k =
2π

λ
,

can be rewritten to the form

u = u0 cos 2π

(
t

T
− x

λ

)
,

which implies that the wavelength of the wave is

λ =
1

h
=

1

1m−1
= 1m .

The frequency ot the wave is

f = b = 5000 s−1 ,

the period of the wave is

T =
1

f
=

1

b
= 2 · 10−4 s ,

the amplitude of the wave is

u0 = A = 2 · 10−6m ,

and the speed of the wave is

c =
λ

T
=

b

h
=

1m

2 · 10−4 s
= 5000m s−1 .

The speed of the oscillation of the particles is

v =
du

dt
=

d [A cos 2π(bt− hx)]

dt
= −2πbA sin 2π(bt− hx) .
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The maximum value of the speed of the oscillations of the particles is

vmax. = 2πbA = 2π . 5000 s−1 . 2 · 10−6m = 0.0628m s−1 .

The acceleration of the oscillation of the particles is

a =
dv

dt
=

d [−2πbA sin 2π(bt− hx)]

dt
= −(2πb)2A cos 2π(bt− hx) .

The maximum value of the acceleration of the oscillations of the particles is

amax. = (2πb)2A = (2π . 5000 s−1)2 . 2 · 10−6m = 1973.9m s−2 .

For a wave travelling in the opposite direction, the following applies

x → −x ,

therefore, the equation describing the wave traveling in the opposite direction will have

the form

u = A cos 2π(bt+ hx) .

8.9 The speed of sound in steel can be determined by creating a wave in a steel rod fixed

in the middle, which vibrates the air in a Kundt’s tube, in which a standing wave is created.

Calculate the speed of sound in steel and the tensile modulus of steel if the distance between

two standing wave nodes in air is x = 8 cm, the length of the rod is l = 1.2m, the speed

of sound in air is v = 340m s−1 and the density of steel is ρ = 7800 kgm−3.

The condition for the formation of standing waves in the air and the rod, as well as

the formation of resonance, is

f = f ′ .

The frequency of the wave in the air applies

f =
v

λ
,

where v and λ are the speed and the wavelength of the wave in air. For the frequency

of the wave in the rod applies

f ′ =
v′

λ′ ,
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where v′ and λ′ are the speed and the wavelength of the wave in the rod. Therefore, it

is possible to rewrite the condition for the formation of standing waves in the form

v

λ
=

v′

λ′ ,

from which, for the speed of the wave in the rod, it follows

v′ = v
λ′

λ
,

where the wavelength in air can be determined as twice the distance between two nodes

λ = 2x

and the wavelength in the rod can be determined as twice the length of the rod

λ′ = 2l ,

using which, for the speed of sound in steel, follows

v′ = v
2l

2x
= v

l

x
,

after substitution

v′ = 340m s−1 .
1.2m

0.08m
= 5100m s−1 .

The wave equation has the general form

∂2u

∂t2
= v2

∂2u

∂x2
.

Using Hooke’s law, it is possible to derive the equation for waves in steel

∂2u

∂t2
=

E

ρ

∂2u

∂x2
,

therefore, the speed of sound in steel will be

v′
2
=

E

ρ
,

from which the tensile modulus of steel follows

E = v′
2
ρ ,

after substitution

E = (5100m s−1)2 . 7800 kgm−3 = 2.03 · 1011 Pa .
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8.10 The whistle with closed end produces a tone of fundamental frequency f = 130.5Hz.

Calculate the length of the whistle and the fundamental frequency, if the end of the whistle

is open. The speed of sound in air v = 340m s−1.

l=λ
4

Fig. 43

If one end of the whistle is closed and the other is open (Fig. 43), there will be an antinode

at the closed end and a node at the open end. The length of the whistle and the wave-

length of the fundamental frequency follow

l =
λ

4
.

Because the wavelength and the frequency apply

f =
v

λ
,

it is possible to express the length of the whistle as

l =
v

4f
,

after substitution

l =
340m s−1

4 . 130.5Hz
= 0.65m .

l=λ
2

Fig. 44
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If both ends of the whistle are open (Fig. 44), there will be antinodes at both ends

of the whistle. The length of the whistle and the wavelength of the fundamental fre-

quency follow

l =
λ

2
.

