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Preface

Technical physics — The collection of solved problems is a textbook for students of the first
and second year of bachelor’s study at the Faculty of Mechanical Engineering of the Slo-
vak University of Technology in Bratislava. The textbook is used to practice and supplement
the curriculum of the compulsory courses Technical Physics I and Technical Physics II, as well
as the elective courses Physics Seminar II and Physics Seminar III. The textbook contains 90
solved problems from classical physics, covering the areas of mechanics, thermodynamics,
electricity, magnetism, oscillations, waves and optics. The selection of the problems is in line
with the content of the courses mentioned above, thus, they correspond in their difficulty
to an introductory university course in the scope of two semesters at a technical university.
The Slovak edition [1] of this textbook was published in 2023. After two years of successful
use among Slovak students, there was a need to create the English edition for students study-
ing in English. The textbook responds to the strong need for students to have a collection
of sample solutions to problems to facilitate their study and preparation for exams.

In preparing the textbook, it was necessary to decide whether to include a theoretical intro-
duction at the beginning of each chapter that would summarise the basic theoretical knowl-
edge needed to solve the problems. Since the explanation of the theory is sufficiently covered
in university textbooks [2, 3, 4], students can also use some of the world-famous physics text-
books [5, 6, 7, 8, 9, 10] or refer to the evergreen physics classics [11], theoretical introductions
were not included in this textbook. The second question was whether the problems would
be general or also include specific numerical values. Given that this is a collection of prob-
lems intended for engineering students, it is preferable that numerical values are included
in the problems and that the problems are solved with a finite numerical result. There is also
the advantage of practising numerical calculations, as this ability has been declining among
students in recent years, it is common to find that "as many results as students" when more

difficult mathematical expressions are added. The general decline in mathematical ability is



also the reason why intermediate steps are given for more complex mathematical steps.

It is advisable to use the textbook in such a way that after reading the assignment of the prob-
lem, the students first try to solve the problem independently. Solving the example indepen-
dently, i.e. without looking at the model solution, allows the students to check that they un-
derstand the problem, can apply the physics knowledge to the solution, and finally can solve
similar problems independently in an exam. Only when the students conclude that solving
the problem is beyond their capabilities is it a good time to look at the typical solution given
in this textbook. It is usual for physics problems that there is not just one correct way to solve
the problem. For example, some problems in mechanics can be solved using Newton'’s force
law or using the law of conservation of mechanical energy. Another example is some prob-
lems in magnetism, which can be solved using the Biot-Savart-Laplace law or Ampeére’s law
of total current. Therefore, even if a student solves a problem by a procedure other than that
given in this textbook, his solution may be correct.

If students want to practice and test their knowledge and skills on other problems, it is advis-
able to reach for a more comprehensive collection of problems from university physics [12, 13,
14], or try to solve other problems that are published on the website of the Institute of Math-
ematics and Physics of the Faculty of Mechanical Engineering STU [15].

The authors are aware that, despite their best efforts and repeated checking, many errors
have made their way into the textbook. Therefore, they will be very grateful to anyone who
brings these errors to their attention and sends them information about the errors to the e-mail

address: jozef.leja@stuba.sk

The publication of the textbook was financed from the funds of the KEGA project
(024STU-4/2023) "Building a laboratory of medical metrology".



1 Kinematics of a point particle

1.1 The position vector of a point particle depends on time according to the relation 7" =
i Acosbt + ; Asinbt, where A = 5m, b = /4 s~'. Express its components, coordi-

nates, magnitude and direction cosines at any time and at timel = 2s.

The position vector can be decomposed into components
F=E+7,

where the components of the position vector are

l

y=j Asinbt .

At time ¢ = 2, the components of the position vector have the values

f:;5m.cos(7r/4 s 2s) = 01,

n j5m.sin(7r/4 s, 25) = 5mj.

The position vector can be written using coordinates
F=ai4yj,
where the coordinates of the position vector are

x = Acosbt,

y = Asinbt .

At time t = 25, the coordinates of the position vector have the values

r=>5m.cos(m/4s".2s) =0,



y=>5m.sin(r/4s7'.2s) =5m.

The magnitude of the position vector is constant

r= /22 +y2 = /(Asinbt)2 + (Acosbt)2 = A=5m.

The direction cosines of the position vector are

x  Acosbt
cosa = — = = cos bt ,
r A
Asin bt
cosﬂzg: S =sinbt .
r A

At time t = 2, the direction cosines have values
cosa = cos(m/4s7' . 25) =0,

cosf =sin(mr/4s™".2s) =1.

1.2

Two bodies that are d = 100 m apart started moving in a straight line opposite each other.
The first body is moving uniformly with velocity v = 3ms~'. The second body is moving
uniformly accelerated with an initial velocity vy = Tms™! and acceleration a = 4ms~2.

Find the time and place of their meeting.

The distance travelled by the first body in uniform motion will be
s = vt .

The distance travelled by the second body in uniformly accelerated motion will be

at?
S9 = Uot + 7 .

The bodies meet when the sum of the paths they have travelled equals their initial dis-

tance

81+82:d,
at?
Ut—f-Uot—'—?:d.

By adding the numerical values, the quadratic equation can be obtained

4ms2 2
3ms ! t+7ms_1t+% =100m



the time of the meeting of the bodies is thus the root of the quadratic equation
2t +10t — 100 = 0,

which has two solutions
ty =958,
to = —10s.

The physically meaningful solution of the problem corresponds to the positive solution

of the quadratic equation
t=25s.

The point at which the bodies meet will be distant from the first body
s;=vt=3ms '.5s=15m

and will be distant from the other body

$o=d—5;=100m —15m =85m..

1.3

The train starts from rest with a uniformly accelerated motion so that in time t; = 30s
it passes a path s; = 90 m. What path will it pass, what its instantaneous and average

velocity will be in time ty = 60s?

For the path s; that the train passes in time ¢; in uniformly accelerated motion, the fo-

llowing holds
at?
S1 = 71 9

from which the acceleration of the train can be calculated
_ 251 2.90m
t2 (308)2
The path of the train at time ¢, will be
at; _ 0.2ms™*. (60s)
2 2

=02ms 2.

=360m.

S9 =
The instantaneous velocity of the train at time ¢, will be
vy = aty = 0.2ms 2.60s=12ms .

The average speed of the train over time ¢, will be

s 360m B
’Up = — =
t2 60 s




1.4 The position vector of a point particle has the form 7 = (Ay12+ By )i+ (Ast>+ B,)j, where
A; = 02ms™2, By = 0.05m, Ay = 0.15ms %, By = —0.03m. Find the magnitude
and direction of the velocity and acceleration of the point particle at time t; = 2s. Express

the direction using the angle to the x-axis.

The coordinates of the position vector are
Tr = A1t2 + Bl )

y:A2t2+B2.

For the velocity vector, it is stated

dr
dt -

U=

The coordinates of the velocity vector will be

. dx . d(Ath + Bl)

. — At

Ve T dt !
dy d(A2t2+B2)

_ WA B g

T dt 2

The magnitude of the velocity vector will be

v = J02 + 02 = /(2A)? + (2450)% = 201/ A2 + A3

The magnitude of the velocity vector at time ¢; = 2's will be

v=2.25.4/(02ms2)2 + (0.15ms2)2 = 1ms " .

The direction cosine of the velocity vector will be constant

Ve 2A1t Al
cosqy,, = — = =
v 2 JAZ+ A3 AT+ A2

and its value will be

0.2ms2
cos ay, = =038,
V/(0.2ms=2)2 + (0.15ms2)2

which implies that the angle between the velocity vector and the x-axis will be

o, = arccos 0.8 = 36.6° .



For the acceleration vector, it is stated

dv
dt -

a=

The coordinates of the acceleration vector will be

=y T g
o de o d(QAgt) .
CLy = E = dt = 2A2 .

The magnitude of the acceleration vector will be constant

a= /a2 +a2 = V(241)2 + (245)2 = 24/ A3 + A2

and its value will be

a=2./(02ms2)2+ (0.15ms2)2=0.5ms 2.

The direction cosine of the acceleration vector will be constant

a 24, Ay

X
CoOSQy, = — =

o« 2 /At A JATA

and its value will be

0.2ms2
cos a, = =0.8,
V/(0.2ms2)2 + (0.15ms2)2

which implies that the angle between the acceleration vector and the x-axis will be

o, = arccos 0.8 = 36.6° .

1.5

The wheel started to rotate from rest with a constant angular acceleration o = 5s~2. How

many times has the wheel rotated in the timet; = 10s since the start of the motion?

The angular velocity at constant angular acceleration is
w:/adt:at+cl.
If the starting angular velocity is zero, then the integration constant is zero

w(t=0s8)=0 = ¢ =0

10



and the angular velocity will be
w=at.

The angular displacement at constant angular acceleration is

t2
@z/wdt:/atdtz%—l—cz.

If the starting angular displacement is zero, then the integration constant is zero
P(t=0s)=0 = =0
and the angular displacement will be

=y

The angular distance of one revolution is 27, so the number of revolutions of the wheel

will be

o at?
n—=—=— ——
21 47

and the number of revolutions of the wheel in time ¢; will be

2 5s72.(10s)?
p o off _5s7 . (105)

=1 _ =39.8.
47 A7

1.6

The magnitude of the train speed after leaving the station gradually increased from zero
tov; = 20ms~! at time t; = 180s. The track is curved with a radius of curvature
R = 800m. Calculate the magnitudes of the tangential, normal, and total accelerations

at timety, = 120s.

Tangential acceleration indicates the change in magnitude of the velocity

dv
ay = & )
for constant ay it is

20ms!
ap =L =% 0 111ms 2.
t, 1805

The magnitude of the velocity at time ¢, will be

V1l
Vg = (lttg = —.
t

11



The normal acceleration indicates the change in direction of the velocity

ap = — .

R
At time t,, the normal acceleration will be

_ it (20ms™1)? . (120s)?

n = = =0.222ms 2.
“n = R 800m . (1805)? e

The total acceleration is the vector sum of the tangential and normal accelerations
a=da,+ a, .
The magnitude of the total acceleration will be

a=/d}+a;,

thus, the total acceleration at time ¢ will be

2 2.2\ 2
_ Uil
=y () ()

and its value will be

20ms—1\?  /(20ms~1)2. (120s)2° )
_ [ (2msT = 0.248ms2.
¢ \/( 180s ) +( 800m . (1805)? ) e

1.7

The point particle started moving in a circle with constant angular acceleration o =
0.25s72. At what time from the start of the motion will the angle between the particle’s

acceleration and the particle’s velocity be v = 45°?

Fig. 1

12



In circular motion, the tangential acceleration is

0 dv  d(Rw) Rdw _ Ru.

B A

The angular velocity at constant angular acceleration is
w=at.

The normal acceleration can be expressed as

Qp = U—Q = (WR) = oI = o’t’R..

R R R

The angle between the velocity and acceleration (Fig. 1) is

. a, o*t’R
an = — = =
i a; Ra

at? ,

which implies for time

; [tan y [ tan 45° 5
= = —_— = S
o 0.25s572

1.8

A wheel with radius R = 0.1 m rotates such that the dependence of the angle of rotation
on time is given by the function p = A+ Bt+Ct®, where B = 2s~!,C = 1s~>. For points
that lie on the circumference of the wheel, calculate their velocity, angular velocity, angular

acceleration, tangential acceleration and normal acceleration at timet; = 2s.

The magnitude of the angular velocity can be calculated using the definition

de
dt

w =

which implies

d(A+ Bt + Ct?
W= ( +dt+ ):B+3C’t2:[25_1+3.(1s_3).(2s)2]:145_1.

The magnitude of the angular acceleration can be calculated using the definition

dw
a=—
dt ’
which implies

2
a:%:60t:6.(1s_3) L(28) = 12572

13



The magnitude of the velocity is
v=wR=(B+3Ct")R=1[2s"+3.(1s%).(2s)’] .0.lm=14ms".
The magnitude of the tangential acceleration is
@ =aR=125701m=12ms>.
The magnitude of the normal acceleration is
v?  (1.4ms™1)?

= ==’ =19. -2
Qy, 7 0lm 9.6ms

1.9

A point particle moves in a straight line so that its acceleration increases uniformly
with time, and in time t; = 105 it increases from zero to a; = 5ms~2. What is the speed
of the point particle at time t, = 20s, and what is the path the point particle travelled

in this time when it was initially at rest?

The acceleration of the material point increases uniformly
a=kt,

the acceleration from zero to a; increases in time ¢, that is

a
alzk‘tl — ]{3:—17
t

therefore, the acceleration will be

a
a:—lt.
3]

The speed of the point particle is

= dt = Ltat = 1 .
V= /a / 2t1 ~|—cl

If the speed is initially zero
v(t=08)=0 = ¢, =0,

the speed at time ¢, will be

at;  5ms 2. (20s)?

- — 100ms!.
2%, 2 105 ms

Vg =

14



The path of the point particle is
CL1t2 a1t3
= dt = | —dt = —
’ /U /2751 6t1+027
if the initial path is zero

s(t=0s)=0 = ¢ =0.

The path at time ¢, will be
aity  5ms™? . (20s)?

— — 667m.
6t 6. 10s m

SS9 —

1.10 The particle moves on a circle with angular deceleration that increases with time according

3

to the relation « = kt , where k = —6rads™. The initial angular velocity was wy =

30rad s~t. Through what angle does the particle rotate in timet; = 5s?

The angular deceleration of the particle increases uniformly
a=kt.

The angular velocity of the particle is

kt?
w:/adt:/ktdtZT%—cl,

because the initial angular velocity of the particle was wy
w(t=0s8) =wy = ¢ =wp,
the angular velocity will be

w=—-+uwp.
9 0

The angular displacement of the particle is

kt? kt3

because the initial angular displacement of the particle was zero
P(t=0s)=0 = =0,

the angular path will be

kt3
g0:?+a)0t.

The angular displacement of the particle at time ¢; will be

kt3 —6rads™3 . (5s)3
p1 = — T wot1 =

5 5 +30rads™! . 5s=25rad .

15



2 Dynamics of a point particle

2.1 Three bodies with masses ms = 10kg, mp = 15kg, me = 20kg, lying on a horizontal
support and connected by a wire, are subject to a force ' = 100 N in the horizontal direc-
tion. The mass of the wire and the friction between the bodies and the support are negligible.

Calculate the acceleration of the system and the force acting at each joint.

- [7. s
T s T T T < 7
BA BC CB F
m, —»> < mg > < m. :aﬁb
l ]
- 1 Ga v Cs v Ce
g > ¥ >
7 X
Fig. 2

The motion of bodies is described by Newton’s law of force

n
i=1

If the distance between the bodies does not change, the acceleration of all the bodies is

equal

— — —

AIGBIGCIJ.

The bodies (Fig. 2) are subject to gravitational forces G A G B, C_jc, normal forces N A
N B, ]\7(;, the tensile forces of the wire fAB, fB A, fBC, fCB and the external force F' ,

therefore, Newton’s force law will be
TAB+6A+NA:mA5a

16



Tpa+ Tpe + Gp + Np = msd,
ﬁ+f03+éc+ﬁczmcﬁ.
After scalar multiplication of the equations by the unit vectors i and j and using

the equations

ii=1,
.;5217

the equations take the scalar form
Tap = maa ,
Ny—Ga=0,
—TIpa+Tpc = mpa,
N —-Gp =0,
F —Tcp =mca,
Ne —Ge=0.

In the vertical direction, the acceleration is zero, therefore

NA:GA7
NB:GBJ
Ne =G¢ .

