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1  Introduction 
 

„The most beautiful thing we can experience is the mysterious. 

It is the source of all true art and science.“ 

Albert Einstein 

 

Physics is fundamental natural science dealing with universal laws and principles of the 

universe. Discoveries in physics had a great impact on all natural sciences, and physics has been 

described as the fundamental science because other fields such as chemistry, biology, geology or 

astronomy investigate systems whose properties depend on the laws of physics. The emergence of 

physics as a science distinct from philosophy began with the dawn of modern science in the 16th and 

17th centuries and continued through the revolution in physics at the beginning of the 20th century. 

The field has continued to expand, with a growing body of discoveries leading to the creation of five 

fundamental theories: 

 

• Classical mechanics is often referred to as Newtonian mechanics after Issac Newton and his 

laws of motion. Mechanics is usually divided according to subject of its study into the particle 

mechanics, rigid body mechanics and continuum mechanics. Classical mechanics produces very 

accurate results within the domain of everyday experience. It is superseded by relativistic mechanics 

for objects moving at high velocities near the speed of light or quantum mechanics for behavior of 

elementary particles. Nevertheless, classical mechanics is still very useful, because it is much 

simpler and easier to apply than these other theories, and it has a very large range of approximate 

validity. Classical mechanics can be used to describe the motion of human-sized objects, many 

astronomical objects, and certain microscopic objects. 

 

• Classical electrodynamics studies the phenomena associated with charged bodies and electric 

fields. Since moving charge produces a magnetic field, electrodynamics is concerned with effects 

such as magnetism, electromagnetic radiation, and electromagnetic induction. The area of classical 

electrodynamics, was first systematically explained by James Clerk Maxwell. Maxwell’s equations 

describe the phenomena of this area with great generality. Electromagnetism encompasses various 

real-world electromagnetic phenomena. For example, light is an oscillating electromagnetic field 

that is radiated from accelerating charged particles. Aside from gravity, most of the forces in 

everyday experience are ultimately results of electromagnetism. 
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• Thermodynamics and statistical physics study the effects of changes in temperature, 

pressure, and volume on physical systems on a macroscopic scale by analyzing the collective motion 

of their particles using statistics. Historically, thermodynamics developed out of the need to increase 

the efficiency of early steam engines. The starting point for most thermodynamic considerations are 

the laws of thermodynamics, which postulate that energy can be exchanged between physical 

systems as heat or work. They also postulate the existence of a quantity named entropy, which can 

be defined for any system. In thermodynamics, interactions between large ensembles of objects are 

studied and categorized. A system is composed of particles, whose average motions define its 

properties, which in turn are related to each other through equations of state. Statistical physics 

analyzes macroscopic systems by applying statistical principles to their microscopic constituents. It 

provides a framework for relating the microscopic properties of individual atoms and molecules to 

the macroscopic or bulk properties of materials that can be observed in everyday life. 

 

• Quantum theory is the branch of physics dealing with atomic and subatomic systems and 

their interaction with radiation in terms of observable quantities. It is based on the observation that 

all forms of energy are released in discrete units called quanta. Quantum theory typically permits 

only statistical calculation of the observed features of subatomic particles in terms of wavefunctions. 

The Schrödinger equation plays the central role in quantum mechanics. The quantum theory 

proposes a dual nature for waves and particles, one aspect predominating in some situations, the 

other one predominating in other situations. The first contribution to the quantum theory was the 

explanation of black body radiation in 1900 by Max Planck. Niels Bohr used the quantum theory in 

1913 to explain both atomic structure and atomic spectra, showing the connection between the 

electrons’ energy levels and the frequencies of light given off and absorbed. A particularly important 

discovery of the quantum theory is the uncertainty principle, enunciated by Werner Heisenberg in 

1927, which places an absolute theoretical limit on the accuracy of certain measurements. The 

development of quantum theory at the beginning 20th century revolutionized physics, and quantum 

mechanics. It is fundamental to most areas of current research. 

 

• Theory of relativity is a generalization of classical mechanics that describes fast-moving or 

very massive systems. It includes special and general relativity. The special theory of relativity was 

proposed in 1905 by Albert Einstein. It is based on two postulates: The mathematical forms of the 

laws of physics are invariant in all inertial systems. The speed of light in a vacuum is constant and 

independent of the source or observer. Reconciling these two postulates requires a unification of 

space and time into the frame-dependent concept of spacetime. Theory of relativity also yields the 
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equivalence of matter and energy, as expressed in the mass-energy equivalence formula. General 

relativity is the geometrical theory of gravitation published by Albert Einstein in 1915. It unifies 

special relativity, Newton's law of universal gravitation, and the insight that gravitational 

acceleration can be described by the curvature of space and time by extending special relativity to 

include transformations between non-inertial frames. In general relativity, the curvature of space-

time is produced by the energy of matter and radiation. Many observations and experiments have 

confirmed many of the predictions of special and general theory of relativity, including gravitational 

time dilation, the gravitational redshift of light, signal delay, and gravitational radiation. 

 

Each of these theories has been tested in numerous experiments and proven to be an accurate model 

of nature within its domain of validity. The fundamental theories form a foundation for the study and 

research of more specialized topics. Modern physics creates theoretical background for all modern 

technologies. The parts of physics applied in technical disciplines like mechanical, electrical or civil 

engineering are called technical physics. This textbook is based on the lectures on technical physics 

for students of mechanical engineering at the Slovak University of Technology. We hope that it can 

be useful also for students of other technical disciplines. The first volume, which you hold in your 

hands, starts with the introduction into the vector algebra. Main part of textbook deals with the 

mechanics of point particle and the description of gravitational field. Some useful tables and 

mathematical formulas are included in the appendices. 
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2  Vector algebra 
 

Physical quantities can be divided into two following groups. 

 

• Scalars, which are specified completely by a number and a unit and therefore have only 

magnitude. Some quantities that are scalars are e.g., mass, energy and time. Scalars can be handled 

by employing the rules of ordinary algebra. 

 

• Vectors, which have both a magnitude and a direction. Examples of such quantities are e.g., 

velocity, acceleration and force. Vectors obey the special rules of manipulation, which will be 

explained in this chapter. 

 

Accurate graphical representation of a vector on a diagram can be a simple arrow. The length of the arrow 

is proportional to the magnitude of the vector and the direction of the arrow is coincident with the 

direction of the vector. In printing the vector is usually represented by a boldfaced symbol, in 

handwriting we usually put an arrow above the symbol. If the vector quantity is written in absolute 

value or without vector notation it means only magnitude of this quantity. 

 

2.1  Components of vector 

 

For practical manipulation, it is very useful to resolve a vector into its components. The 

resolving of the vector v into its components vx, vy, vz is represented by the equation 

x y zv v v+ +v = i j k , (2.1) 

where i, j, k are the unit vectors in the directions of axes x, y, z. The unit vector has the magnitude 

equal 1 unit, therefore the multiplications of components by unit vectors lead to the vector 

components, which have the same magnitudes. The graphical method of resolving the vector into its 

components is shown in Figure 2.1.  The tail of the vector is placed at the origin of the coordinate 

system and the components of the vector are found by drawing perpendicular lines from the head of 

the vector to the axes x, y, z. 
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Figure 2.1: The resolving of the vector into its components. 