Because the wavelength and the frequency apply

f =
v

λ
,

it is possible to express the length of the whistle as

f =
v

2l
,

after substitution

f =
340m s−1

2 . 0.65m
= 261.5Hz .
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9 Optics

9.1 Two monochromatic plane electromagnetic waves of the same frequency, polarised

in the same plane, with amplitudes E01 = 5Vm−1 and E02 = 7Vm−1 propagate

in the same direction in vacuum. Calculate the resulting wave intensity if the waves are

a) incoherent b) coherent and the phase shift between them is δ = π
3
.

a) In the superposition of two incoherent waves, the resulting wave intensity is equal

to the sum of the wave intensities

I = I1 + I2 ,

which implies

I =
1

2
cϵ0E

2
01 +

1

2
cϵ0E

2
02 =

1

2
cϵ0(E

2
01 + E2

02) ,

after insertion

I =
1

2
. 3 · 108ms−1 . 8.854 · 10−12C2N−1m−2 . [(5Vm−1)2 + (7Vm−1)2] =

= 0.098Wm−2 .

b) In the superposition of two coherent waves, the resulting wave intensity is

I = I1 + I2 + 2
√

I1I2 cos δ ,

which implies

I =
1

2
cϵ0E

2
01 +

1

2
cϵ0E

2
02 + cϵ0E01E02 cos δ =

1

2
cϵ0
(
E2

01 + E2
02 + 2E01E02 cos δ

)
,

after insertion

I =
1

2
. 3 · 108ms−1 . 8.854 · 10−12C2N−1m−2 . [(5Vm−1)2 + (7Vm−1)2+

+2 . 5Vm−1 . 7Vm−1 . cos
π

3
] = 0.145Wm−2 .
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9.2 A plano-convex lens is laid on a planar plate. Light of wavelength λ = 598 nm is incident

perpendicularly on the flat side of the lens. In the reflected light, the Newton’s rings are

observed. The radius of the fifth dark ring is r5 = 5mm. Calculate the radius of the convex

surface of the lens and the radius of the fourth dark ring.

h

1 2 3

R

r

Fig. 45

Part of the light (Fig. 45) incident on the flat surface of the lens is reflected from this

surface (ray 1), and part penetrates the lens. In the penetrating part of the light, some

light is reflected from the convex surface of the lens (ray 2), and some penetrates further

and is reflected up to the plane plate (ray 3). Ray 1 does not interfere with either ray 2

or ray 3 because their path difference is greater than the coherent length of the light.

Interference occurs between rays 2 and 3. Their path difference is

∆ = 2h+
λ

2
,

because ray 3 has twice passed through a layer of air with refractive index n = 1

and on reflection from the optically denser medium on the bottom plate, there is a phase

change of π, which corresponds to a path difference of λ
2
. The interference minimum

condition is

2h+
λ

2
= (2m+ 1)

λ

2
m = 0, 1, 2, . . . .

The Pythagorean Theorem implies

(R− h)2 + r2 = R2 ,
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from which it is possible to express

r2 = h(2R− h) .

Since h << R, the following holds

r2 = h(2R− h) ≈ h2R ,

which implies

h =
r2

2R
.

When inserted into the condition for the interference minimum, then

rm =
√
mRλ ,

from which it is possible to express the radius of the lens as

R =
r2m
mλ

,

from the values for the fifth interference minimum

R =
r25
5λ

.

the lens radius can be calculated

R =
(5 · 10−3m)2

5 . 598 · 10−9m
= 8.36m .

The radius of the fourth interference minimum is

r4 =
√
4λR ,

after inserting

r4 =
√
4 . 598 · 10−9m . 8.36m = 4.47mm .

9.3 A plano-convex lens is laid on a planar plate. Light is incident perpendicularly on the flat

side of the lens. In the reflected light, we observe Newton’s rings. If the space between the lens

and the plate is filled with liquid, the radius of the fourth dark ringwill be the same as the ra-

dius of the third dark ring when there was air in the space between the lens and the plate.

Calculate the index of refraction of the liquid.
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Since the space between the lens and the planar plate is filled by a liquid with refractive

index n, the difference in the optical paths of the rays reflected from the convex part

of the lens and the planar plate is

∆ = 2nh+
λ

2
.

The condition of the interference minimum is

2nh+
λ

2
= (2m+ 1)

λ

2
m = 0, 1, 2, . . . ,

because

h =
r2

2R
,

the radius of the m-th dark ring is

rm =

√
mRλ

n
,

so the radius of the fourth dark ring, if there is a liquid in the space, is

r4 =

√
mRλ

n
.

and the radius of the third dark ring, if there is air in the space, is

r3 =
√
mRλ ,

because for air n = 1. The condition of equality of radii

r4 = r3 ,

implies√
mRλ

n
=

√
mRλ ,

from which the refractive index of the liquid can be expressed

n =
4

3
≈ 1.33 .