Newton’s law of action and reaction implies

Tap=—Tpa,
Tap =1TBa,
Tpe = —Top
Tpc =1cB -

Therefore, in the horizontal direction

TAB = mua,

17



—T'sp +1Tpc = mpa,
F— TBC = mca .

By summing all the equations, the acceleration of the system can be expressed

F
a:
ma+mp+ mgc

and then modifying the individual equations of the force between the bodies

T B FmA

AB — mA+mB+mC )
F

Tpe = (ma + ms)

ma +mp+ mc

After substituting the values, the numerical solution will be

100N .
a = :22ms 3
10kg + 15kg + 20 kg
100N . 10k
Thp — & _ 999N,
10kg + 15kg 4+ 20 kg
100N . (10kg + 15k
Tpo = (10ke + 15ke) _ oo

10kg + 15kg + 20 kg

2.2 Two bodies with equal masses m = 5kg are connected by a wire passing through a freely

rotating pulley. The first body hangs freely on the wire, the second lies on an inclined

plane which makes an angle o = 30° with the horizontal plane. Calculate the accelera-

tion of the bodies and the force acting on the wire if there is no friction between the body

and the inclined plane, and if there is friction between the body and the inclined plane,

and the friction factor is yu = 0.2.

Fig. 3

18



The gravitational force of a body on an inclined plane (Fig. 3) can be decomposed into
a component parallel to the inclined plane and a component perpendicular to the in-

clined plane
GG+
The component parallel to the inclined plane will have the magnitude
G| = Gsina
and the component perpendicular to the inclined plane
G, =Gcosa.
The magnitude of the frictional force between the body and the inclined plane is
Fr=uG, = pGceosa .

Newton’s law of force

n

S =i,
i=1
for a hanging body is
G+ fA = mdy
and for a body on an inclined plane is
G+ G+ N+ Tg+ Fr=mig .
Newton’s law of action and reaction implies
Th=Tp=T.
The length of the wire does not change, therefore,
ap=agp=a.
The force of gravity can be calculated using the acceleration of gravity as

ézmgj’.

19



Newton’s law of force for bodies has a scalar form
mg —T =ma,
—mgsina + 71 — pmgcosa = ma .

By solving the system of equations, it is possible to express the acceleration of the system

g(1 —sina — pcos )
= ; 7

and the force acting on the wire

mg—T =ma = T =mg—ma,

mg(1 + sin a + p cos a)
5 :
If the friction between the body and the inclined plane is negligible

T =

p=0,

the acceleration of the system will be
_ g(1 —sina)

T
and the force acting on the wire will be

mg(1l +sina)
—

T —

After substituting the numerical values

~ 9.81ms? . (1 —sin30°)

N 2

5kg.9.81ms™2. (1 + sin30°)
2

If the friction between the body and the inclined plane is not negligible

a =245ms™? |

T = =36.79N .

w=0.1,

the acceleration of the system will be

g(1 —sina — pcos )
N 2

and the force acting on the wire will be

mg(1 + sin a + p cos a)
5 :

T —

After substituting the numerical values
~ 9.81ms 2. (1 —sin30°—0.2. cos30°)
“= 2
~ 5kg.9.81ms™?. (1+sin30°+0.2. cos30°)
2

=1.60ms 2,

T =41.04N .

20



2.3 A weight of mass m = 5kg hanging on a wire of length | = 1 m swings with a maximum
angular deflection o = 60°. What force F) is acting on the wire at the extreme positions

and what force F’ is acting on the wire at the lowest position?

N
Qi
Q
e

Sl

Fig. 4

The weight in the extreme position (Fig. 4) is acted upon by the gravitational force G

and the force of the wire Ti. Newton’s law of force will therefore have the form
G + T1 =ma.

The gravitational force can be resolved into a component parallel to the direction

of the wire and a component perpendicular to the direction of the wire
C_j = C_jH + é -

The component of the gravitational force acting in the direction parallel to the direction

of the wire is
G| =Gceosa,

from Newton’s law of forces for components in the direction of the wire implies
Gy —-Ty =0,
mgcosa — T} =0,

21



from which it is possible to express the force that the wire acts on the weight
Ty = mgcosa .

According to Newton’s law of action and reaction, the force that the weight acts
on the wire is equal in magnitude and in the opposite direction to the force that the wire

acts on the weight
Fi=-T,

therefore, the magnitude of the force that acts on the wire at its extreme position will be
Fy =mgcosa,

after substituting numerical values

Fy =5kg.9.81ms 2. cos60° = 24.53N .

The height of the weight at its extreme position relative to the lowest position can be

expressed as
h=1l—lcosa.

The law of conservation of mechanical energy for a weight in the extreme and lowest

position has the form
Ep + By = Ep + Eja

if in the extreme position, the kinetic energy is zero
Exn =0

and in the lowest position, the potential energy is zero
Ep=0,

the law of conservation of mechanical energy takes the form

Epl = Ek27
2

muv
p="
mg 5

22



from which it is possible to express the velocity of the weight in the lowest position as

v =+/2gh .

The weight will move in a circle with radius [ and will be acted upon by the gravitational
force G and the force of the wire T5. Newton’s law of force for the body at its lowest

position will be
G+ T 5= Mmdy ,

at the lowest position in the direction of the wire, it states
mg — Ty = —may .

The magnitude of the centripetal acceleration at its lowest position can be expressed

using the velocity of the weight

v 2gh
ad:—:—:

7 l 2g(1 — cosa) .

The force stretching the wire at its lowest point will be
Ty = mg + mag = mg(3 — 2cos «) .

The force exerted by the weight on the wire is equal in magnitude and opposite in di-

rection to the force exerted by the wire on the weight.
Fy=-T),

therefore, the magnitude of the force that acts on the wire in the lowest position will be
Fy, =mg(3 —2cosa),

after substituting numerical values

F,=5kg.9.81ms 2. (3—2. cos60°) =98.1N .

2.4

What impulse will the wall give to an elastic ball with mass m = 1kg and velocity vy =

10ms™ that hits the wall in a direction making an angle o = 60° with the normal?

23



Fig. 5

By definition, the impulse of a force expresses the time effect of a force

T / Fltydt
t1

to calculate it, the impulse theorem can also be used

In an elastic collision, the kinetic energy of the ball does not change

Ek2 = Ekl )

2 2
muvy Moy

2 2

therefore, the magnitude of the velocity does not change
Vg = V1 =0
and therefore the magnitude of the momentum does not change either
P2=p1=p=mv.
From the figure (Fig. 5) it follows
I
cosa = —
2p
from which it is possible to express the impulse of the force
I =2pcosa =2muvcosa,

after substituting numerical values

I=2.1kg.10ms '. cos60° = 10Ns .

24



2.5

A body lying on a horizontal surface is acted upon in the horizontal direction by a force
whose time dependence is F'(t) = A + Bt + Ct?, where A = 0.2N, B = 0.4Ns},
C = 0.6 Ns™2. Calculate the impulse of the force for the timety = 5s?

The impulse of a force expresses the time effect of a force

— t()_)
1:/ F(t)dt.
0

In the case of linear motion, the magnitude of the impulse of a force will be

to to t2 tS to t? t3
I:/ F(t) dt:/ (A+Bt+Ct*)dt = |At+ B— + C—| = Atg+B2+C—2.
0 0 2 31, 2 3

Substituting numerical values

2 3
I=02N.5s+04Ns" . (55’) L 0.6Ns2. (55) — 31 Ns.

2.6

A point particle of mass m = kg is moved by a force such that its path changes with time
asz(t) = A+ Bt + Ct?> + Dt3, where C = 2ms %, D = —02ms™3. Calculate
the magnitude of the force acting on the mass point at time ty = 2s and find the time

when the force will be zero.

Velocity in a linear motion can be expressed from its definition as

2 3
:dx(t) :d(A+Bt+C’t +Dt>:B+ZCt+3Dt2.

¢
v(t) = =5, at

Acceleration in a linear motion can be expressed from its definition as

_do(t)  d(B+20t+3Dt*) 20 + 6D

¢
alt) = =, dat

The force can be calculated from Newton’s law of force
F(t) = ma(t) = m(2C + 6Dt) .
At time ¢, the force will be
F(t =ty) = m(2C + 6Dty) .
After substituting numerical values
F(t=2s)=5kg. [2.2ms > +6.(-0.2ms™").2s] =8N.

25



From the condition that the force is zero

it follows
m(2C +6Dt) =0,

from which it is possible to express the time when the force will be zero

t_—c
- 3D

and after substituting numerical values

¢ —2ms™ 3.33
= = 9. S.
3.(—0.2ms3)

2.7

A force F' = Fy+kt acts on a body of massm = 5kg, where Fy = 10N andk = 0.1 Ns™!
are constants. Express the acceleration, velocity, and position of the body at timet = 10s

if the body initially had a velocity vy = 2m s~ ' and a the starting position was xy = 2 m.

From Newton’s law of force
F=ma,

for the acceleration of a body in linear motion follows

F kKt
a:—:——f——,
m m m

after substituting numerical values, the acceleration at time ¢ = 10s will be

10N | 0INs™ . 105 _,, 0,
Skg S5kg

The velocity of a point particle can be calculated using the acceleration

F, kt Fyt  kt?
v—/adt /(0 )dt —0+—+cl

If the initial velocity was vy, the integration constant c; will be

v(t=08) =19 = 1 =1
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and the velocity of the point particle will be

Fot  kt?
V=—+-—+17,
m 2m

after substituting numerical values, the velocity at time ¢ = 10s will be

10N . 10s n 0.1Ns™!.(10s)?
v =
5kg 2.5kg

+2ms ' =23ms™ !,

The position of a mass point can be calculated using the velocity

Fot  kt? Fot? k3
r= [ vdt = — 4+ — 4y | dt=—4+ — +vot + o,
m 2m

2m om

if the initial position was z, the integration constant ¢, will be
z(t=0s) =29 = 2 =129

and the position of the mass point will be

Fot?  kt?
r=——+ — + vt + 29,
2m 6m

after substituting numerical values, the position at time ¢ = 10s will be

_10N.(10s)>  0.INs™'.(10s)?

2ms . 10s+2m = 125.33m..
2. 5ke 6 5kg | oM9 sem o

2.8

What work must be done to compress the buffer spring of a wagon by xy = 10 cm, when
a force of F1 = 25000 N is required to compress it by x1 = 1 cm and the force is directly

proportional to the shortening of the spiral.

\ 4
v

v

Fig. 6
The magnitude of the external force exerted on a spring (Fig. 6) is directly proportional
to the compression of the spring, it means
F=kx.
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If a force of Fj is required to compress a spring by x1, the spring stiffness will be

F
F=ky, — k=1,
T

Mechanical work expresses the path effect of a force

7 .
A:/ F-dr,

if the displacement vector and the force vector have the same direction, then
Fdr = Fdrcos0° = Fdr .

If the z-axis has its origin at the point where the uncompressed spring is located

and the direction of the z-axis is the same as the direction of compression of the spring,

then
dr = dz ,
rr =20,
r9 = Xo .

The mechanical work will be

T2 o zo 2
A:/ Fdr:/ Fdx:/ b do — 50
r1 0 0 2

and after substituting, the spring stiffness will be

A _ leg

2x 1 ’
After substituting numerical values

~ 25000N . (0.10m)?
N 2.0.01m

A =12500J =12.5kJ .

2.9

A ball is suspended on a wire of length | = 0.5 m. What is the smallest horizontal velocity
that must be given to it so that it can be deflected to its highest position while keeping

the string taut?
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Fig. 7

If the ball at the highest position (Fig. 7) has a velocity of ¥ and moves in a circle with

radius [, it will have a centripetal acceleration of the magnitude

If it is also acted upon by a gravitational force
G =mg,

then Newton’s law of force will have the form
G = mi ,

in scalar form

U2

mg =m-,
from which it is possible to express the velocity of the ball at the highest position

o= /dl.

If the lowest position is a place with zero potential energy, then the total mechanical

energy of the ball at the lowest position will be

2
mug

EpO + Ek() - T

and at the highest position the total mechanical energy of the ball will be

2
muv
Ep+Ek:mgh+T,
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where the height of the ball will be
h=2[.
From the law of conservation of mechanical energy, it follows

Ep + Ewo = E, + Ej;

2 2
mu; muv
20 —9mal + ——

5 mgl + 5

from which it is possible to calculate the velocity of the ball in the lowest position

v = /59l ,

after substituting numerical values

vo=+5.981ms2.05m=495ms " .

2.10 Calculate the power of a car engine with a mass of m = 1200 kg when the car is moving

at a constant speed of v = 50kmh~"' on a road with a five percent gradient.

The speed of the car is
v=>50kmh™" =139ms".

A five percent road gradient means that over a distance of 100 m the road will rise by 5 m,

therefore (Fig. 8)

tana = 2 005
M= T00m
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and the angle of a road inclination will be
a = arctan 0.05 = 2.86° .

The engine power expresses the rate of work

dA

P=—"
dt ’

if the force is constant, the engine power can be calculated as

dAF-5) _ 5 45 _ 55

P = )
dt dt

The force of the engine and the speed of car have the same direction, so
P = Fvcos(0® = Fuv.

If the car is moving uniformly, the resulting force acting on the car must be zero,
so the force of the engine must be equal to the component of gravity that is parallel

to the road
F =G| =mgsina.

The power of engine will therefore be
P = Fv=mgvsina,

after substituting numerical values

P =1200kg.9.81ms ?.13.9ms ' . sin2.86° = 8164 W .
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3 Mechanics of a rigid body

3.1 Find the position of the centre of gravity of a body formed by cutting a semicircle with radius
b/2 from a homogeneous rectangle with sides a, b, on a side of length b and attaching it

to the opposite side of the rectangle.

A
y
A
b
< T\[x,, . T[x*, y*] T,[x,,Y,]
x—'
v
v a -
Fig. 9

It is advisable to choose the coordinate system so that its origin is located in the centre
of the original rectangle, the z-axis is parallel to the side a and the y-axis to the side b
of the rectangle. The position of the centre of gravity of the body can be determined
as the common centre of gravity of two symmetrical bodies, whose centres of gravity
are located at their centres of symmetry (Fig. 9). The first body will have the shape
of a rectangle with semicircular cutouts on the sides with a length of b. The coordinates

of the centre of gravity of the first body will be
1 = 0 y

y1:O.
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The mass of the first body can be calculated as

b 2
my = S1hp = [ab—ﬂ(§) ]hp,

where h denotes the thickness of the body and p its density. The second body will be

a circle with radius b/2. The coordinates of the centre of mass of the second body are

To =

J

S Nle

Yo =

The mass of the second body can be calculated as

b 2
mngth:W<§> hp .

For the position of the common centre of gravity of two bodies

Zmif;’ - -
i T+ Mmary

- Zmi B mi + Mma
i

—

r*

therefore, the coordinates of the common centre of gravity of these two bodies will be

b\?2 a
x* . mixy + Mooy o 77 (5) hp§ o 7T_b
- - - )

mi+ me [ab—ﬂ(g)z] h,0+7T(%)2hP 8

Yy =0.

3.2

Find the position of the centre of gravity of a homogeneous hemisphere with radius R =

10 cm.