 

The magnitude of the vector can be calculated using the Pythagoras theorem 

x y zv v v v= + + . (2.2) 

If the direction of the vector v is given by the polar angle θ and the azimuthal angle φ, the 

components of this vector can by calculated using trigonometric functions 

 sin cosxv v θ ϕ=  (2.3) 

 sin  sinyv v θ ϕ=  (2.4) 

 coszv v θ= . (2.5) 

Sometimes it is useful to represent the direction of the vector v by the direction cosines defined as: 

cos xvl
v

α= =  (2.6) 

cos yv
m

v
β= =  (2.7) 

cos = zvn
v

γ= , (2.8) 

which obey the relation 
2 2 2 1l m n+ + = . (2.9) 

y 

x 

z 

v 
k 

j 
i 

θ 

φ 

vy 

vx 

vz 
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2.2  Multiplication of vector by scalar 

 

The multiplication of the vector a by the scalar s is represented by the equation 

s=v a . (2.10) 

The vector v is the resultant vector, its magnitude is 

v sa= . (2.11) 

The components of the resultant vector are 

x xv sa=  (2.12) 

y yv sa=  (2.13) 

z zv sa= . (2.14) 

The direction of the resultant vector is given by the following rule: „If the scalar is positive, the 

direction of the resultant vector is the same as the direction of the original vector. If the scalar is 

negative, the direction of the resultant vector is opposite to the direction of the original vector.“ 

A graphical method of the multiplication of the vector by the scalar is shown in Figure 2.2 and 

Figure 2.3. 

 

 
Figure 2.2: The multiplication of the vector by the positive scalar. 

 

 
Figure 2.3: The multiplication of the vector by the negative scalar. 

a v 

a v 
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2.3  Addition and subtraction of two vectors 

 

The addition of two vectors a and b is represented by the equation 

= +v a b . (2.15) 

The vector v is the resultant vector and its components are 

x x xv a b= +  (2.16) 

y y yv a b= +  (2.17) 

z z zv a b= + . (2.18) 

The magnitude and the direction of the resultant vector are given on a diagram by the triangle rule: 

„Append the vector b at the end of vector a, the resultant vector v is represented by an arrow 

connecting the tail of the vector a with the head of the vector b.” 

Graphical method of the addition of two vectors is shown in Figure 2.4. 

 

 
Figure 2.4: The addition of two vectors. 

 

The addition of two vectors obeys the following laws: 

• commutative law 

+ = +a b b a ; (2.19) 

• associative law 

( ) ( ) ( )+ + + + + +a b c = a c b = b c a ; (2.20) 

• distributive law for multiplication by a scalar 

( )s s s+ = +a b a b . (2.21) 

a 
b 

v 
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The subtraction of two vectors is defined as the addition of the negative vector 

)( babav −+=−= , (2.22) 

where the –b is the negative vector of the vector b. The negative vector -b  has the same magnitude as the 

vector b  but the direction of the negative vector is opposite. 

Graphical method of the subtraction of two vectors is illustrated in Figure 2.5. 

 

 
Figure 2.5: The subtraction of two vectors. 

 

2.4  The scalar product of two vectors 

 

The scalar product of two vectors a and b is defined as: 

ϕcosabs ==⋅ba . (2.23) 

The scalar s is the resultant scalar and φ is the angle between vectors a and b. This resultant scalar 

can be calculated using the components of vectors a and b by the formula 

zzyyxx bababas ++= . (2.24) 

The meaning of the scalar product of two vectors is apparent from Figure 2.6. The scalar product 

represents the multiplication of magnitude of the vector a and the projection of the vector b into the 

direction of the vector a. 

 

 

 
 

Figure 2.6: The scalar product of two vectors. 

a 

b 

bcosφ 
φ 

a b 

v -b 
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The scalar product obeys the following laws: 

• commutative law 

abba ⋅=⋅ ; (2.25) 

• distributive law for multiplication by a scalar 

)()()( bababa sss ⋅=⋅=⋅ ; (2.26) 

• distributive law for addiction of two vectors 

)()()( bcacbac ⋅+⋅=+⋅ . (2.27) 

 

2.5  The vector product of two vectors 

 

The vector product of two vectors a and b is defined as vector v perpendicular to the plane formed 

by vectors a and b with direction given by the right-hand rule: „Swing the vector a into the vector b 

with the fingers of your right hand. Your thumb shows the direction of their vector product v.“ 

The magnitude of the resultant vector is 

ϕsinab=×= bav , (2.28) 

where φ is the angle between vectors a and b. Using the components of the vectors a and b the 

resultant vector can be expressed as 

zyx

zyx

bbb
aaa
kji

v = , (2.29) 

it means that the components of the resultant vector are 

x y z z yv a b a b= −  (2.30) 

y x z z xv a b a b= −  (2.31) 

z x y y xv a b a b= − . (2.32) 
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The meaning of the vector product of two vectors is apparent from Figure 2.7. It is the vector with 

the magnitude equal to the area of a parallelogram created by the vectors a and b. 

 

 
 

Figure 2.7: The vector product of two vectors. 

 

The vector product obeys the following laws: 

• anticommutative law 

abba ×−=× ; (2.34) 

• distributive law for multiplication by a scalar 

)()()( bababa sss ×=×=× ; (2.35) 

• distributive law for addiction of two vectors 

)()()( bcacbac ×+×=+× . (2.36) 

a 

b 
bsinφ 

φ 

v 
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3  Particle kinematics 
 

Kinematics describes the motion using the concepts of space and time, regardless to the causes of the 

motion. The motion can be described either using mathematical equations or graphs. Mathematical 

approach is better for solving problems because it is more exact. Graphical methods provide 

insight that is more physical.  

 In this chapter, for the sake of simplification, we will further refer to a motion as being the 

motion of a single point-like mass particle. In reality, the objects have dimensions and other internal 

motions may be involved, which we will neglect here. 

 

3.1  One dimensional motion 

 

 One-dimensional motion is the motion of the particle along the line, specialy along the x- axis. 

To describe this motion completely we need to know its position coordinate x  relative to the 

chosen origin of the coordinate system at any time,  i.e., ( )x t . 

There are several kinds of the motion along x with the function ( )x t  and graphs that describe the 

motion. 

 

a. No motion at all - the particle is not moving. Its position is fixed and constant in time x(t)=const . 

Graphically we can represent this case in so called position-time graph shown in Fig. 3.1. 

 

a.   
 

Figure 3.1: The position-time graph of no motion case. 
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 The particle is located at the position given by the coordinate A, which does not change in  time . 

We can express this fact by the equation 

     ( ) Ax t = .          (3.1) 

 

b. Motion at a constant speed - we have to remember that speed and velocity are not the same in 

physics. The velocity is a vector defined by magnitude and direction. The speed is a scalar equal 

to the magnitude of the velocity vector. The position- time graph is in Fig. 3.2. 

 

 
Figure 3.2: The position-time graph of motion at constant speed. 

 

Let us consider the particle moving along x-axis from the position 1x  at the time 1t  to the 

position 2x  at the time 2t  as is shown in Fig. 3.2. Let us denote the values 1 Ax =  and 2 Bx t=  

where 2 1t t t= − . The expression 2 1x x x= −  is called displacement. Then 

   1 Ax = ,          (3.2) 

    2B x
t

= ,           

 and 

   2 Bx t= .                            (3.3) 

 If  

   1 2x x x= + ,                                                                                                                     (3.4)        

 then we can rewrite it as: 

   ( ) A Bx t t= + .          (3.5)   
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 The last equation is the so called analytical expression for a linear one-dimensional motion at a 

constant speed. 