9.4 To prevent light loss by reflection, the glass plate, whose refractive index is n1 = 1.66, is

covered on both sides with a thin covering of transparent material. What must be the index

of refraction of the cover layer, and for what minimum thickness of the cover layer will light

of wavelength λ = 520 nm pass through the plate without loss? Assume that the light is

incident perpendicularly on the wafer, and the losses due to absorption of light are negligible.
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n2

n2

n1

I 1 I 0 I 2

Fig. 46

The light rays (Fig. 46) that are reflected from the cover layer and the glass plate are co-

herent because they are produced by splitting a single ray, and the cover layer is thinner

than the coherent length of light. Light will pass through without loss if the intensity

of the reflected light is zero, that is

I = I1 + I2 + 2
√

I1I2 cos

(
2π

λ
∆

)
= 0 ,

where the intensity of light reflected at the interface between the air and the cover layer

is

I1 =

(
n2 − 1

n2 + 1

)2

I0 ,

and the intensity of light reflected at the interface between the cover layer and the glass

plate is

I2 =

(
n1 − n2

n1 + n2

)2

(I0 − I1) ≈
(
n1 − n2

n1 + n2

)2

I0 .

The intensity of the reflected light will be zero if the conditions are simultaneously sa-

tisfied

I1 = I2 and cos

(
2π

λ
∆

)
= −1 .

The first condition implies(
n2 − 1

n2 + 1

)2

I0 =

(
n1 − n2

n1 + n2

)2

I0 .

For the refractive index of the cover layer, the following must therefore hold

n2 =
√
n1 =

√
1.66 = 1.30 .
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The second condition for the difference of optical paths must hold

∆ = (2m− 1)
λ

2
.

Since the difference in the optical paths is

∆ = 2hn2 ,

for the thickness of the cover layer, it follows

h =
(2m− 1)λ

4n1

m = 1, 2, 3, . . . .

The smallest thickness of the cover layer will be atm = 1, so it is equal to

hmin =
λ

4n1

=
520 · 10−9m

4 . 1.30
= 100 nm .

9.5 When a perpendicularly parallel beam of violet light with wavelength λ1 = 420 nm is

incident on the slit, the center of the second dark band can be seen on the screen at an angle

α1 = 4◦53′ from the normal to the plane of the slit. At what angle will the center of the third

dark band be seen if we illuminate the slit with green light of wavelength λ2 = 550 nm?

If the light bends at the slit, minima are formed on the shade at the points for which

d sinα = kλ k = 1, 2, 3, . . . ,

therefore, for the second minimum of light with wavelength λ1 it is valid

d sinα1 = 2λ1

and for the third minimum of light with wavelength λ2 it is valid

d sinα2 = 3λ2 .

Dividing the equations by each other produces a new equation
sinα1

sinα2

=
2λ1

3λ2

,

from which it is possible to express

sinα2 =
3λ2

2λ1

sinα1 ,

after inserting values

sinα2 =
3 . 550 · 10−9m

2 . 420 · 10−9m
. sin 4◦53′ = 0.167 ,

which corresponds to the angle

α2 = 9◦37′ .
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9.6 Calculate the illuminance of a small circular area of radius r << R located at a distance

R = 2m from a point source with luminous intensity I = 20 cd, if the normal to the area

points to the point source.

S

r
RΩI

E

Fig. 47

Illuminance is defined as the ratio of the luminous flux to the size of the area on which

the luminous flux falls

E =
Φ

S
.

Because a light source whose luminous intensity is I emits a luminous flux to a solid

angle Ω (Fig. 47)

Φ = IΩ ,

the illuminance is

E =
IΩ

S
.

The condition r <<< R allows the use of the relationship between the spherical surface

S, the radius of the sphere R and the solid angle Ω

S = ΩR2 ,

using which the illuminance can be expressed as

E =
IΩ

ΩR2
=

I

R2
,

after inserting values

E =
20 cd

(2m)2
= 5 lx .
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9.7 A light source whose luminance is L = 100 cdm−2 has the shape of a disc with radiusR =

0.5m. Calculate the illuminance at a point located at a distance a = 5m from the center

of the light source.

a

r
x

R

ϑ

dx

Fig. 48

The light source can be divided into concentric circular rings of radius x and thickness

dx, whose area (Fig. 48) is

dS = 2πxdx .

The luminous intensity of the ring in the direction of the given point is

dLϑ = LdS cosϑ = L2πxdx cosϑ

and the illuminance produced by the ring at a given point is

dE =
cosϑ

r2
L2πxdx cosϑ =

cos2 ϑ

r2
L2πxdx .

The distance of the ring from the point is

r =
√
x2 + a2 ,

and is also valid

cosϑ =
a

r
=

a√
x2 + a2

,
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which can be used to express the illuminance produced by the ring as

E = 2πLa2
x

(x2 + a2)2
dx

and the illuminance produced by the whole light source can be calculated by integrating

E = 2πLa2
∫ R

0

x

(x2 + a2)2
dx = πLa2

[
− 1

x2 + a2

]R
0

=
πLR2

R2 + a2
,

after inserting values

E =
π . 100 cdm−2 . (0.5m)2

(5m)2 + (0.5m)2
= 3.11 lx .