A

Fig. 10
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It is advisable to choose the coordinate system so that its origin is located in the centre
of the circular base of the hemisphere and the x and z axes lie in its plane (Fig. 10). The y-
axis is the axis of symmetry of the body, therefore, the centre of gravity of the body will

be located on this axis and it will be valid for it

The position of the centre of gravity of the body is

- 1
M

where M is the mass of the body. For the coordinate of the centre of gravity in the di-

rection of the y-axis, therefore

1 1 1
—M/ydm—v—p/ypd\/—v/yd‘/,
M v v

where p is the density of the hemisphere and the volume of the hemisphere is
2
V= §7rR3 :

The volume element of the hemisphere has the shape of a circular disc with radius x

and thickness dy
dV = max’*dy = m(R* — y*)dy ,
where the Pythagorean theorem was used
R*=2"+19°.

The position of the centre of mass in the direction of the y-axis will therefore be

i 3 2 47 R
/ = 7TR2y— — 7Ty— =
T OnR? 2R3 2 4],
0
3 R* R* 3
ppryE (”— - “I) =3t

After substituting numerical values

Yyt = g 10cm = 3.78 cm .
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3.3 A father and a son carry a load on a rod of length | = 2m. How far from the father’s
end of the rod should the load be hung so that the father carries three times as much force

as the son? Compared to the mass of the load, the mass of the rod is negligible.

x4

o

Fig. 11

A body is in equilibrium if the vector sum of all external forces acting on the body is

equal to zero

and simultaneously the vector sum of the moments of all external forces with respect

to an arbitrary point is equal to zero

ZMZZOa
Zaxﬁi:o.

2

The external forces acting on the rod (Fig. 11) are the gravity of the load G, the force
of the son F' , and the force of the father 3F. The equilibrium condition for these forces

implies
G+F+3F=0.

Since the forces of the son and father have opposite directions to the gravitational force,

the magnitudes of the forces will be
G—-4F =0,
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which implies

F=-
1

The equilibrium condition for the moments of the forces with respect to the point

at the father will be
IxG+IxF=0 ,

the magnitudes of the moments of the forces will be
xGsin90° + [F'sin(—90°) =0,

G —IF =0.

After substituting from the first equilibrium condition

G
1= =
G 1 0,

it is possible to express the distance from the father

After substituting numerical values

2m
=—=05m.
T 1 m

A homogeneous narrow board with length | = 5m and mass m = 30Kkg is loaded at one
end with a load of mass m’ = 10kg. At what distance from this end should a support be

placed so that the plate remains horizontal?

A
F
” I | -
»i 32 m,
m
P A
. 7 /\ G
G 4

Fig. 12
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A body is in equilibrium if the vector sum of all external forces acting on the body is

equal to zero

and simultaneously the vector sum of the moments of all external forces with respect

to an arbitrary point is equal to zero

ZMZ:O,
D TixF=0,

The external forces acting on the board (Fig. 12) are the gravity of the board G
and the gravity of the load G’ and the force of the support ['. The equilibrium con-

dition for these forces implies
G+G +F=0.

Since the gravity and the force of the support have opposite directions, the magnitudes

of the forces will be
G+G —-F=0,

which implies
F=G+G".

The equilibrium condition for the moments of the forces with respect to the point

at the load will be
PFxG+ExF=0 ,

for magnitudes of the moments of the forces, follow
L., . . o
§Gsm 90° + zF'sin(—90°) =0,

[

After substituting from the first equilibrium condition
! :
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it is possible to express the distance from the load

Gl mgl ml

TTOGHG) T 2Amg+mig)  2m+m)’
after substituting numerical values

30kg . 5m
¥~ 2(30kg + 10kg) o

3.5 Calculate the moment of inertia of a homogeneous rod of lengthl = 3 m and massm = 5kg
with respect to an axis passing through the centre of gravity of the rod and with respect

to an axis passing through the end of the rod.

dx X
dm m
I
Fig. 13

The moment of inertia for a rigid body can be calculated using the definition

J:/T2dm.

m

If the coordinate system has its origin at the centre of the rod and the direction of the z-
axis is the same as the direction of the rod (Fig. 13), the moment of inertia will be

J:/:U2dm.

m

Since the rod is homogeneous, its length density is

A= —
l’

which can be used to express the mass element
dm = Mz .

The moment of inertia of the rod about the axis through the centre of gravity will there-
fore be

_l’_

37+% BB 13
J'=X[ x7dx )\{3 . A 24+24 )\12

N~

N~
|~
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After substituting the length density, the moment of inertia will be
mi?
J'=—
12
and after substituting the numerical values

~ 5kg. (3m)?
N 12

J = 3.75kgm? .

The moment of inertia about an axis passing through the end of the rod can be calculated

using Steiner’s theorem
J=J" 4+ ma?,

where the distance between the centre of gravity and the end of the rod ist

l
a=—.

2
The moment of inertia of the rod about the axis passing through the end of the rod will

be
2 2 2
J:ﬂm(l) _me

After substituting numerical values

_ 5kg. (3m)?
N 3

J* = 15kgm?.

3.6

Calculate the moment of inertia of a homogeneous cylinder of mass m = 5kg with radius
R = 1m with respect to both the axis identical to the axis of symmetry of the cylinder

and the parallel axis passing through the edge of the cylinder.

Fig. 14



The moment of inertia of a rigid body can be calculated by the definition

J:/TQdm.

If the cylinder is homogeneous, its density can be expressed as

m _m

V. wRh’

where h is the height of the cylinder. The mass element (Fig. 14) will be the shell

p:

of the cylinder with radius r and thickness dr
dm = pdV = p2mrhdr .

The moment of inertia of the cylinder with respect to the axis passing through the centre

of cylinder will be
R
41 R 4
J' = p/r227r7“h dr =p |:7Thr—:| = p7rhi ,
21, 2

after substituting the density of the cylinder

_ mR?

7=

and after substituting the numerical values

_ 5kg. (1m)?

J* = 25kgm? .

When calculating the moment of inertia with respect to the axis passing through

the edge of the cylinder, it is possible to use Steiner’s theorem

J=J" 4+ ma?,
where a is the distance between the axes of rotation passing through the centre
and the edge of the cylinder

a=R.

The moment of inertia with respect to the axis passing through the edge of the cylinder

will be

mR? R 3mR?
m =

J =
2 2

and after substituting numerical values

~ 3.5kg. (1m)?

! 2

= 7.5kgm? .
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3.7 A figure skater rotates with a frequency of fi = 3s~'. At what frequency will the figure

skater rotate if he doubles his moment of inertia by extending his arms?

In an isolated system, the law of conservation of angular momentum states
Li =Ly,

which implies
Sy = Joldy

where .J;, J; are the moments of inertia and ¢y, Ws are the angular velocities of the body
before and after the arms are extended. The direction of the angular velocity does not

change. From the law of conservation of angular momentum follows
Jiwy = Jows .

The angular velocity can be expressed using the frequency
w=27f,

then it will be valid
Ji2nfy = J2n fo,

Jlfl = J2f2 .

If the moment of inertia is doubled
Jo=2J1,

the resulting frequency will be halved

NN
f2_f1J2_ 27

after substituting numerical values

3 -1
> 155,

fo=

41



3.8 A gyroscope with a moment of inertia J = 10kgm? is rotated from rest by a force, whose

moment with respect to the axis of rotation is M = 200 N m. In what time will the gyro-

1

scope reach a frequency f = 8s™" and what will be its kinetic energy then?

The motion of a gyroscope is described by the equation of motion of a rotating rigid

body

If the angular acceleration is constant, the angular velocity of the body is
w:/adt:at+c.

Initially, the body was at rest, therefore

so the angular velocity will be
w=at,
which implies for the time of the rotation
w
t=2=,
o
after substituting the angular acceleration, the time of the rotation is
t=w J
=wor
The relationship between angular velocity and frequency
w=271f,
allows to modify the relationship for the time of the rotation to the form
J
l=2nf—
=
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after substituting numerical values
t=2m.8s .

The kinetic energy of the rotating gyroscope will be

Jw? _ J(2mf)?

B, —
KT g 9

= 2Jm%f?

after substituting numerical values

E,=2.10kgm?. 7. (8s71)* =12633J .

3.9

Calculate the kinetic energy of a cylindrical body with radius R = 10cm and mass
m = 2kg at timet = 10s. The body began to rotate from rest around its geometric

axis with constant angular acceleration o = 7 /8 s72.

The kinetic energy of a rotating rigid body is

Jw?
Pe=m

where J denotes the moment of inertia with respect to the axis of rotation and w the an-
gular velocity of the body. The moment of inertia of a homogeneous cylindrical body

with respect to its geometric axis (Problem 3.6) can be calculated as

mR?
S = 2

If the angular acceleration is constant, the angular velocity of the body is
w:/adt:at—l—c.

Initially, the body was at rest, therefore
w(t=08)=0 = ¢=0,

so the angular velocity of the body will be
w=at.

The kinetic energy of the body will be

1 mR? B mR?a?t?

b, — p2 o At
E=gy (o) 1

and after substituting numerical values

8

1 =0.077J.

B, 2ke (0.1m)2 (Z572)% (105)>2
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3.10 A rod of length | = 1m hangs vertically on an axis passing through its endpoint. What

minimum velocity must be given to the free end of the rod to bring it to a horizontal position?

N |~

v

.
>

Fig. 15

According to the law of conservation of mechanical energy, the total mechanical energy
in an isolated system does not change

B+ Ep = B + Eps .

If the rod in the vertical position has zero potential energy and the kinetic energy
of the rod in the horizontal position is zero (Fig. 15), the law of conservation of me-

chanical energy simplifies to the form
By = Ep2 .

The kinetic energy in the vertical position can be calculated as the kinetic energy of a ro-

tating rigid body
Jw?
o =5

where the moment of inertia of the rod with respect to the axis passing through its
endpoint (Problem 3.5) will be

mi?
g=""
3

and the angular velocity of the rotating rod can be expressed in terms of the velocity

of the rod’s endpoint as

CL)_E
1
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In the horizontal position, the potential energy of the rod will be
Ep2 =mg h )

where the centre of gravity of the rod is raised to a height of

h=t.
2

From the law of conservation of mechanical energy, it follows

1ml2<v>2_ l
273 \1/) ~ "5

from which it is possible to express the velocity of the end point of the rod

v = +/3gl

and after substituting numerical values

v=13.981ms2.1m=>542ms .

45



4 Gravitational field

4.1 How far is Mars from the Sun if its orbital period is Ty = 1.9y and the distance between
the Sun and the Earth isap = 1 AU?

Kepler’s third law can be used

2 3
TE_aE

% diy
which implies

. T?
3 34y
T
Therefore, the distance of Mars from the Sun is

2

- 3 TM
apr = ag T2 )

E

when substituted

2 5
ay = 1AU¢ % = 1AUV1.92=153AU.
\/ y

4.2 The spacecraft is located between the Earth and the Moon, how far away from the Earth

should the spacecraft be so that the resulting gravitational force on it from the Earth
and the Moon is zero? The distance between the Earth and the Moon is d = 384 000 km

and the mass of the Earth is 81 times the mass of the Moon.

AL
~
QU
V%
Q

Fig. 16

46



Newton’s law of gravity can be used

mims
.

Fe—y

r3

The resulting gravitational force must be zero
Fg+Fy=0,

because the forces are in opposite directions, their magnitudes must be equal
Fg=Fy,

thus, for forces acting on a spacecraft of mass m located at a distance = from the Earth
(Fig. 16), the following must be true

mgm mpyrm
K =K

x? (d—x)?"

If the ratio between the masses of the Earth and the Moon is
mg = 81mM s

then it applies

81 1
22 (d— )2
and the distance of the spacecraft from Earth will be
9
= —d
BT

when substituted

9

=1 384000 km = 345600 km .

T

4.3

Two spherical bodies with masses m and 4m are at a distance d from each other. At what
point between them will the resulting gravitational field be zero, and what will be the po-

tential of the gravitational field at that point?

Fig. 17

47



The gravitational field of a spherical body of mass m at a point with position vector 7”is

If the resulting gravitational field at the point between the two bodies is zero
Em + E4m =0,

since the intensities are in opposite directions, their magnitudes must be equal (Fig. 17)
E,. = E4u, ,

therefore must apply

m 4dm
K— =K

x? (d—x)?’

from where the distance to a body of mass m can be expressed

The gravitational potential

V=-k—,
,

is a scalar quantity and the resulting potential is the sum of the potentials at a given

location from the individual bodies
V= Vm + ‘/4m P

therefore, the resulting potential will be

m 4dm 3m 12m 9Im
V=-kK——k = —K— —K—— = —K— .

T d—=zx d 2d d

4.4

From a homogeneous sphere of radius R and mass M, a new body was created by drilling
a spherical cavity into the sphere with radius R/2 and centred at a distance R/2
from the centre of the original sphere. What will be the gravitational force exerted
by the new body on a point of mass m located in the direction of the cavity at a distance d

from the centre of the original sphere?
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A 4

30O

Fig. 18

The gravitational force exerted on the mass point by the original sphere F,) was the sum
of the gravitational force exerted by the new body F and the gravitational force exerted

by the drilled part F” (Fig. 18), therefore
Fy=F+F.

The magnitude of the gravitational force exerted by the original sphere can be expressed

from Newton’s law of gravitation as

mM
2

F(]:Ii

The density of the material is

M M

PV T T

therefore, the weight of the drilled part was

M 4 (R\* M
/: V/: — —_ = —
P T iR 37T(2) 8

and the magnitude of the gravitational force exerted by the drilled part was

, mm/ mM

(@-5° "sa-%°

2 2

The gravitational force exerted by a new body can be expressed as

M M 1 1
F:FO—F’:Fom g :HmM[———].




4.5 Calculate the potential and the gravitational field of a rod of mass m and length [ at a point

lying on an extension of the rod at a distance a from its end.

< > a
[ 1 }< >
dx< > <+
x 4
Fig. 19

The length density of the rod is

A:

9

m
[
therefore the mass element will be

dm = A\dx = ?dx

and the potential of the mass element (Fig. 19) will be

dV = —k dm :—K,@ de .
Tr+a lz+a

The potential of the whole rod can be calculated by integration over the whole mass
of the rod
!
m. l+a

m dz m !
V /de T e o In (z + a)], K In—

0

The relationship between the gravitational field and the gravitational potential is
E=— grad V',

therefore the gravitational field of the whole bar will be

E—»__ﬂq_ m a a—l—aq_ﬁ m
B P= P= a(l +a)

da _KTl—l—a a? p-

where p is the unit vector in the direction of the gravitational field. The rules
for the derivative of the composite function and the derivative of the fraction of func-

tions were used.

50



4.6 Calculate the potential and the gravitational field of a disk of mass m and radius R

at a point on the axis of the disk at a distance a from its centre.

Fig. 20

The areal density of the disk is

m m
o= —

S TR?

and the element of the area (Fig. 20) of the intermediate circle is
dS = 27rxdx ,
then the mass element will be

m 2m
dm = odS = ﬂ—R227rxdx = ﬁxdx .

The magnitude of the position vector can be expressed using the Pythagorean theorem
r’ =2+ a*,

the potential of the mass element will be

Ve _xtm__2mdz  Im  dz

T R2 r R2 2 + a? ’
The potential of the whole disk can be calculated by integrating over the whole mass

of the disk
2 i d 2 2
m xdx m. ~—=nr m
V_/mdv_—fﬁﬁ/—m_—ﬁﬁ[ :U2+a2]0:—/€ﬁ<vR2+a2—a>.
0

51



The relationship between the gravitational field and the gravitational potential is
E=— grad V',
therefore the gravitational field of the whole disk will be

g V. _ 2m a 1) 5o 2m 1_ a .
T W T "R \Urre P=" "R VR ra)!

where p'is the unit vector in the direction of the gravitational field.

4.7

At what speed must a body be thrown from the surface of the Earth to fly beyond the range

of the Earth’s gravitational pull?