 

c. Accelerated motion - is the motion at which the speed of a moving particle changes with time. 

The analytical expression of this motion is: 

 ( ) 2A B Cx t t t= + + .         (3.6)  

 

Physically the displacement, the velocity and the acceleration characterize the motion. 

 

• Displacement 

 If the particle moves along the x-axis from the position 1x  to the position 2x , its displacement is 

 defined as 2 1x x x∆ = − , see Figure 3.3.  

 

 
 

Figure 3.3: The displacement of the particle along the x -axis. 

 

 If 0x∆ >  then 2 1x x>  and the particle moves in the positive direction of the x-axis. If 0x∆ <  

 then 2 1x x<  and the particle moves in the opposite direction, i.e., along the axis to the left. 

 

• Average velocity 

 The ratio of the displacement x∆  of the particle and the time interval t∆  of the motion is 

 average velocity. The position-time graph of the particle moving from the point A to the point B 

 is shown in Fig. 3.4. 

 



 18 

 
Figure 3.4: The position-time graph of the particle moving  

from the point A  to the point B . 

 

 The average velocity of the particle avv  is defined as the ratio of its displacement, x∆ , and the 

 time interval t∆ : 

 2 1
av

2 1

x xxv
t t t

−∆
= =
∆ −

.                     (3.7)         

 The unit of average velocity is 1 meter per second : 1m s−  in SI units. The abscissa AB   is the 

 hypotenuse of the rectangular triangle with the cathetuses ∆t  and ∆x . 

 

• Instantaneous velocity 

 It is defined as a limiting value of the average velocity as ∆t  approaches zero. Mathematically it 

is  represented by the derivative of x  with respect to t : 

 
0

dlim
dt

x xv
t t∆ →

∆
= =

∆
.                     (3.8)         

 Instantaneous velocity is the rate of change of position with time and it can be positive, negative 

 or zero. 

 

• Average acceleration    

 The ratio of the change of the velocity and the time interval is average acceleration. The 

 velocity-time graph is shown in Fig. 3.5. 
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Figure 3.5: The velocity-time graph of motion of the particle moving 

from the point A  to the point B. 

 

 The average acceleration is defined as: 

 2 1
av

2 1

v vva
t t t

−∆
= =
∆ −

.                           (3.9) 

 The unit of average acceleration is 1 meter per second squared: ms 2−  in SI units. 

 

• Instantaneous acceleration 

 It is limiting value of the average acceleration as ∆t  approaches zero. Mathematically it is 

 represented by the first derivative of velocity with respect to time or the second derivative of 

 displacement with respect to time: 

 
2

20

d d d dlim
d d d dt

v v x xa
t t t t t∆ →

∆  = = = = ∆  
.                          (3.10)      

Now, let‘s introduce so called initial conditions. Let 1t  be zero and the motion starts at the time 

1 0 0t t= =  from the position 1 0x x=  with the speed 1 0v v= .  Let in the time 2t t=  the particle 

has the position 2x x=  and the velocity 2v v= : 

  
1 2

1 0 2

1 0 2

0                
              
              .

t t t
x x x x
v v v v

= =

= =

= =

                           (3.11) 

 Graphically we can represent this situation in Figs. 3.6-a and 3.6-b, respectively. 
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Figure 3.6.a: The position-time graph for motion of the particle from the point 1 

to the point 2 taking into account the initial conditions. 

 

 
 

Figure 3.6.b: The velocity-time graph for motion of the particle from the point 1 

to the point 2 taking into account the initial conditions. 

 

 From the figures it follows: 

   02 1

2 1

v vv va
t t t

−−
= =

−
,                 (3.12)    

 where we used the initial conditions. After some rearrangements we obtain: 

 0at v v= −        

  0v v at= + .                   (3.13)     

 To determine the position of the particle at any time t  we have to start from the definition of the 

 velocity of the particle: 
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 d
d
xv
t

=                             (3.14) 

 d dv t x= . 

 Therefore, the position x is given by 

  

( )

0

0

0

0
0

d d

d d .

x t

x

x t

x

x v t

x v at t

=

= +

∫ ∫

∫ ∫
  

 If we assume that acceleration of the moving particle is constant we get 

  
[ ] [ ]

0

2
0 0

0

2
0 0

1
2

1
2

t
x t

x
x v t at

x x v t at

 = +   

− = +

 

 2
0 0

1
2

x x v t at= + + .                 (3.15) 

 The last equation is valid only for uniformly accelerated motion.  

 

Summary. 

• no motion 

 ( ) Ax t =                   (3.16) 

 ( ) d 0
d
xv t
t

= = ;                         (3.17) 

• motion at constant speed 

 ( ) A Bx t t= +                  (3.18) 

  ( ) ( )d d A B B
d d
xv t t
t t

= = + = ;                          (3.19) 

• uniformly accelerated motion 

 ( ) 2=A B Cx t t t+ +                  (3.20) 

 ( ) ( )2d d A B C B 2C
d d
xv t t t t
t t

= = + + = +                  (3.21) 
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 ( )
2d d d d 2C

d d d d 2

v x xa t
t t t t

= = = = .             (3.22) 

 

3.2  Motion in two and three dimensions 

 

In two dimensional motion the particle changes both x  and y  coordinates. Then the position of the 

particle is given by a position vector r  drawn from the origin of some reference frame to the 

particle located in xy plane. It is lucidly represented in Fig. 3.7. 

 

 
Figure 3.7: The displacement vector ∆r  of the particle moving  

from the point A to the point B.      

 

Let us consider a particle moving from the point A to the point B. The coordinates of the point A are 

1x , 1y   and its position vector  is 1r . Similarly, the coordinates of the point B are 2x , 2y  and the 

position vector is 2r . The position vector of the motion changes from 1r  to 2r  and the displacement 

of the particle is given by the vector r∆ . The vectors 1r   and 2r  can be resolved to: 

 1 1 1x y= +r i j                  (3.23) 

 2 2 2x y= +r i j                                           (3.24) 

for two dimensions and 

           1 1 1 1x y z= + +r i j k                                                                                                         (3.25) 
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 2 2 2 2x y z= + +r i j k                                                                                       

for three dimensions. Then the displacement vector  r∆  is: 

  ( ) ( ) ( ) ( )2 1 2 2 1 1 2 1 2 1x y x y x x y y∆ = − = + − + = − + −r r r i j i j i j .                 (3.26) 

Let us denote 

 2 1x x x= −                   (3.28) 

 2 1.y y y= −                   (3.29) 

After substitution of the equations (3.28) and (3.29) into (3.27) for r∆  in two dimensions we obtain 

 x y∆ = +r i j                  (3.30) 

and analogously in three dimensions 

 x y z∆ = + +r i j k .                        (3.31)                                                     

The instantaneous velocity of the particle is defined as: 

 
0

dlim
dt t t∆ →

∆
= =

∆
r rv . 

Substituting the equation 3.31 into the definition of the instantaneous velocity gives 

 ( )d d d d
d d d d

.x y zx y z
t t t t

= + + = + +v i j k i j k                (3.32) 

We know that 

 d d d,       ,       
d d dx y z
x y zv v v
t t t

= = =  

are the components of the instantaneous velocity. Therefore, for the velocity vector we have 

 x y zv v v= + +v i j k .                 (3.33) 

The velocity is tangent to the path of the particle at every point of the motion as it is evident from 

Fig. 3.8. As the particle moves from the point A to the point B along some path (see Fig. 3.8), its 

instantaneous velocity vector changes from 1v  at the time 1t  to 2v  at the time 2t . 
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Figure 3.8: The sketch of the velocity vectors in circular motion. 