9.8 Awall is illuminated by two identical bulbs side by side at a distance d = 2m from the wall.

When one bulb is switched off, calculate how the second bulb must move to keep the illu-

minance of the wall the same as before.

For the illuminance of an area by a point source whose luminous intensity is I , the fo-

llowing holds

E =
I

r2
cosα .

Since the distance of the bulb from the wall is d, and the light rays fall perpendicular

to the wall α = 0◦, the illuminance of the wall from a single bulb is

E =
I

d2
.

Since both bulbs have the same luminous intensity and are at the same distance

from the wall, the illuminance of the wall from the two bulbs is

E2 = 2E =
2I

d2
.

After switching off one bulb, the second bulbmust bemoved to a distance x from thewall

so that the illuminance of the wall from one bulb

E1 =
I

x2

remains the same as when illuminated by two bulbs

E1 = E2 .
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Thus it must be valid

I

x2
= 2

I

d2
,

which, for the distance of the bulb from the wall, implies

x =
d√
2
,

after inserting

x =
2m√
2
= 1.41m .

9.9 The table is illuminated by two bulbs, which are placed on the ceiling at a distance d = 1m

from each other and height h = 1.5m above the table. The luminous intensity of each

bulb is I = 100 cd. Calculate the illuminance a) on the table centred between the bulbs

b) on the table directly under one of the bulbs.

h

d

α2

α1

r2

r1

Fig. 49

a) On the table in the middle between the bulbs (Fig. 49), the illuminance of the light

from each bulb is the same

E1 = E2 =
I

r21
cosα1 .

Because

r1 =

√
h2 +

(
d

2

)2

and also

cosα1 =
h

r1
,
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the illuminance from the individual bulbs is

E1 = E2 =
Ih[

h2 +
(
d
2

)2] 3
2

.

The illuminance on the table centred between the bulbs will be the sum of the illumi-

nances from the two bulbs

E = E1 + E2 =
2Ih[

h2 +
(
d
2

)2] 3
2

,

after inserting values

E =
2 . 100 cd . 1.5m[
(1.5m)2 + (1m

2
)2
] 3

2

= 76 lx .

b) On the table below the bulb, the illuminance will be from the bulb that is directly

above it

E1 =
I

h2

and the illuminance from the bulb next to it

E2 =
I

r22
cosα2 .

Because

r2 =
√
d2 + h2

and also

cosα2 =
h

r2
,

the illuminance from the side bulb can be expressed as

E2 =
Ih

(d2 + h2)
3
2

.

The illuminance on the table under one of the bulbs will be the sum of the illuminances

from both bulbs

E = E1 + E2 =
I

h2
+

Ih

(d2 + h2)
3
2

,

after inserting values

E =
100 cd

(1.5m)2
+

100 cd . 1.5m

[(1m)2 + (1.5m)2]
3
2

= 70 lx .
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9.10 In the centre above the circular table top with radius R = 80 cm is a light source with

luminous intensity I = 100 cd. At what height above the table should the light source be

placed so that the illuminance of the edge of the table is maximised? What is the maximum

illuminance of the edge of the table?

R

xr

α

Fig. 50

The illuminance of the table edge is

E =
I

r2
cosα .

Because (Fig. 50)

r2 = R2 + x2 ,

and also

cosα =
x

r
=

x√
R2 + x2

,

the illuminance of the table edge can be expressed as

E =
Ix

(R2 + x2)
3
2

.

The extremum of this function must satisfy the condition

dE

dx
= 0 ,

which implies

I
(R2 + x2)

3
2 − x3

2
(R2 + x2)

1
22x

(R2 + x2)3
= 0 .
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This condition is satisfied for the distance of the light source from the table

x =
R√
2
,

after insertion

x =
0.8m√

2
= 0.57m ,

at this distance from the light source, the illuminance at the edge of the table is

E =
100 cd . 0.57m

[(0.8m)2 + (0.57m)2]
3
2

= 60 lx .
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Physical constants

• acceleration of gravity: g = 9.81m s−2

• gravitation constant: κ = 6.67 · 10−11Nm2 kg−2

• Avogadro constant: NA = 6.022 · 1023mol−1

• Boltzmann constant: k = 1.38 · 10−23 JK−1

• elementary charge: e = 1.602 · 10−19C

• electric constant: ϵ0 = 8.854 · 10−12C2N−1m−2

• magnetic constant: µ0 = 4π · 10−7NA−2

• speed of light in vacuum: c = 3 · 108ms−1

• radius of the Earth: RZ = 6.371 · 106m

• mass of the Earth: MZ = 5.972 · 1024 kg
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