When a body flies out of the Earth’s gravitational pull and comes to rest, it will have both
zero gravitational potential energy and zero kinetic energy. The law of conservation

of mechanical energy will therefore take the form
E,+E,=0.

The gravitational potential energy of a body of mass m on the surface of the Earth is
mME
E,=—
p K RE )

where My, is the mass of the Earth and R is the radius of the Earth. The kinetic energy

of a body ejected at velocity v from the surface of the Earth is

2
muv
Be=

therefore, the law of conservation of mechanical energy implies

mM. mu?
—K F o,

Rg 2
from which it is possible to express the velocity of the body as
QKME
v =4/ .
Rp

The result can also be expressed using the gravitational acceleration

Mg
= K—
R%

which for the velocity of the body implies

V= 2gRE

and after inserting the numerical values

9

v=v2.981ms2.6378000m = 11186 ms " .
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4.8 The projectile was fired from the Earth’s surface at a velocity of v = 1600 ms~!. Calculate
the difference in altitudes the body would have reached assuming the gravitational field is

homogeneous and assuming the gravitational field is radial.

The solution can be found using the law of conservation of mechanical energy
B+ Ep = By + By .

In a homogeneous gravitational field, the potential energy at the Earth’s surface F,; can
be chosen as the point with zero potential energy, and the body’s velocity decreases until
the body comes to rest, so its kinetic energy Ej, will be zero. The law of conservation

of mechanical energy will therefore take the form

Ekl = Ep2 )
thus applies
2
mu
Ty el

from which it is possible to express the altitude of the projectile in a homogeneous grav-

itational field as

In a radial gravitational field, the potential energy F,; will be at the surface of the Earth
and at h, the potential energy F,, will be at the height h,. Therefore, the law of con-

servation of mechanical energy in a radial gravitational field will be
Ek?l + Epl = Ep2 )

thus applies

mo mMg mMg
— K = —K—
2 Rg Rp+h,’

using the gravitational acceleration

Mg

g =K—,
R,

the relation can be modified to the form

mu? h,

o moRe—
2 my ERE-FhT’
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from which it is possible to express the altitude of the projectile in the radial gravitational
field as

UQRE

hy = ——2—
2gRE—U2

The difference in altitudes in the homogeneous and radial field will therefore be

vV’ Rp v?

Ah=h,—h,=——"———,
g 2gREp —v? 2

and after inserting the numerical values

(1600ms—1)2 . 6.378 - 105 m (1600 ms )2

= - = 2725m .
2.9.81ms2.6.378-105m — (1600ms—1)2  2.9.81 ms2 o

Ah

4.9

Calculate the kinetic energy of a body with mass m = 70kg that hits the surface
of the Earth from a height h = 10km, if the Earth’s gravitational field is assumed to be

radial.

The solution can be found using the law of conservation of mechanical energy
B+ Ep = By + By .

If the initial kinetic energy of the body £} is zero, the law of conservation of mechanical

energy takes the form
Ey = Ep + Epy .

The potential energy of a body at a height / above the surface of the Earth is equal to

mME
B, =—
71 HRE—i—h

and the potential energy of a body on the Earth’s surface is equal to

mME
Ep2 = —K RE .

The law of conservation of mechanical energy will therefore take the form

which implies for the kinetic energy at impact

1 1
Ep=—kmMp | ——0— — ) .
koo E(RE+h RE>
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Using gravitational acceleration

the kinetic energy can be expressed as

h
RE—Fh’

Ek = ngE

after inserting the numerical values

10*m

. = 6.856 - 10°J .
6.378 - 106 m + 104 m

E,=70kg.9.81ms 2.6.378-10°m

4.10

How high does a satellite have to be above the equator to be over the same place all the time

as it moves?

A satellite with mass m moves on a circle with radius Ry + h, the gravitational force

of the Earth acts on the satellite as a centripetal force, thus

which can be rewritten into the form

mMpg v?
r————— =m——,
(Rg + h)? R +h
where M is the mass and Rp is the radius of the Earth. For the speed of the satellite,

it follows

IiME
RE—l-h'

v =

For a satellite to be over the same place all the time, its angular velocity must be the same

as the angular velocity of the Earth
Ws = WE ,

therefore must apply

) _27r
Rg+h Ty’

after inserting the speed of the satellite

kMg 27
(Rp+h)3 Ty’
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For the height of the satellite, it follows

3 K/MET%
472

h = _RE7

after inserting the numerical values

—6.371-10°m ,

. i/6.67 10~ Nm?kg 2. 5.972 - 10% kg . (3.1536 - 107 )2
N 472

the height of the satellite will be

h=2358-10m .
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5 Thermodynamics and molecular

physics

5.1 The density of air under normal conditions, that is, pressure pg = 101325 Pa and tem-
perature to = 0°C is pg = 1.293kgm 3. What will be the density of air at pressure
p = 0.5 MPa and temperaturet = 50°C?

The problem can be solved using the equation of state of an ideal gas
pV =nRT
where R is the universal gas constant, and the amount of substance is

n=—,

M

where M denotes the molar mass. The equation of state takes the form

m
= —RT.
pV MR

From the density of air

p:V7

it is possible to express the mass of air
m = pV |

and the equation of state will take the form

pV
vV =""RT
P M ’

from which the density can be expressed as

_pM

P=RT"
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The density of the gas under normal conditions will be

_ poM
RT,

£o

By dividing the equations, the density of the gas can be expressed using the relation

After inserting the numerical values

0.5-10Pa . 273.15K

. =5.39kgm 3
1.01325-10°Pa . 323.15 K gm

p = 1.293kgm®

where the gas temperatures in the thermodynamic scale have been converted

from the Celsius scale using the relationship

T[K] = t[°C] + 273.15 K .

5.2

The pressure in the cylinder of a steam engine with volume V' = 201 is reduced by Ap =
0.5 MPa when the valve is opened. What mass of steam has been released from the cylinder

if the steam temperature t = 100 °C has not changed?

The solution of the problem is possible using the equation of state of an ideal gas
pV =nRT
where R is the universal gas constant, and the amount of substance is

n=—,

M

where M denotes the molar mass. The equation of state takes the form

m
v="prr.
PY =

Before the steam was released, the equation of state described the gas is
my
p1V = MRT >
After the steam was released, the equation of state described the gas is

m
PV = MQRT.
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By subtracting the equations of state, it is possible to obtain the equation

RT

(p1 —p2)V = (my — mz)ﬁ )

in which the mass of the released steam is
Am =mqy —may ,
and the reduction of pressure is

Ap=pi —p2.

The equation can therefore be written as

RT
ApV = Am——
p mM’

from which it is possible to express the mass of the released steam

Am = =2 A
m RT D,

and after inserting the numerical values

0.018 kg mol ™' . 0.02 m?

m = — .5-10°Pa = 0.058kg = 58¢g,
8.314JK-tmol ' .373.15K

where the gas temperatures in the thermodynamic scale have been converted

from the Celsius scale using the relationship

TK] = t[°C] + 273.15 K .

The same gas is in two containers separated by a cap. In the first container with volume
Vi = 21, the pressure of the gas is py = 0.2 MPa. In the second container with volume
Vo = 41, the pressure of the gas is po = 0.4 MPa. What will be the resulting pressure
when the cap is opened, if the temperature in the containers is the same and it will remain

the same after joining?

From the equation of state for the gas in the first container
piVi=mRT,

follows the amount of gas in the first container is

_ mVi
RT

ni
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From the equation of state for the gas in the second container
p2Va = o RT,

follows the amount of gas in the second container is

_ P2V
RT

Ny
When the cap is opened, the equation of state for the gas will be
p(Vi+V2) = (n1 +n2)RT,

when substituted for the amounts of substance, the equation of state takes the form

_(piVi | paVa
M%+W—(Rr+m031

which can be simplified to the equation
p(Vi+Va) =piVi +p2Va,

from which the resulting pressure can be calculated as

_ p1iVi + p2Vs
Vi+V

and after inserting the numerical values, the resulting pressure is

~02-10°Pa.2-10°m*+0.4-10°Pa . 4-107* m?

— 6
2-10*m? +4- 103 m? =033 107 Pa

p

5.4

What is the internal energy of nitrogen, which at pressure p = 0.5 MPa occupies volume

V=517

The internal energy of a gas is the sum of the kinetic energies of all N gas molecules
U = Ne¢,, ,

where the equipartition theorem for the mean kinetic energy of one molecule implies
€ = %kT ,

where ¢ denotes the number of degrees of freedom of the molecule and & is the Boltz-

mann constant. Thus, the kinetic energy of all molecules will be

?
= -NkT .
v 2
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The number of gas molecules will be
N =nN A,

where N, is Avogadro’s constant, and the expression for Boltzmann’s constant is

R

k=
Ny’

therefore, the internal energy of a gas can also be expressed as
U i RT
= -nRT .
2
Using the equation of state
pV =nRT
the internal energy of a gas can be expressed in terms of pressure and volume as
U= ! Vv
- 2p )

Since nitrogen is a diatomic gas, ¢ = 5, and the internal energy of the gas will be

5
U= pV
AR

and after inserting the numerical values, the internal energy is

5
Uzi.0.5-106Pa.5-10’3m3:6250J.

3.5

How does the mean kinetic energy of an argon gas molecule with mass m = 500 g change

if we supply the gas with heat () = 5000 J, and at the same time, the gas does work A’ =

2000 J? The molar mass of argon is M = 39.9 g mol .

The internal energy of a gas is the sum of the kinetic energies of all N gas molecules

U = Ne¢,, ,

therefore, the change in the internal energy of the gas will also be the change in the mean

kinetic energy of all the molecules

AU = NAe,, .
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The number of molecules can be calculated from the amount of substance
N =nN A,

which can be calculated from the mass of the gas

The change in the internal energy of a gas can therefore be written as

AU =

i Ae, ,

from which the change in the mean kinetic energy of the molecule will be

M
Ae,, =

= mNAAU.

According to the first law of thermodynamics
AU =Q+ A,

the change in the internal energy of the gas is equal to the sum of the heat input

and the external mechanical work. If the work is done by the gas
A=-A",

the change in internal energy will be
AU=Q - A".

The change in the mean kinetic energy of a molecule can thus be expressed as

M

A€y, =
¢ mNA

(@—4)
and after inserting the numerical values

~39.9-10"%kgmol
~0.5kg . 6.022- 1023 mol

AN, . (5000J —2000J) =3.98-10"%J .

5.6

A container of volumeV = 0.05m?® contains hydrogen at temperaturet, = 27 °C and pres-
sure py = 100kPa. Calculate the pressure and temperature of the gas if the hydrogen
received heat () = 1.5kJ.
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The change in the internal energy of a gas can be expressed using the temperature dif-

ference as
AU = %NkAT _ %Nk;(T —m),

where the number of particles can be calculated using the amount of substance
N =nNy

and the Boltzmann constant is

R

k=—
Ny’

this implies for the change of the internal energy of the gas
AU = %nR(T —To) .

Using the equation of state
poV =nRTy,

pV =nRT

the change of the internal energy can be written in the form
AU = %(pV —poV).

According to the first law of thermodynamics
AU=Q+ A,

the change in the internal energy of the gas is equal to the sum of the heat input
and the external mechanical work. If the volume of the gas is constant, the mechan-

ical work is zero
dA=—pdV = A=0
and the change in internal energy is equal to the heat input
AU =Q .
It is therefore valid
0
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from which the gas pressure can be calculated
_ Q + %POV
sV
Because hydrogen is a diatomic gas, the number of degrees of freedom of its molecule
is? =5 and

1500 J + g 100000 Pa . 0.05m?

5 = 112000 Pa = 112kPa .

p

For the isochoric process, Charles’ law states

Po_ P

Ty, T
which gives the resulting temperature

T="L7
Po

and after inserting the numerical values

112000 Pa
T=———.300.15K=336.17TK = 63.02°C .
100 000 Pa
In nitrogen with mass m = 200g, initial temperature t; = 27°C and pressure p; =

0.4 MPa, a thermodynamic process took place in which the pressure of nitrogen decreased
to po = 0.3 MPa. How much heat was added to the nitrogen, what work did the gas
do, and how did its internal energy change if the process was a) isochoric, b) isothermal,

c) adiabatic? Draw all these processes in p-V diagrams.

a) For an isochoric process (Fig. 21), the volume of the gas is constant
V =const. — dV =0,

which implies that the work of the gas is zero
dA' =pdV = A =0.

According to the first law of thermodynamics, the heat delivered to a gas is equal

to the sum of the change in its internal energy and the work done by the gas
Q=AU+ A",
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thus, for an isochoric process

Q=AU.

The change in the internal energy of a gas can be expressed in terms of the temperature

change as

1 T m

where M = 28 gmol " is the molar mass of nitrogen. From Charles’ law

mo_ 1
T T,
follows
T, = 271,
b1

and the change in internal energy can be expressed as

L m b2
AU=-—RT, (22 -1
v 2MR1(P1 )7

after inserting the numerical values

5.0.2kg 0.3-10° Pa

T 228103 kgmol
— 111400 = —11.14kJ |

.8.314JK 'mol™" . 300.15K <

The heat added to the gas is equal to the change in internal energy

Q=AU = —11.14kJ .

A
P
P
P
V,=V, v
Fig. 21
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b) For an isothermal process (Fig. 22), the temperature of the gas is constant
T =const. = AT =0,

therefore, the change in internal energy of the gas is zero
AU = %nRAT =0,

and from the first law of thermodynamics

Q=AU+ A",
follows
Q=A".

From the Boyle-Mariott law

pV = pl‘/l )
follows
_ mVi
Vv )

and from the equation of state

pl‘/l - TLRTI )
follows
. nRT1 . m RT1
P=v ~"m v

The work of the gas can be calculated as

Va 1

, Ve m m Va
A = v pdv = —RT1 " vdv = _RTI [hl V]V1 =
m m Voo - m D1
= —RT(1 —1 = —Rlh'ln—=—RI1In—.
pp BT Ve = InVi) = R In g = BT oo
After inserting the numerical values

04-10°Pa
0.3-106Pa

) 0.2kg
28 -10-3 gmol "

=05128J = 5.128kJ .

.8.314JKmol™t.300.15K . In

The heat added to the gas is equal to the work of the gas

Q=A=5128k]J.
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P,

p2 Ar

=
<v

Vi

Fig. 22

¢) In an adiabatic process (Fig. 23), there is no heat exchange between the gas and the sur-

roundings
Q=0.

From the first law of thermodynamics

Q=AU+ A",
follows
AU = —-A.

The change in the internal energy of a gas can be expressed as

Tm Tm T5
AU=-—R(Ty—T))=-—RT} (= —1) .
U=gyfitz—1) 2MR1(T1 )

From the Poisson’s equation
V" =pVy7,

can be expressed

&:(E) . (&)“:E,
b2 Vi D2 Vi

and from the equation of state

pVi paVa

Ty Ty '
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can be expressed

T, paVa

T, B p1V1 ’
which can be transformed into the form

-1 1 1-r

r=G) G =G

Tv \p2 P2 P2 '
Using Mayer’s equation

C,=C,+R,

the Poisson constant can be expressed in terms of the number of degrees of freedom

H_%_CU+R_§R+R_2'+2

C, C, %R 7

The change of internal energy can therefore be calculated as
_% . %
pl i+2 7 m p2 i+2
— —1|=-=RT\ || —= -1 .
(pz) ] 2M (Pl) ]

Inserting numerical values
0.3 -10° Pa
0.4 - 106 Pa

T m
AU = ——RT,;
U QMRl

N

5.0.2kg

= — . 8314JK™' . 300.15K
2 .28 - 1073 kg mol

AU

_1]:

= —3516J = —3.516kJ .