 

The change of the velocity ∆v  is given by the expression: 

 2 1∆ = −v v v . 

Then the average acceleration is: 

 2 1
av

2 1

−∆
= =
∆ −

v vva
t t t

                 (3.34) 

and the instantaneous acceleration is the first derivative of the velocity with respect to time: 

 ( )d dlim
d d0∆ →

∆
= = = + +

∆
v va i j kx y zt

v v v
t t t

 

 
dd d

d d d
.= + +a i j kyx z

vv v
t t t

                (3.35) 

Because 

 
dd d,       ,       

d d d
yx z

x y z

vv va a a
t t t

= = =  

are the components of the acceleration vector, then for the acceleration we can finally write: 

 x y za a a= + +a i j k .                 (3.36)

  

 

 



 25 

3.3  Circular motion 

 

Uniform circular motion 

Uniform circular motion is defined by the movement of an object in a circular path with constant 

linear speed. The magnitude of the velocity remains constant but its direction changes continuously. 

Examples of such a kind of the motion are the rotation of the satellites around the Earth, the 

circulation of the Moon around the Earth, a picked point on phonograph record etc. A circular 

motion of the particle is illustrated in Fig. 3.9. 

 

 

 
 

Figure 3.9: Vector analysis of the circular motion of the particle. 

 

In Fig. 3.9 we can see circular motion of the particle. At the time 1t  the particle has the position 

vector 1r  and its velocity 1v , at the time 2t  its position vector is 2r  and its velocity is 2v . During the 

time interval 2 1t t t∆ = −  the position of the particle changes about the angle Φ  and the velocity of 

the particle changes about 2 1∆ = −v v v  as it is shown in Figs. 3.9 and 3.10.  
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Figure 3.10: The vector analysis of the velocities in circular motion. 

 

The vector ∆v  points toward the centre of the circle (the point C). The velocities 1v  and 2v  are the 

tangents to the circle at the points A and B, respectively.  Because the motion is uniform, both 

velocities have the same magnitudes. Then for the absolute values we can write: 

 1 v=v                             (3.37) 

 2 v=v                   (3.38) 

 .v∆ = ∆v                   (3.39) 

The acceleration is pointed in the same direction as the vector ∆v  that means it is pointing to the 

centre of the circle: 

 
0

dlim
dt t t∆ →

∆
= =

∆
v va .                 (3.40) 

This acceleration is called the radial or centripetal acceleration. ∆v is a change of the velocity as 

the particle moves from the point 1P  to the point 2P  as it is illustrated in Fig. 3.11. 

 
 

Figure 3.11: The change of the velocity as the particle moves 

from the point  1P  to the point 2P . 

 



 27 

Now we can find the relation between the magnitude of the centripetal acceleration and the 

magnitude of the instantaneous velocity at any point. Let us denote ∆l  the path of the particle from 

the point A to the point B. If ∆l  approaches zero, the curve can be considered to a straight line. Then 

for the position vectors 1r  and 2r  it holds: 

 1 r=r                   (3.41) 

 2 .= rr                   (3.42) 

 
Figure 3.12: The path ∆l  gone by the particle 

from the point A to the point B. 

 

The triangles 1 2P P C  from Fig. 3.11 and ABC  from Fig. 3.12 are similar. For the similar triangles it 

holds: 

 1 2P P C ABC   

 1 2

1

P P AB
P C AC

.=                   (3.43) 

If we rewrite the last equation in the motion terminology, we obtain 

 ∆ ∆
=

v l
v r

. 

Then ∆v  is: 

 vv l
r

∆ = ∆                   (3.44) 

and subsequently using (3.44) the radial acceleration is: 

 
0 0

lim lim
∆ → ∆ →

∆ ∆
= =

∆ ∆r t t

v v la
t r t

.                (3.45) 
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From the definition of the velocity we have 

 lv
t

∆
=
∆

.                            (3.46) 

We can rewrite the radial acceleration into the form: 

 
2

r =
va
r

.                          (3.47) 

From this expression it follows that the radial (centripetal) acceleration is directly proportional to the 

square of the linear velocity and inversely proportional to the radius of the circle Its direction points 

toward the center of the circle.  

 

Nonuniform circular motion 

Nonuniform circular motion is circular motion, when the particle is moving along the circular path 

where the velocity changes in both the direction and the magnitude. The vectors of the velocity and 

the acceleration are illustrated in Fig. 3.13. 

 

 
 

Figure 3.13: The vectors of the velocity and the acceleration 

in nonuniform circular motion. 
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The velocity changes in both the direction and the magnitude so that 1 2≠v v . The total acceleration 

vector a  changes are both radial and tangential. The direction of the radial acceleration changes 

with the direction of the velocity. We introduce the unit vector ρ   directed radially outward along 

the radius vector  

 
2

r
v
r

=a ρ . 

Now we introduce the unit vector τ  oriented along the tangent to the circle path. Therefore, the 

tangential acceleration can be expressed as: 

 t
d
d
v
t
τ=a .                  (3.48) 

ta  is perpendicular to ra  and their directions change continuously in time. 

        The total acceleration vector is given by the sum of its radial and tangential vector 

components: 

 r t= +a a a .                   (3.49) 

Then  

 
2

t r
d
d

.v va a
t r

τ ρ τ ρ= + = −a       (3.50) 

The minus sign for ra  indicates that it is always directed radially inward, opposite to the unit vector 

ρ .  The magnitude of the total acceleration is: 

 2 2
r t= +a a a .                (3.51) 

 

Angular variables of circular motion 

For description of circular motion it is often useful to use angular variables and not linear ones. In 

Fig. 3.14 we illustrate circular motion of the particle. 
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Fig. 3.14: Circular motion of the particle. 

 

Let us take a reference point 0. At the time 1t   the particle is in the position 1 and its velocity is 1v . 

At the time 2t  the particle moves to the point 2 and the velocity of the particle is 2v . The angles 1ϕ  

and 2ϕ  express the changes of the position vectors of the particle in the points 1 and 2 (relatively to 

any initial position 0), respectively. The angular displacement of the particle between the point 1 and 

the point 2 is: 

 2 1ϕ ϕ ϕ∆ = − .                 (3.52) 

Let l represents the length of the circle section, along which the particle passes during the time 

period 2 1∆ = −t t t . It is advantageous to express the angles in radians. 1 radian is an angle 

subtended to the arc whose length l  is equal to the radius: 

 l
r

ϕ =                              (3.53) 

       2l rπ=  

 2 2 .r
r
πϕ π= =                  (3.54) 

The average angular velocity is the ratio of the change of the angular displacement ϕ∆  in the time 

interval∆t . 

 2 1
av

2 1t t t
ϕ ϕ ϕω − ∆

= =
− ∆

.                 (3.55) 



 31 

The instantaneous angular velocity is a limiting value of the average angular velocity as the time 

interval t∆  approaches zero or the first derivative of ϕ  with respect to t: 

 av0 0

dlim lim
dt t t t

ϕ ϕω ω
∆ → ∆ →

∆
= = =

∆
.                (3.56) 

The angular velocity has units of rad/s, or 1s− . 