The work of the gas will be

A'= —AU = 3516kJ .

p A
P
T, T,
|2 A'
Vv, V, V.
Fig. 23



5.8 To air of temperature t; = 20°C, which occupies at pressure p; = 0.1 MPa a volume
Vi = 2m?, a heat Q = 400kJ has been added. Calculate the change in internal energy,
external work and final state quantities if the action was a) isochoric b) isobaric c) isother-

mal. The Poisson constant of air is k = 1.4.

a) In an isochoric process the volume of a gas is constant, therefore, the gas does not

produce the mechanical work
V =const. = A' =0
and from the first law of thermodynamics
Q=AU+ A,
follows that the change in internal energy of a gas is equal to the added heat
AU =@ =400kJ .
From the equation of state
piVi =nRTY ,

the amount of substance can be expressed as

o Vi
RT;

and from Poisson’s constant

1+

1

K =

the number of degrees of freedom is

The change of the internal energy of a gas can be expressed as

7 1 Vi
AU = SnR(Ty — T) = — 1p1T11 (T —Th)
because
I pV;
- Ty — T
Q K — 1 T1 ( 2 1) ’
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the resulting temperature can be calculated as

:w:’f1 [w+l:|

1 ;i
P Vi

15

and after inserting the numerical values

1.4 —1).400-10°J
0.1-10Pa.2m?

T, =293.15K . [< +1} =5H27.67TK .

From Charles’s law

p_pe
T, T’

follows the resulting pressure

15

p2=p1ﬁ7

which can be modified to the form

(k= 1DQ }
p=p | t1,
’ ' [ pVi
and after inserting the numerical values

(1.4—1).400-10%J
0.1-106Pa . 2m3

pa =T, =0.1-10°Pa. { +1] =0.18-10°Pa.
b) In an isobaric process the pressure of the gas is constant

p = const. .

The amount of substance is

N — mVi
RT;

and the number of degrees of freedom is

The change of internal energy of gas can then be expressed as

i 1 pVi 1 Ty
U= gnfl=1) = =5 o B = 1) = (T1 )

From Gay-Lussac’s law

Wh_ ¥
T, T’
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follows

T, Y

v

by which the change of internal energy can be calculated as

1 Va
AU_KU—lpﬂ/l (71—1) .

The work of the gas at constant pressure is

Vs
Al:/ prdV =p (Vo — V1) .
\%1

From the first law of thermodynamics

Q=AU+ A",
follows
1 Vs
— 22 _
Q H_lpl‘/l<vv1 >+p1(V2 Vi),

which can be modified to the form
Q(rk—1) + piVik = p1 Var

from which the resulting volume can be expressed as

Qr—1)

Vo =V,
2 1{ kp1Vi

#].
after inserting the numerical values

400-10%J . (1.4 —1)
1.4.0.1-105Pa . 2m?

Vo =2m?. [ +1]:3.14m3.

From Gay-Lussac’s law

i Vo

LT
for the resulting temperature follows

Vs
Ty =1T,—
2 1‘/17

which can be transformed to the form
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and after inserting the numerical values

400-10%J . (1.4 — 1)
1.4.0.1-105Pa . 2m?

Tp =293.15K. + 1| =460.66K .
¢) In an isothermal process the temperature of the gas is constant
T = const. ,
therefore the change of the internal energy of the gas is zero
AU =0.
From the first law of thermodynamics
Q=AU+ A",
follows that the work of the gas is equal to the added heat
A'=Q =400kJ .
From Boyle-Mariott’s law
piVi =paVo =pV,

it is possible to express the pressure of a gas

:plvl
V )

which can be used to express the work of the gas

v "V V.
A:/‘mvz/ PV = pVin V]Y2 = pViln 22 .
Vi w vV Vi

Because it applies

the resulting volume will be
_Q
Vo = Viern |

after inserting the numerical values

3 400-103 3
Vo=2m°.eo1108Pa. 2m3 = 14.78 m” .
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The resulting pressure will then be

i _pQV
_— = e 11
p1V2 2

D2 =

and after adding the numerical values

—400-103 J

po=0.1-10°Pa . eoti05pa. 23 = 13533 Pa. .

5.9

Helium with the amount of substancen = 2 kmol expands isobarically and increases its vol-

ume threefold. What is the change of entropy for this action?

The change of entropy for reversible processes is defined as

_ 4

ds ===,

for an isobaric event, when the system goes from the 1 state to the 2 state, the total

entropy change will be

24Q  [2nC,dT
AS_/17_/1 <L

The molar heat capacity at constant volume is

i

CV - iR 5
using Mayer’s relation
C,=Cy+R,

the molar heat capacity at constant pressure can be expressed as

@:%R+R:

The entropy change will then be

i+2  (PdT  i+2 n  i+2 T
R ) ?— Tl

AS=n 5 nTR[lnT] =n Rln — .

T

From Gay-Lussac’s law

i _ Ve
Tn T’
follows
L_V
n W
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by which the entropy change can be expressed as

H2on

A:
Sn2 v

and after adding the numerical values

2
AS =2-103mol . 3% . 8314JK *mol ! . In3=45669J K" .

5.10 Calculate the change of entropy of an ideal gas that is isothermally expanded from a volume

Vo = 21 into a vacuum to a total volume V; = 81. The gas is helium with massm = 20g.

The change of entropy is defined as

_ 4

ds T

From the first law of thermodynamics
dQ = dU + dA" = nC,dT + pdV

for the isothermal process

dT'=0,
follows
d@Q = pdV .

From the equation of state
pV =nRT

it is possible to express the pressure of the gas

~ nRT
p_ V 9

by which the first law of thermodynamics will have the form

nRT
dQ = TdV

and the change of entropy can be expressed as

nRT dV Rg
VT Vo
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The amount of substance will be

n=—,

M
thus, the entropy change can be written as

m _dV
dS = —R—
S MRV

and the total change of entropy in isothermal expansion will be

\%1
m dV. m viooom Vi
AS = — —=—nR|l = —Rln—+
S MR/VO v MR[HV]VO MR nVO,

after inserting the numerical values

0.02k
& .8314JK 'mol™! . In

75

8103 m?
~ 4-10-3kgmol ! 2-10~3m

=57.63JK'.



6 Electric field and electric current

6.1 In a vacuum, there are two balls at a distance d = 10 cm, from each other, which have
electric charges @, = 20 - 107°C and Q5 = —10 - 107¢ C. What force are they attracted
and what force will they repel each other when they touch and then move apart again

to their original distance?

Fig. 24

The force exerted by the ball (Fig. 24) with charge (); on the ball with charge () is given

by Coulomb’s law

= 1 Qs

Fip = 3 2,
dmeg T

where ¢) = 8.854-10712 C2 N~! m~? is the electric constant and 75 is the position vector
of the ball with charge (), with respect to the ball with charge ();. Likewise, the force

exerted by the ball with charge ()5 on the ball with charge (), is given by Coulomb’s law
= 1 Qs

Fy = 3 21,
dmeg T

where 75 is the position vector of the ball with charge (); with respect to the ball with
charge (). The forces have an attractive direction, and from Coulomb’s law for their

magnitudes follows

1 [Q1]|Q:]

Fig = Fy = 2
dmteg T

9

after inserting numerical values

1 20-1076C.10-10¢C
Fio = Fy = . —179.8N .
2T 4 885410 12C2 N1 m2 (0.1m)2

76



If the balls touch, the resulting electric charge will be
Q=014+ Q=20-10°C+(-10-107°C)=10-10"°C

and after separating the balls, each ball retains the same electric charge

10-10°°C
Q*:%:—Q =5-107°C.

The forces will have a repulsive direction and from Coulomb’s law for their magnitudes

follows

1 1@

deg 12

* ok
FIQ_FQI_

I

after inserting numerical values

[T 1 5-107C.5-1076C
272 4 885410 12C2N-1m—2 " (0.1m)2

=225N.

6.2

Calculate the electric potential and intensity of the electric field of a rod with an electric
charge () and length | at a point lying on the extension of the rod at a distance a from its

end.

A

l e
< a E‘k
—p

VLIV

X
<y

Fig. 25

The linear density of electric charge of the rod is

)\:
l?

therefore, the element of electric charge (Fig. 25) of the rod will be

dQ = \dx = %dx

and the electric potential of this element at a point located at a distance a from the end
of the rod will be

G L dQ 1 Q du

_47reoa:+a:47reo lz+a’
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The electric potential of the entire rod can be calculated by integrating over the entire

electric charge of the rod as

!
1 d 1 1 l
V:/dV: 0%/$:c Q[ln(:z:+a)]lo— an e
0

4e +a B 4meg 1  drweg | a
Q

The relationship between the electric field and the electric potential is
E = —grad V',

therefore, the electric field of the rod will be:

Ea__gﬁ_ 1 Q@ a a-l—-a, 1 Q
B B P= dmeg a(l + a)

da” dmeg ll+a a2 P

where p'is a unit vector in the direction of the electric field, and the rules for the deriva-

tive of a composite function and the derivative of a fraction of functions were used.

6.3 A particle with an electric charge Q' = 5 uC is located in a vacuum at a distance r = 2 cm
from an electrically charged straight thin conductor with a linear electric charge density

A = 3uCm™L. What is the electric force acting on this particle?

top

-
A
\;%l

~
(D) .
19
i ~ |t

dSshell

X

Sy

ottom

Fig. 26

According to Gauss’s law of electrostatics, the electric flux through any closed surface is

equal to the ratio of the electric charge inside the closed surface and the electric constant
fEa5-2.
€0
S
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If the closed surface is chosen as the surface of a cylinder whose axis of symmetry is
located on the electric conductor and the radius of the cylinder is equal to the distance
of the particle from the electric conductor (Fig. 26), the total electric flux can be expressed
as the sum of the electric fluxes through the upper base, the lower base and the shell

of the cylinder
%E : dg = / E : d‘S_;top + / E . d‘S_')bottom + / E : dgshell s
S Stop Sbottom Sshell

because both d@op and dgbottom are perpendicular to E their scalar products are
E-dSep = E - dShettom = 0,

because dgshell is parallel to E their scalar product is
E'- dSga = EdSgan ,

because the magnitude of the electric field £ at a distance r is constant, it is valid

/ Edssheu =F / dSshell = E2mrl

Shell Shell

and the electric charge inside the cylinder can be expressed as

Q=M.

From Gauss’ law of electrostatics follows

E2nrl = ﬁ ,
€0

from which it is possible to express the electric field of the conductor in the place where

the charged particle is located

E—)\

2mrey

The force acting at this location on a particle with charge @)’ will be

A oy

2mreq

F=EQ =

Y

after substitution of numerical values

P 3-100Cm™!
© 27.0.02m . 8.854-10"12C2N-1m~

5.5-107°C =13.5N.
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6.4 Two capacitors with electrical capacitances Cy = 1 uF and Cy = 2 uF are connected in se-
ries and connected to a voltage source U = 600 V. Calculate the charge and the voltage
on each of them. We then disconnect the charged capacitors from the source and each other
and reconnect them in parallel by connecting the positive and negative electrodes of the ca-

pacitors. Calculate the charge and the voltage will be on each of them after the stabilization.

C,

C
olle ¢l
U, U

Fig. 27

When capacitors are connected in series (Fig. 27), the charge on the capacitors is equal

Q:leQQ

and the total voltage on the capacitors is the sum of the voltages on the individual ca-

pacitors
U = U1 + U2 .

From the definition of the capacitance, the voltage follows

Q

U==<
O?

using this formula, the sum of the voltages can be written in the form

Q_Q @

c C G
from which it is possible to express the resulting capacitance

ere
O 4Gy
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and then calculates the charge on the capacitors

CCy
=CU = .
@ Cy+ Oy
After substitution
1pF . 2uF
=———— 600V =400 uC
¢ 1 uF + 2 uF e

the voltage on the first capacitor will be

after substitution

400 puC

U
! 1uF

=400V

and the voltage on the second capacitor will be

Q

U, = —
2 027

after substitution

400 uC

Us 3 uF =200V.
Qe
C1
v; Qr—z
C,
0 o—-
U!
Fig. 28

When the capacitors are connected in parallel (Fig. 28), the voltage on the capacitors is

equal
U=u;=U,
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and the total charge on the capacitors is the sum of the charges on the individual capac-

itors
Q=01 +0Q;=2Q.

From the definition of the capacitance for the charge follows
Q=CU,

using this formula, the sum of the charges can be written in the form
C'U' =C U + CU

from which it is possible to express the resulting capacitance
C'=Cy+ Oy

and then calculates the voltage on the capacitors

o929
o Ci+0y
after substitution
20000 sy :
1 pF + 2 pF

the charge on the first capacitor will be
Qll = Cl U/ 3

after substitution
Q7 =1uF .266.7V = 266.7 uC ,

and the charge on the second capacitor will be
Ql2 - OQU/ )

after substitution

Qy =2uF . 266.7V = 533.4 uC .

6.5

Calculate the capacitance of the cylindrical capacitor, which is formed by two coaxial con-
ductive cylindrical surfaces in a vacuum. The height of both is h = 2cm, the radius

of the inner electrode is 71 = 0.5 mm, the radius of the outer electrode is 7o = 5 mm.
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Fig. 29

The electric field between the electrodes of the capacitor can be expressed using
the Gauss’ law of electrostatics, which states that the electric flux through any closed

surface is equal to the ratio of the electric charge inside the closed surface and the electric

constant
7{ F.a5=9 .
€0
S

If the closed surface is chosen as the surface of a cylinder whose axis of symmetry is
located on the axis of the capacitor (Fig. 29), the total electric flux can be expressed
as the sum of the electric fluxes through the upper base, the lower base and the shell

of the cylinder

%Edgz/ﬁd§0p+ / E'dgbottom+/ﬁ'd§shell'
S

S top Sbottom S, shell

Because both dgtop and dgbottom are perpendicular to E their scalar products are
E : dS—:top = E : dS‘bottom =0 )
because dgshell is parallel to E their scalar product is

E . dgshell == EdSshell )
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because the magnitude of the electric field F at a distance r is constant, it is valid

/ EdSshell =F / dSshell = E2nrh .

Shell Sshell

From Gauss’ law of electrostatics follows

E2nrh = Q ,

€0
from which it is possible to express the electric field as
_ @

-~ 27rhey

The voltage between the electrodes can be calculated by integrating the electric field

72 T2 T2 T2
. Q Q 1
U= [ E-dr= [ Ed 0° = dr = —dr =
/ " / reos 2nrheg " 2theg J T "
1 1 r1 T
Q T Q )
= Inr|?=——In—.
2mheg [ nr]” 2mheg . 71
The electrical capacitance of the capacitor can now be expressed from the definition
Q 2mhey
C==
U Inz=’

after substitution

~ 27.0.02m . 8.854 - 10712C?N~tm~2

C= AT —4.83-10"°F = 0.483pF .
n

0.5-1073m

6.6

Calculate the capacitance of the spherical capacitor, which consists of two concentric con-
ductive spherical surfaces with radius ry = 3cm and ro = 4 cm, if the medium between
them is filled with a dielectric with relative permittivity e, = 2.6. What will be the charge
on the electrodes if the capacitor is connected to voltages U = 600V, and what will be

the energy of the capacitor?




Fig. 30

The electric field between the electrodes of the capacitor can be expressed using
the Gauss’ law of electrostatics

fﬁ.dgz @

€0€r

S

If the closed surface is chosen so that it is the surface of a sphere with the centre lo-
cated at the centre of the capacitor (Fig. 30), the electric field vector will have the same
direction as the surface element vector, and the magnitude of the electric field will be
constant everywhere on this surface. Therefore, it will apply
fﬁ-dngEdScosOo:E/dS:ES:E47rr2.

s S s
Then the Gauss’ law of electrostatics will imply

Edmr? = @ ,
€o€r

from which it is possible to express the electric field

Q

E= —
4mrieges

and the voltage between the electrodes can be calculated by integrating the electric field

—

T2 . T2 T2 T2 1
U:/E-dF:/EdTCOSOOZ Ldrzi —dr =
4rreye, dmee, | 12

. Q 1T2_ Q 1 1 . Q r-—r
 Amege, | T "  Amege, \11 o) Amege, Tira

The electrical capacitance of the capacitor can now be expressed from the definition

rire

C = = = 4d7epe, ,
U To —T1

after substitution

0.03m . 0.04m
0.04m — 0.03m

If the capacitor is connected to an electric voltage U = 300V, the charge on its elec-

C =47.8854-1072C2N"'m2.26. =3.47-100 1 F =34.7pF.

trodes will be
Q=CU=347-10"""F .600V =2.08-10"°C = 20.8nC
and the energy of the electric field of the capacitor will be

1 1
W= 5CU2 =5 34T 1071 F . (600V)? =6.25-107%J = 6.25 uJ .
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6.7 Calculate the electric field in an aluminium conductor in the shape of a straight cylinder
with a radius ro = 2.5mm and a length L = 1m, when a stationary electric current
I =10 A flows through it. What will be the voltage at the ends of this conductor, and what
electric charge will flow through the conductor during timet’ = 10 s? The resistivity of alu-

minum is p = 2.828 - 1078 Qm.

Fig. 31

The solution can be found using Ohm’s law in differential form
i=+E,
where 7 is the conductivity of the conductor

1
Y=
P
and 7 is the electric current density, its magnitude is

N

™r

e

N~

(=) V]

In the scalar form, it is possible to write
1 =vE,

from which it is possible to express the magnitude of the electric field

after substitution

10A

— ) -1 _ 4
7.(0.0025m)2 1.44-107°Vm ' =144mVm " .

E=2828-10"8Qm.
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The voltage between the ends of the conductor (Fig. 31) will be

T L
U:/E-dF:/Edr:EL:1.44-10‘2Vm_1.1m:1.44-10_2V:14.4m\/
™ 0

and the electric charge that will flow in time ¢* will be
t*
Q" :/Idt:]t* =10A.10s=100C.
0

6.8

The parallel plate capacitor has electrodes with an area S = 16 cm?, the distance be-
tween the electrodes d = 0.2 cm and the space between the electrodes is filled with a di-
electric with a relative permittivity e, = 6.9. Calculate the capacitance of the capacitor,
the charge on the electrodes, the electric field, the electric displacement field, the energy

density and the energy of the electric field if the capacitor is connected to an electric voltage

U =300V.

Q" Q
s .

ﬂ E
—>
dr,

S

67‘
L d

Fig. 32

The electric field between the electrodes of the capacitor can be expressed using

the Gauss’ law of electrostatics

the closed area around the electrode (Fig. 32) has a total area 2.5, but the electric field is
only on one side of it. The electric field is constant and has the direction of the surface

element, therefore

jqfﬁ-dS*:fEdS:E]{dszEs,

S S S
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which gives the equation

Es= -9

€r€p

from which it is possible to express the electric field

Q

E—
Se, €

and the voltage between the electrodes will be

—

72 72 ]
U:/E-dF:/Edr:E/dr:Ed: @ d.
Sereo
Fl T T1

The capacitance of the parallel plate capacitor will be

~Q  Seeg 16- 107*m?.6.9.8.854- 1072 C2 N1 m~2

¢ U d 0.002m

=4.89-107"F =48.9pF .

The charge on the electrodes will be
Q=CU=489-100"F.300V=147-10°3C = 14.7nC .

The electric field will be

U 300V

_ _ 107 -1 _ —1
J _0.002m_1‘5 10°Vm 150kVm™ .

The electric displacement field will be
D=¢€6E=69.884-107"C*N"'m?.15-10°Vm ™" =

=916-10°Cm2=9.16 uCm™2.

The energy density of the electric field will be
1 1 5 1 —6 2 -3
w = §ED: 3 1.5-10°Vm™ .9.16-100°Cm " = 0.687Jm
The energy of the electric field will be

1 1
W= §CU2 =5 489 1071 F.(300V)?=22-10°)=2.2pu].
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6.9 Two resistors with resistances Ry = 4§ and Ry = 12() are connected in parallel and con-
nected to a source with electromotive voltage U, = 9V and internal resistance R; = 1.5).

What electric currents are in the individual branches of the circuit?

Ue
I
| 1
RV
I
I
I
2 R,
Fig. 33

For resistors connected in parallel (Fig. 33) with resistances R; and Ry, the following

applies
U= Ul = U27
I: Il +I2 .

From Ohm’s law

=Y
R
it follows
v_u U
R Ry R,

and the resulting resistance will be

Ri Ry
R=—12
R + R,

The following applies to the electromotive voltage of the source

Ue = (R—FRl)I,
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which implies for electric current

U U U(Ri+R)
R+ R; % +R; RiRy+ Ri(Ri+Ry)’

after substitution

OV.(4Q+120Q)

_[:
40.120+150. (4Q+12Q)

=2A.

The electric current through the resistor with resistance R; will be

U Rl  gHEI Ryl

]:—_—_ pu—
! Rl Rl Rl R1+R2’

after substitution

12Q2.2A

= — =15A.
404120 g

1

The electric current through the resistor with resistance 17, will be

U RI  p¥&l R

:R_2:?2_ Ry,  Ri+Ry’

I

after substitution

40.2A

=——=0.5A.
404120 05

2

6.10 The electric current in the conductor, whose electrical resistance is R = 10(), decreases
linearly from the value Iy = 2 A to the zero value during the time ty = 3s. What heat
was generated in the conductor during this time, and what electric charge flowed through

the conductor during this time?

The electric current decreased linearly from the value I, that is
I'=1y—kt,

to a zero value at time ¢y, so the following applies
0=1y— kto,

from which it is possible to express the constant

k_ I
to
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the electric current will therefore vary with time as

The following applies to heat
dQ = Pdt ,

where the power of the electric current will be
P=UI =RI*.

The heat generated in the conductor during time ¢, will be

to to to to
2 [0 2 [02 Ig 2
Q= | Pdt= | RI“"dt=R Ig—t—t dt:R ]O_Zt_t+t_2t dt =
0 0
0 0 0 0

=R |13t - Ig 5 +[2t3 ' _ RIgto
B to 23], 3 7

after substitution

=407J.

109.(2A)2.3s
PRELACLY

The following applies to electric charge
dQ = Idt.

The electric charge that flows through the conductor at time ¢, will be

L2  Ivto
= [ Idt = I ——t It — ——| = —
q= / /(0 ) |:0 t02:| 2 3

after substitution

_2A.3s
2

=3C.
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7 Magnetic field

7.1 An electric current I = 2 A flows through a long, straight conductor. What is the magnetic

induction of this conductor at a distance a = 0.5m from it?

oo

Fig. 34

The solution is possible using Ampere’s circuital law, according to which the curve in-
tegral of the magnetic induction along any closed oriented curve is equal to the product
of the magnetic constant and the electric current that flows through the area bounded

by this curve

If a circle with a radius a around the conductor with the current [ is chosen as the curve
(Fig. 34), the vectors B and dl will have the same direction and the magnitude of the mag-

netic induction will be constant on this curve. Therefore, it will apply
7{§~df:7{8d1287{dl2327a,
from Ampeére’s circuital law then follows

B2ma = pol

92



from which it is possible to express the magnetic induction as

p = tol
2ma

After substituting numerical values

_ 4m-100TNATZ 24
N 27 .0.5m

B

=8-107"T=0.8uT.

7.2 An electric current [ = 1.5 A flows through a circular conductor with radius R = 10 cm.
Calculate the magnetic induction of the conductor on its axis at a distance v = 20cm

from the centre of the circle and at the centre of the circle.

dl_
r dB,dB
R a
a
! >
X dB,
I
Fig. 35

The calculation of the magnetic induction of the conductor is possible using the Biot-

Savart-Laplace law, which allows you to calculate the contribution

da_poldfxf
4r 3

to the magnetic induction from an element dl'at alocation with position 7. Since the vec-

tors dl and 7 are perpendicular, the magnitude of this contribution can be expressed as

B ol dirsin 90° _ pod di
4 r3 Am r2

d
The vector d B can be decomposed into components (Fig. 35)
dB = dB, + dB, .
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The déy components from the di elements, which lie on the opposite sides of the cir-
cle, are the same size and oppositely oriented, therefore, they will cancel each other
and the resulting magnetic field will be given only by the sum of the dB, components,

the magnitude of which is

dB, =dBsina = ,u_ﬁ sina .
4 72

The magnitude of the position vector can be expressed from the Pythagorean theorem
r= VT,

in a right triangle, also applies

R
T VREta?

from which it follows

sino =

uol  di R wl R
Am R?+ 22 /RZ 22 AT (R2 +22)3

The magnetic induction of the entire conductor can be calculated by integrating over

dB, =

the entire length of the conductor

2R 7 7 R 2R
/dB_/“O _di = o d/dl:
Rr+ﬂﬁ ir (Rt a2)? )

tol R 9 piol R?
= 7'[‘ - - —
T (R + 22)3 2(R? + 22)3

after substitution

9

A7 -107TNA2.2A . (0.1m)?
2[(0.1m)2 + (0.2m)22

B = =1.12-10°T =1.12uT .

The magnetic induction in the centre of the circle can be expressed from the resulting

relation by substituting + = 0, which results in

pol 47 -107"NA2.2A
2R 2.0.1m

B = =1.26-10°T =126 uT .

7.3

An electric current flows through a circular conductor with a radius of R = 5 cm, the mag-

netic induction in the centre of the circle is B = 5m'I. What is its magnetic moment?
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T

Fig. 36

The magnetic induction of the conductor is given by the Biot-Savart-Laplace law

/LQ] dl'x 7
dB =
Ar 3

where an element dl (Fig. 36) of a conductor with an electric current I at a location
with a position vector 7 contributes to the total magnetic induction by the contribution
dB. Since the vectors d/ and 7 are perpendicular, it follows

pol dirsin90°  pol di
4T r3 A 2

dB =

Since the size of the position vector is equal to the radius of the circle, it will be

[L()I dl
dB=——.
47 R?

The magnetic induction of the entire conductor can be calculated by integrating over

the entire length of the conductor

2R

uo[ tol - MOI pol
/ dB = / 47rR2 T AnR? / i = A7 R2 2mlt = 2R’
0

which can be used to express the electric current in a conductor

2BR
to

I =

The magnitude of the magnetic moment of the planar loop with surface S through which
the electric current / flows is

2B 2rBR3
m=15 = RTFR2: nBh ,
Ho Ho

after substituting numerical values

27 .5-1073T . (0.05m)?
= =3.125Am?.
m Ar- 107N A-2 3:125Am

95



7.4 Two long, straight conductors, parallel to each other, carry equal electric currents. The dis-
tance between them is a = 0.5m, and the force exerted by one conductor per unit length
of the other conductor is Fy = 2 - 107" Nm~!. Calculate the electric currents in the con-

ductors.

dl

T
+—]
F

A

AI I

Fig. 37

The magnetic induction created by a straight conductor with an electric current I can

be calculated using Ampere’s circuital law
%é . df: ILL()[ s

if the integration loop is a circle with a radius a with one conductor in the centre, it fol-

lows
B2ra = pol

from which it is possible to express the magnetic induction:

I
B ="
2ma

The force acting in the magnetic field B on the conductor element di through which

the electric current I flows (Fig. 37), is expressed by Ampere’s force law

— - —

dF =1di x B,

because the conductor element d/ and the magnetic induction B are perpendicular

to each other, the magnitude of the force is

dF = IdIB ,
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from which it is possible to express the magnitude of the force acting per unit length
of the conductor

=—=1IB.
dl

Fy

After inserting the magnetic induction created by the second conductor

_ piol?
- 271a’

Fy

from which it is possible to calculate the electric current

7 2makFy 7
Ho

after inserting numerical values

=0.707A .

]_\/27T.O.5m.2-107Nm1
B 47 -10-"N A2

7.5

Countercurrent electric currents [y = I, = 5 A flow through two coaxial copper tubes
in vacuum with radii Ry = 5mm and Ry, = 10mm. What is the magnetic induction

at distancesry = 3mm, 7y = 8mm andrs = 15 mm from of the common axis of the tubes?

I RN
(N o T 17
NIRRT ERERITA

VA

)
/A

Fig. 38

dl

The magnetic induction can be calculated using Ampeére’s circuital law

%é.df: 110 e -

If the integration curve (Fig. 38) is a circle with radius 7, then zero electric current flows

through this curve, which implies

27y

Blj{dl—(),
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Bl 27T7'1 =0.
Therefore, the magnetic induction at the distance 7, will be
B, =0T.

If the integration loop is a circle with radius o, the electric current /; flows through this

curve, which implies
277y
BQ f dl = M()Il s
0

32271'7’2 = ,UOII .

Therefore, the magnetic induction at the distance 7 will be

. /,60[1 . 47 - 10_7NA_2 .DA
 27ry 27 . 0.008 m

B, =125-10°T =0.125mT .

If the integration loop is a circle with radius 73, the net electric current flows through

this curve is I; — I; = 0, which implies
27rs

By § dl = yulli ~ 1),
0
33271'7'3 =0.

Therefore, the magnetic induction at the distance 73 will be

BgIOT

7.6

In a homogeneous magnetic field with magnetic induction B = 0.5T, there is a rectangular
conductor with sides a = 5cm and b = 3 cm, through which flows an electric current
I = 1 A. The conductor can rotate around an axis that passes through the centres of the sides
b and is perpendicular to the magnetic induction. What work will be done by the external

forces that turn the conductor by an angle o = 90° from the stable position?

OB R >
1 S d
> oS b B (0{
~ b

a -F

Fig. 39
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A magnetic field exerts a torque on a closed loop with an electric current

—

M:ﬁzxé,

where the magnetic moment of the loop is

m=1IS.
The following applies
M=ISxB.

The magnetic field tries to rotate the loop so that the area vector of the loop and the mag-
netic induction vector have the same direction, this position is stable. For the loop to ro-
tate about its axis, it must be acted upon by a couple of external forces (Fig. 39) that do

the work when the loop rotates by da
dA = Mda .

The torque of the couple of external forces must be equal to the torque of the magnetic

field
M =I1SBsina,

therefore, the work of the couple of forces when turning the loop by da will be
dA = [SBsinada

and the total work during the rotation by the angle a will be
A= /ISBsinada = [SB/SinadOz = ISB[—cosaly = ISB(1 —cosa) .
0 0

Because the area of the loop is
S=uab,

it is possible to express the work as
A= TIabB(1 —cosa) ,

after substitution

A=1A.0.05m.0.03m.0.5T. (1 —cos90°) =7.5-10"*J =0.75mJ .
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7.7 The toroid coil with a radius R = 10cm and the cross section radius r = 1lcm has
N = 10000 turns wound on a steel core through which an electric current I = 1 A flows.
The magnetic flux through the cross section of the core is ® = 7.5 mWb. Calculate the rel-

ative permeability of the core.