The average angular acceleration is defined as the ratio of the change in the angular velocity ω  to 

the time interval t∆ : 

 2 1
av

2 1t t t
ω ω ωα − ∆

= =
− ∆

.                 (3.57) 

The instantaneous angular acceleration is defined as the limit of the average angular acceleration 

as ∆t  approaches zero or the derivative of the angular velocity ω  with respect to time t : 

 av0 0

dlim lim
d

ω ωα α
∆ → ∆ →

∆
= = =

∆t t t t
.                                                           (3.58) 

The unit is rad/ 2s  or 2s− . 

 

Relations between linear and angular variables in scalar form 

It is evident that there exist relations between the linear and the angular variables. The angular 

equivalent of the position is the angle ϕ  

  

Let us take the equation (3.8) for the linear velocity    

 d
d
lv
t

= , 

and the equation (3.53) for the length of the arc 

 l
r

ϕ = . 

After the rearrangement we obtain 

 l rϕ= .                                                                                                          (3.59) 

Substituting the equation (3.59) in the equation (3.8) for the linear velocity we have 

 ( )d d
d d

v r r
t t

ϕϕ= = . 

From the equation (3.56) we know that  

 d
dt
ϕω =  
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and finally for the velocity and angular velocity relation we obtain: 

 .v rω=                 (3.60) 

From this equation it follows that the linear velocity is directly proportional to the angular velocity. 

Similarly for the linear tangential acceleration using (3.10) and (3.60) we can derive 

 ( )d d d
d d dt
va r r
t t t

ωω= = = .                                                                           (3.61) 

Taking into account equation (3.58) 

 d
dt
ωα =                                                                                                        (3.62) 

and substituting (3.62) into (3.61) gives us the expression for linear tangential acceleration with 

respect to the radial tangential acceleration:  

 .ta rα=                   (3.63) 

According to (3.47) and (3.60) for the linear radial acceleration we can write  

 
2

r
va
r

=  

 v rω=  

 
2 2

2
r .ω ω= =

ra r
r

                 (3.64) 

As you can see the tangential acceleration is proportional to the square of the angular velocity. Both 

the linear velocity and the linear radial acceleration are transformed into their angular equivalents 

through the linear variable radius r . 

  The equation (3.56) is related to the scalar description of the angular velocity. Generally, the 

velocity is the vector and has not only the magnitude but also the direction. The magnitude of vector 

ω  is ω  and tells us how rapidly the particle is rotating. The direction of ω  is perpendicular to the 

plane of the circle and is determined by a right-hand rule. The vectors r, v andω  are related through 

cross product ω= ×v r . The direction of the vector v is perpendicular to the plane created by the 

vectors r and ω . 

 The same rule is valid for the angular acceleration. We can write 

  ( )dd d d
d d d dt t t t

ω ωω ω α
×

= = = × + × × ×
rv ra r = v + r . 

 

  For the description of the circular motion it is useful to introduce time variables, a period and a 

frequency. The period is time required for one revolution of the particle around the circle. The 

circumference of the circle is 2 rπ and the velocity is v . The time of one turn is 
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 2 rT
v
π

=                   (3.65) 

      v rω=  

 2 2 .rT
r
π π
ω ω

= =                  (3.66) 

Now the unit is 1 second, s. 

The frequency is defined by the number of revolutions of the particle per one second 

 1
2

f
T

ω
π

= = .                 (3.67) 

 

More frequently used expression is 

 2 fω π= .                  (3.68)

  

3.4  Classification of motions 

 

The motion of a mass point (or a particle) in three-dimensional space can be classified as follows: 

 

1. Space motion is the most general motion, which has three degrees of freedom. 

 

2. Surface motion is planar motion in the plane or on the surface, e.g. projection at an angle, charge 

 movement in homogeneous electrical field, the motion in gravitational field etc. It has two 

 degrees of freedom. 

 

3. Motion along the curve has one degree of freedom and we can briefly repeat the main equations 

 of motion: 

 

A Uniform linear motion - the particle has a constant velocity and no acceleration. The initial 

 condition is 0=x x  at the time 0t =  and 0x  is equal to the constant 1c  (see Fig. 3.15). Under 

 these conditions proceeding from general equations for  the velocity it holds: 

       constantxv= =v i  

     and for the acceleration 

  0xa = . 

 We can determine the position as: 
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  0 0

0

d

/

.

x x

t

x

x v t v t c

c x x
x x v t

=

= = +

= =

= +

∫
               

         

 

 
Figure 3.15: The position-time graph of the linear motion. 

 

B Uniformly accelerated motion - the acceleration of the particle is constant and has the same 

direction as the velocity. The constant 1c  is x -coordinate of the velocity at the time 0t =  

( (0)v ). The constant 2c  is x-coordinate of the particle at the time 0t = . It results from initial 

conditions. Therefore, the acceleration along the x-axis is given by 

    constantxa= =a i  

 and the velocity 

  0(0)= xvv i . 

 Its magnitude at any time t is 

  
1

1 0 0

0

/

.

x x x

t x

x x x

v a dt a t c

c v v
v v a t

=

= = +

= =

= +

∫
 

 Finally, the position of the particle at the time t is 

 

( )0

0

0

2

2

2 0 0

2
0

d d

2
c

1
2

/

.

x x x

x
x

t

x x

x v t v a t t

a tx v t c

x x

x x v t a t

=

= = +

= + +

= =

= + +

∫ ∫

 



 35 

 where 0x  is the position of the particle at the time t = 0,  0xv  is the velocity of the particle at 

 the time t = 0 . 

 

C Nonuniformly accelerated one dimensional motion is the motion when the acceleration is a 

continuous vector with the constant direction. The acceleration depends on the time 

  ( )xa t=a i , 

 where i is the unit vector along x-axis. 

 The initial velocity (0)v  has the same direction as the acceleration 

  0(0) xv=v i . 

 Using the definition of the linear acceleration 

  d
d

x
x

va
t

=  

 we have 

  d dx xv a t= . 

 Therefore, the linear velocity along x-axis at any time t is 

  ( ) ( )d 1x xv t a t t c= +∫ . 

 Starting from the definition of the velocity 

  d
dx
xv
t

=  

 we can express the position of the particle at any time as 

  ( ) ( ) 2d .xx t v t t c= +∫  

 

Circular motion is the motion with a constant radius of the curvature and the fixed center of the 

curvature S. Taking into account general equations for circular motion we can write the angular 

velocity as a function of  t 

  ( ) ( ) 1dt t t cω α= +∫  

and for the angle 

  ( ) ( ) 2dt t t cϕ ω= +∫ . 
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D Uniform circular motion - the particle has a constant angular velocity and no angular 

acceleration. The initial condition for the angle is 0ϕ ϕ=  at the time 0t =  and 0ϕ  is equal to 

the constant 1c  (see Fig. 3.15). Due to these conditions for the angular velocity it holds: 

  constantω = . 

 Since 

  d
dt

=
ωα  

 we have 

  α = 0 . 

 The angle at any time t is then 

  1dt t cϕ ω ω= = +∫  

  1 0 0/ tc ϕ ϕ== =  

  0 tϕ ϕ ω= + . 

 For the tangential acceleration we have 

  t
d d
d d
va r
t t

ω
= =  

 and if ω  is constant, then ta = 0. The total acceleration equals radial acceleration 

  ra a=  

 or in the vector form 

  ra=a i .   

  

E Uniformly accelerated circular motion – the angular acceleration is constant      

 constantα = . 

 From the definition of  the angular velocity we can derive  

 1d =t t cω α α= +∫ , 

 where the integration constant 1c  can be determined from the initial condition 

 1 / 0 0tc ω ω== =  

 0 tω ω α= + . 

 Using the same procedure for the angular displacement we can derive 
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 ( )
2

0 0 2d d
2
tt t t t cαϕ ω ω α ω= = + = + +∫ ∫  

 2 / 0 0tc ϕ ϕ== =  

 2
0 0

1
2

t tϕ ϕ ω α= + + . 

 

F Motion in homogeneous force field - Homogeneous force field gives the same acceleration 

 to a particle in each point of the space, e.g. gravitational field. The illustrational example of 

 such a motion is projectile motion in gravitational field of the Earth. 

 

3.5  Projectile motion 
 

 
Figure 3.16: The projectile motion. 

 

The projectile moves in two dimensions with constant acceleration  =a g . Two rules hold: 

1 g  is a constant and directed downward; 

2 the resistance of the air is negligible (for the sake of simplification). 
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Let us assume that the initial velocity of the projectile at the origin of the reference frame makes an   

angle α  with the horizontal. The acceleration along x -axis is equal to zero and along y -axis is g− . 

Both x  and y  coordinates of the acceleration can be written as  

 
0

.
x

y

a
a g

=
= −

 

For the velocity at the time 0t =  we have: 

 0 0  cosxv v α=                  (3.69) 

 0 0  sin .yv v α= .                 (3.70) 

From basic equations of the motion for x  components of the position and the velocity vectors we 

can write: 

 2
0 0

1
2x xx x v t a t= + +                  (3.71) 

 0x xv v x a t= + .                 (3.72) 

Taking into account the equation (3.69) and the fact that 0 0x = , 0xa =  we can rewrite the equations 

(3.71) and (3.72) as follows: 

 0 0  cos
x

x v t v t α= =                  (3.73) 

 
x0 0cosxv v v α= = .                 (3.74) 

A horizontal component of the velocity remains constant and equal to 0v . 

 In y -direction the acceleration ya  is equal  g− . Substituting this one to the basic equations of 

motion  

 2
0 0

1
2y yy y v t a t= + +        (3.75)

  
y0y yv v a y= +                (3.76) 

we obtain 

 2 2
0 0

1 1 sin
2 2y

y v t gt v t gtα= − = −                 (3.77) 

 0sinyv v gtα= − .                 (3.78) 

Note that 0y = 0 because the projectile starts from the origin. 

 

Let us solve the equation (3.73) for the variable t  and substitute this expression into the equation 

(3.77). We find 
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 2
2 2
0

1tan  
2 cos

gy x x
v

α
α

 
= −  

 
,                                                                     (3.79) 

which is valid for the angle in the range 0 <  < 
2
πα . It is the equation of a parabola. The projectile 

follows this trajectory. 

 We can find the maximal height h  of the projectile at the peak of its trajectory when 0yv =  at 

the time 1t . Substituting the condition  0yv =  into the equation (3.78) we have  

 00 sinv gtα= −  

or 

 0sinv gtα = .                 (3.80) 

From the equation (3.80) we express time and we take  1t t= : 

 0 sin
g
vt α=   

 0
1 sin

g
vt α= .                 (3.81) 

Substituting the expression (3.81) into (3.75) we obtain the maximum height of the projectile 

trajectory, maxy  

 2
max 0 0 1 1

1
2y

y y v t at= + + . 

Because 

 0 0y = , 

then 

 2
max 0 1 1

1sin  
2

y h v t gtα= = −  

 
2

20 0
0 2

1sin  sin sin
g 2 g
v vh v gα α α= −  

 
2 2 2

20 0sin 1 sin
2 g

v vh
g
α α= −  

 
2 2
0sin1

2
vh

g
α

= . 
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Time 2t  is duration time of the whole motion, i.e., from 0y =  through y h=  to 0y = . The 

horizontal distance maxx  traveled by the projectile during the time 2t  is the double distance traveled 

up to the point of the peak during the time 1t  

 2 12t t= .                  (3.82) 

Using the equations (3.69), (3.73) and (3.82)  for a maximum flying range of the projectile we 

finally obtain: 

 2 0cosx t v α=  

 0
max 02 sin  cosvx v

g
α α=  

 
2
0

max
2  sin  cos
g
vx α α= . 
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4  Particle dynamics 
 

In kinematics we describe the motion of particles based on the definition of displacement, velocity 

and acceleration. Now we shall describe the change in motion of particles using the concepts of 

force and mass. A particular body interacts with the surrounding bodies, e.g. an apple falls from the 

tree due to the gravity, a skier slides down the hill under effect of the gravity, friction with snow and 

air resistance, the billiard ball - gravity of another balls and the table, the Halley’s comet round trip 

through the solar system due to the Sun gravity. 

 At the beginning let us consider a body as a particle. Dynamics is the science, which describes 

the change of the particle under the effect of the force and the mass. The procedure to solve the 

dynamics systems is as follows: 

a.    We introduce the force F  and we define it in the terms of the acceleration.  

b.  We develop a procedure for assigning a mass m  to a body so that we could understand the 

 fact that different bodies have different accelerations in the same environment. 

c.    We try to find the ways of calculating the forces that act on the bodies from the properties of 

 the body and of its environment - the force laws. 

The force gives us the relations of an environment to body motion. The laws of the mechanics taken 

together with the force laws constitute the laws of dynamics. 

 

4.1  Newton’s laws 

 

 Newton’s first law 

Problem of motion and its reasons was a central topic of “Natural philosophy” that was a basis of 

today’s physics. Sir Isaacs Newton was the principal architect of classical mechanics. His three laws 

of motion were presented in “Philosophiae Naturalis Principia Mathematica” called simply 

“Principia” published in 1686. 

 We must find a way to free a body from all influences of its environment or from all forces. 

The motion would be like if its external forces were truly zero. No external force is needed to keep a 

body moving with the constant velocity. It is difficult to find a situation when no external force acts 

on a body. The force of gravity will act on an object on or near the Earth and resistive process as 

friction or air resistance oppose the motion on the ground or in the air. 
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 There is no distinction between a body on which no external forces act and the body on which 

the sum or the resultant of all the resultant forces is zero. The resultant of all forces acting on a body 

is called the net force. 

 Let us consider that the net force acting on a body is zero. If the body is at rest it will remain at 

rest. If the body is moving with the constant velocity it will continue to do so: 

  
n

i
i 1

0
=

=∑F .                    (4.1) 

This law is called Newton’s first law. If the net force acting on a body is zero, then it is possible to 

find a set of reference frames in which the body has no acceleration. 

 The tendency of a body to remain at rest or in an uniform linear motion is called inertia. The 

first Newton’s law is called the law of inertia. The reference frames, to which this law is applied, 

are the inertial frames. Observers in different reference frames moving with the constant velocity 

relative to each other have the same values of the acceleration. There is not just one frame in which 

the acceleration happens to be zero. We have a body at rest in the frame and no net forces acting on 

it. If the body does not remain at rest, the frame is not the inertial frame. Similarly, we have a body 

in motion at the constant velocity (subject under no net force). If its velocity changes, the frame is 

not the inertial frame. 

 Obviously we apply the laws of classical mechanics from the point of view of an observer in 

the inertial frame. There exist the exceptions like, e.g. the accelerating car, the orbiting satellite, the 

merry-go-round etc. 