Fig. 40

The magnetic induction can be calculated using Ampeére’s circuital law

%é : df: ,UT/JJOInet .

If the integration curve (Fig. 40) is a circle with radius R centred at the centre

of the toroid, the net electric current flowing through this curve is
Lt = NI .

The vectors B and dl have the same direction and the magnitude of the magnetic induc-

tion is constant, therefore

27R 27R
fé-df: del:B%dl:B[l]ﬁ“RzszB,
0 0

then from Ampere’s circuital law follows
2rRB = py o N1 ,

from which the relative permeability can be expressed as

_ 27RB
Hr = oNT -
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From the magnetic induction flux
& =BS,

for the magnetic induction follows

P P
B:—:—

S w2’
using which the relative permeability can be calculated as

2r R 2RO

Hr = poN Ir? - poNIr2’

after substitution

2.01m.75-1073 Wb

.= = 1104 .
A= 4 10-"NA=2. 10000 . 1A . (0.01 m)?

7.8

What is the energy of the magnetic field of a toroid with radius R = 20cm on which
N = 5000 turns with radius r = 1 cm are wound, when an electric current I = 5mA

flows through it?

The magnetic induction can be calculated using Ampere’s circuital law

\%B' N df: Molnet .

If the integration curve is a circle with radius R centred at the centre of the toroid, the net

electric current flowing through this curve is
Inet = NI )

The vectors B and dl have the same direction and the magnitude of the magnetic induc-

tion is constant, therefore

27R 27R

fé-df: dezcosoosz{dl:Bsz,

0 0

then from Ampére’s circuital law follows
B2rR = pgNT

from which the magnetic induction can be expressed as

polN I
2rR
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The magnetic flux through one turn is

@:/é-d§:B/dS:BS:Bwr2
S S

and the magnetic flux through N turns of the toroid is
Pyops = N® = NBrr?

After substituting the magnetic induction, the magnetic flux is

poN?Ir?

q)total = °R )

by which the inductance of the toroid can be calculated as

2,).2
- (I)total o MON r

L I 2R

The energy of the magnetic field in the toroid is

poN*r21?

1
= —LI*=
W, 2 4R ’

after substitution

_ 4m-107TN A2 (5000)% . (0.01m)% . (0.005A)>

Won 4.0.2m

=981-107%J=981nJ.

7.9

A rectangular conductor with sides a = 20cm and b = 10cm s located in the Earth’s
magnetic field with the magnetic induction B = 45 'T. The conductor can rotate about
an axis that passes through the centre of side b and is perpendicular to the magnetic induc-
tion. What is the waveform and the amplitude of the induced voltage in the conductor if

the conductor rotates in the magnetic field with a frequency of f = 50s7L.

According to Faraday’s law of induction, the induced electromotive voltage is equal

to the negative time change of the magnetic flux

do

Ui:__a
dt

where the magnetic flux is defined as

®:/§~d§:/BdScosa.

S S
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Since the magnetic field induction is constant

P = B/dScosoz = BScosa = Babcosa ,
S

and the angle between the loop surface vector and the magnetic induction vector is
a=wt=2rft,
thus, the magnetic induction flux will be
® = Babcos (27 ft) .
Faraday’s law of electromagnetic induction, therefore, for the induced voltage follows
d [Babcos (27 ft)]

Ui=— i = Bab2r f sin(2n ft) = Uy sin (27 ft) ,

where the amplitude of the induced voltage is
Uy = Bab2n f
after substituting numerical values

Uy=45-10°T.02m.0.1m.27.50s ' =283-107*V =0.283mV .

7.10

Calculate the amplitude and the waveform of the induced electric current in a rectangular
copper conductor with sides a = 10cm and b = 4 cm cross section S = 2mm? and re-
sistivity p = 1.7 - 107 Qm, which in a homogeneous magnetic field with by induction
B = 5mT rotates with a frequency f = 100s~L.

According to Faraday’s law of induction, the induced electromotive voltage is equal

to the negative time change of the magnetic flux through the loop

do

Ui:——.
dt

where the magnetic flux through the loop is

(I>:/§~d§:/BdScosa:B/dScosa:BScosa:Babcosa,
5 S

because the angle between the loop surface vector and the magnetic induction vector is
a=wt=2rft,
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the magnetic flux will be
® = Babcos (27 ft) .

The induced voltage then follows

U= _d[Bab cz: (2 /)] = Bab2r f sin(27 ft) .

The relationship between induced voltage and current can be expressed using Ohm’s

law

]i:_lv
R

where the electrical resistance of the conductor can be calculated as

l 2(a+0b

The waveform of the induced electric current will be

BabS f
I = —
pla+b)

and its amplitude will be

sin(2w ft) = Iysin(27 ft) |

o BabSn f

- pla+b)’
after substituting numerical values

~5:10%T.0.1m.0.04m.2-10m? . 7.100s""
B 1.7-108Qm . (0.1m + 0.04m)

Iy =5.28A .
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8 Oscillations and waves

8.1 Imagine a straight shaft between Europe and Australia passing through the centre
of the Earth. If a body enters the shaft, it will be acted upon by a force that is directed
towards the centre of the Earth and is directly proportional to the distance from the centre
of the Earth. Calculate how long it would take a body that was dropped into the shaft
to travel from Europe to Australia and back, and what speed the body would have
when passing through the centre of the Earth. Gravitational acceleration on the surface

of the Earth is g = 9.81 ms™2 and the radius of the Earth is Ry = 6370 km.

Fig. 41

The body in the shaft will be acted upon by a force (Fig. 41) whose magnitude is
F=—kx,

from Newton’s second law, it follows
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On the surface of the Earth, the force is equal to the weight of the body
kRgp =mg,

from which the constant is

g
k= m-2
mRE,

using which it is possible to write the equation of motion in the form
d?z g

a2 = Ry
which is the equation of harmonic motion
d?x )
el
whose angular frequency is
-
Rg’
and its solution has the form
x = xgcos(wt + ) .
Since at time ¢ = O's s the position of the body was © = Rp, the following applies

x(]:RE7

a=0,

so the equation describing the movement of the body will be

xr = Rg cos (”Rip;t) .

The journey of a body from Europe to Australia and back is a period of motion

after substituting numerical values
/6.37 - 105m )
T =2m m—50635—84m1n
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The velocity of the body can be expressed as

. i_f _ d [RECOSdE\/RI;tH _ _\/R_Egsm (\/RzEt) |

For a body in the centre of the Earth, the following applies

| 9
R —t. | =0,
Ecos( Rr )

hence, the time is

R
te= =2
2\ g

After substituting into the velocity of the body, the velocity of the body at the centre
of the Earth will be

R
v, = —+/ Rzgsin itc = —+/ Rggsin A =—+v/Rgg,

where the negative symbol means that the v, direction is opposite to the = direction, after

substituting the numerical values, the velocity of the body in the centre of the Earth will

be

v, =V6.37-10°m . 9.81ms~1 = 7905ms " .

8.2

Two bodies with masses m; = b kg and my = 3 kg are connected by a spring whose spring
constant is k = 100 N m~L. We bring the bodies closer to each other, thereby compressing

the spring and then releasing the bodies. Calculate the period of oscillation of the bodies.

A

A
\ 4
A
Y

A
Y
Y

Fig. 42
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If the origin of the coordinate system is in the common centre of gravity of the bodies

(Fig. 42), the following will apply

—m1l1 + mglg

)

my + Mo
where [, and /5 are the distances of the centres of gravity of individual bodies from their

common centre of gravity. It follows that
m1l1 = m2l2 .

Since it is an isolated system, after compressing the spring, the position of the centre

of gravity will not change and will apply

—ml(ll — ZL‘l) + mg(lg — {L‘Q)
my + Mo

0=

Y

where x; and x5 are the deviations of the bodies from their equilibrium positions. It fol-

lows that
miTy = Mols .
The force acting on the first body will be
Fy = —Fk(xy + x9) .
Because
my

To = I )
)

the force acting on the first body can be expressed as

m1 + mo
Fy=—-k——2 = —kz,
mo
where
my1 + mo
ki =k— .
mo

The angular frequency of the first body will be

]{?1 k(m1 —|— mQ)
wp=g/— =\ ————
ma mqime
and the period of the first body will be

2w mimso

Tl_ =27

w1 k(m1 +m2) ’
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after substitution

5kg . 3kg
T =2 — 0.86 .
' 7T\/100Nm—1.(5kg+3kg) i

The force acting on the other body will be
F2 = —k<l’1 —+ .132) .

Because

it is possible to express the force acting on the second body as

my1 + mo
Fy = —kh———29 = —koxs ,
ma
where
my + Mo
ko = k— .
my

The angular frequency of the second body’s motion will be

]Cg k(m1 +m2)
Wy =14/— = 1/—
ma mims

and the period of motion of the second body will be

2
7= 2 gy [T
%) k:(ml—l—mg)

The periods of movement of the first and second bodies are therefore the same 7} =

T, = 0.86s.

8.3

Calculate the period of harmonic motion of a body of mass m = 100g suspended

on a spring. A force Fy = 0.2 N is needed to extend the spring by r1 = 10 cm.

The equation of motion of a body with mass m performing harmonic motion has
the form

d%z

mw :—kl',

where z is the displacement of the body from the equilibrium position, and & is the spring

constant. The equation has a solution in the form
x = xgcos(wt + a)
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where xg is the amplitude and « is the phase constant of the motion. For the angular

frequency applies
k

w=1/—".
m

A force F is required to extend the spring by x4, therefore
F1 = kl‘l s

for the spring constant, it follows

.1'1‘

k
The period of harmonic motion can be calculated as
v TNE TR

after substitution

T:2W.\/M:14s.
02N

8.4

Mechanical work Ay = 0.25 ] is required to extend the spring by x1 = 5 cm. What will be

the angular frequency of a body with mass m = 0.5 kg, that will oscillate on this spring?

The force required to extend the spring by z is
F=Fkzx.

The mechanical work when stretched by x; will therefore be

1 1
1 B
A= /Fda: = /kxdx = {—kazﬂ = —ka?,
2 0o 2
0 0

from which it is possible to express the spring constant

24

2
Ty

k

The harmonic motion of a body is described by the equation of motion

d?z

m_
de?

= —kx.
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Its solution has the form
xr = xgcos(wt + a)

where z( is the amplitude and « is the phase constant of the motion. For the angular

frequency applies
k

w=1/—".
m

After substituting for the spring constant, the angular frequency will be

[2A;
w = —
mxq

and after substituting numerical values

2.0.2
w= 0.25] =20s7!.
0.5kg . (0.05m)?

8.5

A horizontal board performs a harmonic motion in the horizontal direction with a period
of T' = 3s. The body lying on the board starts to slide when the amplitude of oscilla-
tions reaches the value vy = 0.5 m. What is the coefficient of friction between the body

and the board?

A frictional force acts on the body on the board, the magnitude of which is given

by the multiplication of the coefficient of friction and the normal force
Ft = ,uN .

The magnitude of the normal force is equal to the product of the mass of the body

and the acceleration of gravity
N =mg,

therefore, the magnitude of the frictional force will be
F, = pumg .

Because the body moves together with the board, it is in a non-inertial frame of refer-

ence, and in addition to the frictional force, the body also has an inertial force
F,=—-—ma.
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The motion of the board is described by the function
xr = xgcos(wt + a)

from which the speed of the plate follows

_dz d[zgcos(wt + )]
ot dt

(%

= —zowsin(wt + ) ,

from which the acceleration of the board follows

d d[— n(wt
,_dv_ [—wowsin(wt + a)] _ —row? cos(wt + a) ,

T at dt

which can be used to express the magnitude of the inertial force
F, = mxgw?® cos(wt + o) = Fgcos(wt + a) ,

where the amplitude of the inertial force is
F.o = mazow? .

The body starts to slide when the amplitude of the inertial force equals the frictional

force
FzO - Ft )

that is, when it will be valid

maow? = pmg

where the angular frequency can be expressed using the period

_27T
w-T,

from which the coefficient of friction follows

B A2,
:u - T2g )

after substitution

472 . 0.5m
_ —0.22.
M= (352 . 9.81ms2
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8.6 The particle performs damped harmonic motion, the dependence of the particle’s position
on time is given by the function x = 5 cm e lAsTH cos(1.6w s~1t). Calculate the damping
coefficient, the logarithmic decrement of the damping, the time it takes for the amplitude
of the oscillations to drop to one-hundredth of the original value, and the angular frequency

at which the particle would oscillate if the damping force stopped acting.

The position of a particle in damped harmonic motion is described by a function
x = zoe " cos(wt + a) ,

from which it follows that the damping coefficient is
b=14s"",

and the logarithmic decrement of the damping is

2T 2T
S=bT=0b""=14s""—"_ =0.875.
w > 1.6ms™!

Time for the amplitude to drop to one hundredth

Xz
—bty 0
xoe = —
100’

will be

B In 100 B In 100

1 b T Tds1 =3.29s.

For the angular frequency of the damped harmonic oscillator applies

— w2 —p2
w=/wi— b,

from which it is possible to express the angular frequency of motion without damping

wo= Vw2 +b=/(1.6ms )2+ (1.4s71)2 =52257" .

8.7 The result of adding two harmonic motions on a line is the motion described by the equation
x = xocos (257t . t)cos (5057t . t). Calculate the angular frequencies of the original

harmonic motions and the angular frequency of the shocks of the resulting motion.
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When adding two harmonic motions
x = xgcos (wit) ,
x = g cos (wat) ,

based on the principle of superposition, the resulting motion is
x = xgcos (wit) + xo cos (wat) .

Using the relationship

cos a + cos f = 2 cos (&;5) cos (a—;—ﬁ) )

it is possible to write the resulting motion as

T = 210 COS (wl ;w2t> cos (w1 ;—wzt) .

The angular frequencies of the original motions can be obtained by solving the system

of equations
ot B 2g7 ! ,
2
LR 501
2
which implies
w; = 52871,

wy = 4857 L.

The resulting motion can be written as a harmonic motion

w1 +(JJ2t> :

x:ACOS(

whose amplitude changes slowly

2x( cos (wl ; i t)

the period of this amplitude is
2m 4dm

p— | — I p— — .
MTM |w1 w2|

Because two amplifications and two attenuations occur in one period of the amplitude,

A:

Y

Ta

that is, two shocks, for their period applies

n-ta_ 2
2 ]wl—w2|

and the angular frequency of the shocks is
2m

We = T = wi — ws| = [52s7H — 4857 =4s7".
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8.8 The wave travels through a medium, the displacement of medium particles is described by
the function u = A cos2m(bt — hx), where A = 2-107%m, b = 5000s* ah = 1m™..
Calculate the wavelength, frequency, period, amplitude, velocity of the wave, the maxi-
mum value of the velocity and acceleration of particle oscillations and write a function

for the same wave travelling in the opposite direction.

A function describing the wave in the direction of the z-axis
u = ug cos(wt — kx) ,
where k is the wave number

E= 2"
A’

can be rewritten to the form

5 t T
U = Ugp COS —_ —
0 ™ T A\ )

which implies that the wavelength of the wave is

1

1
)\_E_lm—l

=1m.

The frequency ot the wave is
f=b=5000s"",

the period of the wave is

1 1
T==-=-=2.10"*
b >

the amplitude of the wave is
ug=A=2-10"%m,

and the speed of the wave is

A b 1m
C= — = —

= —— —=5000ms!.
T 1 2-104s ms

The speed of the oscillation of the particles is

du  d[Acos2n(bt — hzx)]

= n = —2wbAsin 2w (bt — hz) .

v
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The maximum value of the speed of the oscillations of the particles is
Umaz. = 2mbA = 27 . 5000571 .2-107%m = 0.0628 ms~" .