 There is no distinction in the first law between a body at rest and one moving with the constant 

velocity. Both are natural if the net force acting on the body is zero. It is natural state of body’s 

motion. 

 

Newton’s second law 

Many experiments showed that the greater the mass of an object, the smaller its acceleration will be 

for a given force. The acceleration produced by a given force is inversely proportional to the mass 

being accelerated. We can express this fact as follows: 

 =
Fa
m

                     (4.2) 

or 

 =F am .                    (4.3) 
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The law given by equation (4.3) is called Newton’s second law. We can express it in component 

form as:  

 

 ,

x x

y y

z z

F ma
F ma
F ma

=
=

=

                     (4.4) 

where xF , yF , zF  and xa , ya , za  are the components of acting force and  acceleration, respectively. 

Unit of the force in SI system is 1 Newton - -21 N kg  m s= ⋅ ⋅ . If F  is the resultant force or the net 

force then the equations (4.3) and (4.4) can be transformed to: 

 
n

i
i 1=

=∑F am                    (4.5) 

or 

 

 .

x x

y y

z z

F ma

F ma

F ma

=

=

=

∑
∑
∑

                   (4.6) 

 

Newton’s third law 

Let us consider two bodies, A  and B  in the fig. 4.1. The body A  exerts a force BAF  on the body 

B and the body B  exerts a force ABF  on the body A . These forces are called attractive forces. 

 
Figure 4.1: The forces of interaction between two particles. 

 

This situation can be expressed by the third Newton’s law. To every action there is an equal and 

opposite oriented reaction. In other words, when two bodies exert the mutual forces on each other, 

two forces are always equal in the magnitude and opposite in the direction. A mathematical 

expression of the third Newton’s law is: 

 AB BA= −F F .                   (4.7) 

We can see that the forces always occur in pairs. The isolated force cannot exist. 
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Some applications of Newton’s laws 

In what follows we give several examples of the application of the Newton’s laws: 

 

1.  The satellite is orbiting around the Earth. The force of the action of the Earth on the satellite is 

ESF  . It has the same magnitude but the opposite direction relative to the force acting on the 

Earth by  the satellite is SEF . 

 
 

Figure 4.2: The forces of interaction between the Earth and the satellite. 

 

2.  Fig. 4.3.a shows a block of mass m  hung by three strings. We consider the knot at the junction 

  of the three strings to be “the body”. 
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Figure 4.3: a) A block of mass hangs from three strings A, B and C, b) free-body diagram of the knot 

that joins the strings, c) the free-body diagram of the block. 

 

 Fig. 4.3.b shows the free-body diagram of the knot, which remains at rest under the action of 

 three forces AT , BT  and CT  called the tensions of the strings. We assume that, like the string, 

 the knot is massless, so its weight does not appear in the diagram. Choosing the x  and y  axes 

 as shown in Fig. 4.3.b we can resolve  the forces into their x  and y  components. The 

 acceleration components are zero because the system is at rest. We can write for  

 x  component: A B 0= + = =∑ x x x xF T T ma                                       (4.8) 

 y  component:  A B C 0= + + = =∑ y y y y yF T T T ma .                            (4.9)                   

 From Fig. 4.3.b we can see that: 

 

A A

A A

B B

B B

C

C C

cos
sin

cos
sin

0
 .

x

y

x

y

x

y

T T
T T

T T
T T

T
T T

= −

=

=

=

=

= −

α
α

β
β

                                                                                             (4.10) 

 Now we examine the free-body diagram of the mass in Fig. 4.3.c: 

 C

C

0

 .

− = =

=
y yT mg ma

T mg
                                                                                      (4.11) 
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3.  A block of mass m  is held in place by a string on a frictionless plane inclined at angle θ  (see 

  Fig. 4.4.a). We have to find the tension on the string and the normal force exerted on the 

  block by the plane. 

 

 
Figure 4.4: a) The block of mass on the inclined plane and b) the free-body diagram of the block of 

mass. 

 

 The free-body diagram of the block is shown in Fig. 4.4.b. The block is acted on by the normal 

 force N , its weight m=W g  and the tension T of the string. We choose a coordinate 

 system with the x  axis along the plane and the y  axis perpendicular to it. With this choice, 

 two of the forces (T and N ) are already resolved into their components. In this case there is 

 no acceleration and the sum of these forces must be zero. The weight is resolved into its x  

 (  sinmg θ− ) and y  (  cos−mg θ ) components. The force equations are as follows: 

 x component:  sin 0= − = =∑ x xF T mg maθ ,                        (4.12) 

 y component:  cos 0= − = =∑ y yF N mg maθ .                        (4.13) 

 Solving these equations we obtain: 

  sin ,T mg θ=                             (4.14) 
  cosN mg θ=  .                                                                                             (4.15) 
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4.  Consider two unequal masses connected by a string that passes over an ideal pulley (whose 

  mass is negligible and whose axle rotates with negligible friction), as shown in Fig. 4.5.a. This 

  arrangement is known as Atwood’s machine.  Let 1m  be less than 2m . We want to find the 

  tension in the string and the acceleration of the masses. 

                                                                                                                     
Figure 4.5: a) The Atwood’s machine b) the free-body diagram of  1m and c) 2m . 

 

 Because we anticipate the masses to have only the vertical accelerations, we choose the 

 positive y  direction to be the direction of the motion for each mass. Only y  components need 

 to be considered. The free-body diagrams are shown in Figs. 4.5.b and c. Then the equations of 

 the motion are as follows: 

 block 1: 1 1 1 1  ,= − =∑ yF T m g m a                               (4.16) 

 block 2: 2 2 2 2  , yF m g T m a= − =∑                       (4.17) 

 where 1a  and 2a  are the accelerations of 1m  and 2m , respectively. Because the string is 

 massless and does not stretch, and the pulley is massless and frictionless, then  1 2T T T= =  

 ( 1 2 T= =T T ) and 1 2a a a= =  ( 1 2 a= =a a ). Substituting these relations and solving (4.16) 

 and (4.17) simultaneously, we find: 

 2 1

2 1

 ,m ma g
m m

−
=

+
       (4.18) 

 1 2

1 2

2  .m mT g
m m

=
+

                 (4.19) 
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 In special case when 1m  = 2m  = m, the acceleration a = 0 and the tension 1 2T m g m g mg= = =  

 what is typical for balanced situation. In another special case when 2m  >> 1m ,  then  a = g and 

 12T m g= .                        

 

4.2  The center of mass 

 

The center of mass of the system of the particles 

Above we have mentioned the motion of a single particle approximated to an ideal one. The system 

of the particles or real bodies is exposed to a complex motion, not only a linear or circular one. 

Generally, the motion of the real body can be replaced by the motion of its center of mass. 

  In Fig. 4.6 we can see the system of two bodies with masses 1m  and 2m  at the positions 1x  

and 2x . The mass of the system is concentrated in the fictional point CM with coordinate CMx . 

 
Figure 4.6: The center of mass of the system consisting of two particles. 