The acceleration of the oscillation of the particles is

d d[—-27bAsin 27 (bt — h
a= d_:f} = |2 Slztﬂ( ?)] = —(2nb)*Acos 2n (bt — hx) .

The maximum value of the acceleration of the oscillations of the particles is
Umaz. = (27b)?A = (2 . 50005 1)?.2-10%m = 1973.9ms 2.
For a wave travelling in the opposite direction, the following applies

r— —x,

therefore, the equation describing the wave traveling in the opposite direction will have

the form

u = Acos2n(bt + hx) .

8.9

The speed of sound in steel can be determined by creating a wave in a steel rod fixed
in the middle, which vibrates the air in a Kundt’s tube, in which a standing wave is created.
Calculate the speed of sound in steel and the tensile modulus of steel if the distance between

two standing wave nodes in air is x = 8 cim, the length of the rod is | = 1.2m, the speed

of sound in air isv = 340ms~! and the density of steel is p = 7800 kg m 3.

The condition for the formation of standing waves in the air and the rod, as well as

the formation of resonance, is
f=r

The frequency of the wave in the air applies

v

f=5

where v and A are the speed and the wavelength of the wave in air. For the frequency

of the wave in the rod applies
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where v’ and )\’ are the speed and the wavelength of the wave in the rod. Therefore, it

is possible to rewrite the condition for the formation of standing waves in the form

from which, for the speed of the wave in the rod, it follows

)\/
/ p—
(% —’U—)\ s

where the wavelength in air can be determined as twice the distance between two nodes
A =2z

and the wavelength in the rod can be determined as twice the length of the rod
N =2,

using which, for the speed of sound in steel, follows

U,_UZZ _Ul
2

after substitution

1.2m

=51 -1
0.0sm  oroums

v =340ms~ "',

The wave equation has the general form

Pu 0%

— =V .
ot? 0x?
Using Hooke’s law, it is possible to derive the equation for waves in steel

£
o pox?’

therefore, the speed of sound in steel will be

after substitution

E = (5100ms')*.7800kgm * = 2.03 - 10" Pa .
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8.10 The whistle with closed end produces a tone of fundamental frequency f = 130.5Hz.
Calculate the length of the whistle and the fundamental frequency, if the end of the whistle

is open. The speed of sound in airv = 340ms~".

=4
4
Fig. 43

If one end of the whistle is closed and the other is open (Fig. 43), there will be an antinode
at the closed end and a node at the open end. The length of the whistle and the wave-

length of the fundamental frequency follow

=2
4

Because the wavelength and the frequency apply

v
f - X )
it is possible to express the length of the whistle as
v
l=—
Af "7
after substitution
340ms™!
T IBosH, O™

T
N[>

Fig. 44
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If both ends of the whistle are open (Fig. 44), there will be antinodes at both ends
of the whistle. The length of the whistle and the wavelength of the fundamental fre-

quency follow

[=—.
2

Because the wavelength and the frequency apply

after substitution

B 340ms~!

_oWmS o6 5 Hy
3 0.65m  2otoHz

f
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9 Optics

9.1 Two monochromatic plane electromagnetic waves of the same frequency, polarised

Land Ey;, = 7TV m™! propagate

in the same plane, with amplitudes Fyy = 5V m~
in the same direction in vacuum. Calculate the resulting wave intensity if the waves are

a) incoherent b) coherent and the phase shift between them is 6 = .

a) In the superposition of two incoherent waves, the resulting wave intensity is equal

to the sum of the wave intensities
I = -[1 + ]2 )

which implies

I = %ceoEgl + %CEOES2 = %CEO(ESI + EOQQ) )

after insertion
I= % .3-10°ms™" . 8.854- 1072 C*N"'m™ 2 [(5Vm ')’ + (7Vm )Y =
=0.098Wm .

b) In the superposition of two coherent waves, the resulting wave intensity is

I = ]1 +IQ+2\/ ]1]2COS§,

which implies

1 1 1
I = §C€0E31 + §ceoE§2 + ceqgFg1 Ego cos o = 5060 <E§1 + E§2 + 2FEy1 Eos cos 5) ,

after insertion
1

53 10°ms™.8.854- 1072 C*N'm ™2 . [(5Vm ') + (7TVm )+

I =

+2.5Vmt.7Vm !, cosg] = 0.145Wm™2.
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9.2 A plano-convex lens is laid on a planar plate. Light of wavelength A = 598 nm is incident
perpendicularly on the flat side of the lens. In the reflected light, the Newton’s rings are
observed. The radius of the fifth dark ring is s = 5 mm. Calculate the radius of the convex

surface of the lens and the radius of the fourth dark ring.

Fig. 45

Part of the light (Fig. 45) incident on the flat surface of the lens is reflected from this
surface (ray 1), and part penetrates the lens. In the penetrating part of the light, some
light is reflected from the convex surface of the lens (ray 2), and some penetrates further
and is reflected up to the plane plate (ray 3). Ray 1 does not interfere with either ray 2
or ray 3 because their path difference is greater than the coherent length of the light.

Interference occurs between rays 2 and 3. Their path difference is
A
A =2h+ 5

because ray 3 has twice passed through a layer of air with refractive index n = 1
and on reflection from the optically denser medium on the bottom plate, there is a phase
change of 7, which corresponds to a path difference of % The interference minimum

condition is
A A
2h+ - =(2m+1)= m=0,1,2,....
2 2
The Pythagorean Theorem implies

(R—h)>+r*=R?,
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from which it is possible to express
r? = h(2R — h) .

Since h << R, the following holds
r? = h(2R — h) ~ h2R ,

which implies
2

When inserted into the condition for the interference minimum, then

from which it is possible to express the radius of the lens as

,
R—_m
m\’

from the values for the fifth interference minimum

2
,
R=-2.
5
the lens radius can be calculated
R (5-107%m)?

- — 8.36m .
5.508 10 °m m

The radius of the fourth interference minimum is
Teg =V 4 \R y

after inserting

ra=V4.598-10"9m .8.36m = 4.47mm .

9.3 A plano-convex lens is laid on a planar plate. Light is incident perpendicularly on the flat
side of the lens. In the reflected light, we observe Newton’s rings. If the space between the lens
and the plate is filled with liquid, the radius of the fourth dark ring will be the same as the ra-
dius of the third dark ring when there was air in the space between the lens and the plate.

Calculate the index of refraction of the liquid.
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Since the space between the lens and the planar plate is filled by a liquid with refractive
index n, the difference in the optical paths of the rays reflected from the convex part

of the lens and the planar plate is

A

The condition of the interference minimum is
A A
2nh+§:(2m—|—1)§ m=0,1,2,...,

because

7”2

h:ﬁ’

the radius of the m-th dark ring is

[ MR
T'm = )
n

so the radius of the fourth dark ring, if there is a liquid in the space, is

mRA\
rqy = .
n

and the radius of the third dark ring, if there is air in the space, is
r3 = vmR\,

because for air n = 1. The condition of equality of radii

T4 =T3,
implies
RA
M mRX,
n

from which the refractive index of the liquid can be expressed

4
2133,
"=3

To prevent light loss by reflection, the glass plate, whose refractive index isny, = 1.66, is
covered on both sides with a thin covering of transparent material. What must be the index
of refraction of the cover layer, and for what minimum thickness of the cover layer will light
of wavelength A\ = 520 nm pass through the plate without loss? Assume that the light is

incident perpendicularly on the wafer, and the losses due to absorption of light are negligible.
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Il + IO A 4 12 A
n,
A 4 n,
} }
n,
A 4
Fig. 46

The light rays (Fig. 46) that are reflected from the cover layer and the glass plate are co-
herent because they are produced by splitting a single ray, and the cover layer is thinner
than the coherent length of light. Light will pass through without loss if the intensity

of the reflected light is zero, that is

2
I =1+1,+2+/II5cos <77TA> =0,

where the intensity of light reflected at the interface between the air and the cover layer

712—1 2
I = I
1 (n2+1) 0>

and the intensity of light reflected at the interface between the cover layer and the glass

is

plate is

2 2
ny — N2 ny — Mo
I, = Iy— 1) = Iy .
? (n1+n2) (o= 1) <n1+n2) °
The intensity of the reflected light will be zero if the conditions are simultaneously sa-

tisfied

2
L =1 and cos <—7TA> =-1.

The first condition implies

2 2
nyg — 1 ny —no

[0: [0.
712+1 ny + No

For the refractive index of the cover layer, the following must therefore hold

Ng = /N1 =V 1.66 = 1.30.
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The second condition for the difference of optical paths must hold

A:(2m—1)g.

Since the difference in the optical paths is
A= thz s

for the thickness of the cover layer, it follows
(2m —1)A

B =
4TL1

m=1,23,....

The smallest thickness of the cover layer will be at m = 1, so it is equal to
A 520-107m

_ — 100 nm .
An, 4.1.30 i

hmin =

9.5

When a perpendicularly parallel beam of violet light with wavelength Ay = 420nm is
incident on the slit, the center of the second dark band can be seen on the screen at an angle
ay = 4°53' from the normal to the plane of the slit. At what angle will the center of the third

dark band be seen if we illuminate the slit with green light of wavelength Ay = 550 nm?

If the light bends at the slit, minima are formed on the shade at the points for which
dsina = kA k=1,2,3,...,

therefore, for the second minimum of light with wavelength A, it is valid
dsin oy = 2\

and for the third minimum of light with wavelength )\, it is valid
dsinay = 3)Ag .

Dividing the equations by each other produces a new equation

sina; 2\

sinag 3y

from which it is possible to express

sin aig = 2—)5 sin o
after inserting values
_ 3.550-10°m . ___,
Sinon = o o o m sin4°53" = 0.167 ,

which corresponds to the angle

ag = 9°37" .
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9.6 Calculate the illuminance of a small circular area of radius r << R located at a distance
R = 2m from a point source with luminous intensity I = 20 cd, if the normal to the area

points to the point source.

Fig. 47

Illuminance is defined as the ratio of the luminous flux to the size of the area on which

the luminous flux falls

E=—.
S

Because a light source whose luminous intensity is / emits a luminous flux to a solid

angle (2 (Fig. 47)
o =10,

the illuminance is

_19

E
S

The condition r <<< R allows the use of the relationship between the spherical surface

S, the radius of the sphere R and the solid angle 2
S =QR*,

using which the illuminance can be expressed as

I 1
- QR R2’

after inserting values

20 cd
¢ =5lx.

E:@my_
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9.7 A light source whose luminance is L = 100 cd m~2 has the shape of a disc with radius R =
0.5m. Calculate the illuminance at a point located at a distance a = 5m from the center

of the light source.

Fig. 48

The light source can be divided into concentric circular rings of radius x and thickness

dx, whose area (Fig. 48) is
dS = 2nxdx .

The luminous intensity of the ring in the direction of the given point is
dLy = LdS cost¥ = L2wxdx cos?

and the illuminance produced by the ring at a given point is

9 29
= COS; L27xdx cosd = COS2
r r

dFE [27xdx .

The distance of the ring from the point is
r=+va2+a?,

and is also valid

a a
cost = — =
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which can be used to express the illuminance produced by the ring as

_ 2 X
E =2nLa mdl‘

and the illuminance produced by the whole light source can be calculated by integrating

R R 2
x 1 mLR
E =2nLa® ———dz =nLd® |- =
i /0 (22 + a?)? v [ $2+a2}0 R?+a?’

after inserting values

.1 -2 .(0. 2
g7 00cdm—= . (0.5m) 311k
(5m)? 4 (0.5 m)?

9.8

A wall is illuminated by two identical bulbs side by side at a distance d = 2 m from the wall.
When one bulb is switched off, calculate how the second bulb must move to keep the illu-

minance of the wall the same as before.

For the illuminance of an area by a point source whose luminous intensity is 7, the fo-

llowing holds
I
E = — cosa.
r

Since the distance of the bulb from the wall is d, and the light rays fall perpendicular

to the wall v = (°, the illuminance of the wall from a single bulb is

Since both bulbs have the same luminous intensity and are at the same distance

from the wall, the illuminance of the wall from the two bulbs is

21

After switching off one bulb, the second bulb must be moved to a distance x from the wall

so that the illuminance of the wall from one bulb

remains the same as when illuminated by two bulbs

E,=E,.
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Thus it must be valid

1 I
2

which, for the distance of the bulb from the wall, implies
d
\/§ 9

after inserting

Tr =

2
x:—m:1.41m.

V2

9.9

The table is illuminated by two bulbs, which are placed on the ceiling at a distanced = 1 m
from each other and height h = 1.5m above the table. The luminous intensity of each
bulb is I = 100cd. Calculate the illuminance a) on the table centred between the bulbs

b) on the table directly under one of the bulbs.

Fig. 49

a) On the table in the middle between the bulbs (Fig. 49), the illuminance of the light

from each bulb is the same

E1 = FEy = — cosa
1
Because
2\ 2
r = h2 + (5)
and also
h
cosa = —
r
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the illuminance from the individual bulbs is

Ih .
2+ 7’

The illuminance on the table centred between the bulbs will be the sum of the illumi-

Ey =B, =

nances from the two bulbs

21h
E=E+E=—""—F,
2

2+ (27
after inserting values

2.100¢d . 1.5
E= ¢ B 76Ix.

[(1.5m)? + (£2)?]°

b) On the table below the bulb, the illuminance will be from the bulb that is directly

above it

and the illuminance from the bulb next to it
I
Ey = —cosay .
)

Because
g =V d? + h?
and also

cosQg = — ,
T2

the illuminance from the side bulb can be expressed as
Ih
@+ )i
The illuminance on the table under one of the bulbs will be the sum of the illuminances

from both bulbs

I Ih
E:E1+E2:ﬁ+m

Y

after inserting values

100 cd 100cd . 1.
o 00c - 00c S5m __70lx.
(L5m) " [(1m)? + (L5 m)?)?
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9.10 In the centre above the circular table top with radius R = 80cm is a light source with
luminous intensity I = 100 cd. At what height above the table should the light source be
placed so that the illuminance of the edge of the table is maximised? What is the maximum

illuminance of the edge of the table?

Fig. 50

The illuminance of the table edge is

I
E = — Cos .
r

Because (Fig. 50)

r2 = R?>+ 2? ,
and also
T T
cosay = — = ——— |
r NV R? 4 a?

the illuminance of the table edge can be expressed as

Ix
(R + a2t

The extremum of this function must satisfy the condition

dFE
£ o
dx ’

which implies

(R + 2%)7 — 23 (R? + 2%)2 2z o
(R? 4 22)3
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This condition is satisfied for the distance of the light source from the table

L
\/i )

after insertion

Tr =

0.8
r=-2 _057m,

V2

at this distance from the light source, the illuminance at the edge of the table is

o 100cd . 0.57m  601x

[(0.8m)2 + (0.57m)?]2
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Physical constants

. acceleration of gravity: g = 9.81 ms ™2

. gravitation constant: k = 6.67 - 107! Nm? kg2
. Avogadro constant: Ny = 6.022 - 1023 mol "

« Boltzmann constant: k¥ = 1.38 - 1072 JK~!

« elementary charge: e = 1.602 - 10719 C

« electric constant: ¢ = 8.854 - 10712 C2N~1m—2
- magnetic constant: yp = 47 - 107" N A2
. speed of light in vacuum: ¢ = 3 - 108 ms™!

. radius of the Earth: R, = 6.371 - 10°m

« mass of the Earth: M, = 5.972 - 10** kg
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