 

Then the x  coordinate of the center of mass of the system of two particles in one dimension is: 

 

2

i i
1 1 2 2 i 1

CM 2
1 2

i
i 1

 .
x m

m x m xx
m m m

=

=

+
= =

+

∑

∑
                 

Similarly, we can derive the coordinate of the center of mass of the system of n  particles in three 

dimensions. We must take into account that the total mass of the system of n  particles is the sum of 

masses 1 2 n, ,...,m m m of all particles  

 
n

1 2 n i
i

...M m m m m= + + + = ∑ .       (4.20) 

Then 
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n

i i n
1 1 2 2 n n i 1

CM i in
i 11 2 n

i
i 1

1 = .
M

...
...

x m
x m x m x mx x m

m m m m

=

=

=

+ + +
= =

+ + +

∑
∑

∑
                      (4.21) 

For the velocity of the center of the mass in one dimension it holds: 

 ( )
n

CM, 1, 2, n n, i i,
i

1 1  .1 2
1

...x x x x xv m v m v m v m v
M M =

= + + + = ∑                        (4.22) 

We can extend the center of mass conception to three dimensions: 

 

n n

i i i i n
i 1 i 1

CM i in
i 1

i
i 1

n n

i i i i n
i 1 i 1

CM i in
i

i
i

n n

i i i i n
i i 1

CM i in
i 1

i
i 1

1  ,

1  ,

1  .

1

1

1

x m x m
x x m

M Mm

y m y m
y y m

M Mm

z m z m
z z m

M Mm

= =

=

=

= =

=

=

= =

=

=

= = =

= = =

= = =

∑ ∑
∑

∑

∑ ∑
∑

∑

∑ ∑
∑

∑

               (4.23) 

Now we will use the general form of the position vector of the center of mass 

( CM CM CM CMx y z=r i + j + k ). Hence these three equations can be written as a single expression giving 

the position vector of the center of mass: 

 ( )
n

CM 1 1 2 2 n n i i
i 1

1 1  ....m m m m
M M =

= + + + = ∑r r r r r                (4.24) 

To determine the velocity of the center of mass we can take the first derivative of the previous 

equation: 

 CM 1 2 n
CM 1 2 n

d d d d1
d d d d

...m m m
t M t t t

 = = + + + 
 

r r r rv                                         (4.25) 

or 

 ( )
n

CM 1 1 2 2 n n i i
i 1

1 1...m m m m
M M =

= + + + = ∑v v v v v .              (4.26) 

 

Differentiating (4.26) once more gives a relation for the acceleration of the center of mass: 

 CM 1 2 n
CM 1 2 n

d d d d1
d d d d

...m m m
t M t t t

 = = + + + 
 

v v v va                       (4.27) 
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or 

 ( )
n

CM 1 1 2 2 n n i i
i 1

1 1  ....m m m m
M M =

= + + = ∑a a a a a                (4.28) 

We can rewrite the equation (4.28) as: 

 CM 1 1 2 2 n n  ....M m m m= + + +a a a a                 (4.29) 

Using the second Newton’s law we obtain: 

 CM 1 2 n...M = + + +a F F F . 

From this equation it follows that the total force acting on a system of n  particles is equal to the 

total mass M  of this system times the acceleration CMa  of the center of mass of the system.  

 The particles can interact among themselves. The forces of the interaction are called the 

internal forces. The forces that originate beyond the system under consideration are the external 

forces. We can rewrite the upper equation in the form: 

 ext CMM=∑F a                  (4.30) 

or in the component form:  

 
ext, CM, 

ext  CM  

ext, CM,  .
, ,

x x

y y

z z

F Ma

F Ma

F Ma

=

=

=

∑
∑
∑

                 (4.31) 

The center of mass of a system moves like an imaginary particle, which is acted upon by the net 

external force.  

4.3   Linear momentum  

 

Linear momentum of the single particle is a vector p  defined as the product of its mass and its 

velocity v : 

 m=p v .                            (4.32) 

These two vectors have the same direction. The momentum has unit of -1kg m s . Newton expressed 

the second law of motion in the terms of momentum:  

 The rate of change of momentum of a body is equal to the resultant force acting on the 

 body and is in the direction of that force. 

In symbolic form we can write:  

 d
dt

=∑ pF  ,                 (4.33) 
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where ∑F  represents the resultant force acting on the particle. The proof of equivalence of 

m=F a  and d d/ t=F p  is as follows: 

 ( )d d d
d d d

m m m
t t t

= = = =
p vF v a .                (4.34) 

Suppose we have the system of n  particles with masses 1 2 n, ,...,m m m  and constant total mass M  

n

i
i 1

M m
=

 
= 

 
∑ . The particles may interact with each other. Each particle has a certain value of the  

velocity and the linear momentum. The total momentum of the system P  is the sum of the momenta 

of  all particles: 

 
n

1 2 n 1 1 2 2 n n i i CM
i 1

... ...m m m m M
=

= + + + = + + + = =∑P p p p v v v v v .                     (4.35) 

Comparing this equation with (4.29) we obtain: 

 CMM=P v .                  (4.36) 

 The total linear momentum of a system of the particles is equal to the product  of the 

 system and the total mass of the system and the velocity. 

After differentiation of the last equation and taking into consideration the constant total mass M  we 

obtain: 

 CM
CM

dd
d d

M M
t t
= =

vP a .                 (4.37) 

Comparing this equation with (4.30) we can rewrite the second Newton’s law: 

 ext
d
dt

=∑ PF .                 (4.38) 

If the net external force is zero we can say about isolated system. Then 

 ext
d
d

0
t

= =∑ PF                  (4.39) 

and hence  

 constant=P .                           (4.40) 

This expression is called the law of conservation of linear momentum. 

 When the net external force acting on a system is zero, the total linear  momentum of the 

 system remains constant. 
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4.4   Work 

 

Work done by a constant force 

Consider a block of mass that undergoes a displacement along a straight line under the action of a 

constant force F . Let us analyse some possible situations that can occur. For the sake of 

simplification we shall assume that the block is homogeneous and its mass m  is concentrated in its 

center of mass. In this case we can replace the block by a particle. 

 

A .  Motion takes place in straight line in the direction of the force. The work W  done by the 

  constant force on the particle of mass is defined as the product of the magnitude F  of the force 

 F  and the magnitude s  of the displacement along the acting force:  

 W Fs= .                  (4.41) 

 

B .  Generally, a constant force makes an angle ϕ  with the displacement. The work done by  the 

 force acting on the particle is the product of the component of the force in the direction of the 

 displacement  ( ) cosF ϕ  and the magnitude of the displacement s  as is shown in Fig. 4.7. 

 
Figure 4.7: The projection of the force F  acting on the body into 

the direction of the displacement s . 

 

 Therefore, the work done by this force is given by cos  W F sϕ= . 

 

C . Other forces may also act on the particle. The total work done on the particle is the sum of all 

 values of the work done by all separate forces. The net force can be found and then the total 

 work, the net work, done by this net force can be calculated. 
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D . Another possible case is if the angle between the force acting on the particle  and  the  

 displacement is zero ( )0ϕ = o . This situation was mentioned in point A. and it is represented in 

 Fig. 4.8. 

 

 
Figure 4.8: The displacement of the body under the force 

with the reciprocal zero angle θ . 

 

 The force acting on the particle has component only in the direction of motion.  This direction 

 can be, for instance, in the direction of x -axis  (Fig. 4.8-a) or y -axis (Fig. 4.8-b). The work 

 done  by the force is in this case 

 W Fs= , 

 because cos 0 1=o . 

 

E .  If the force has no component in the direction of motion, F does no work on the body. The 

  representation of this situation is in Fig. 4.9. 
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Figure 4.9: The displacement and the force analysis of the body 

under the force with the reciprocal right angle θ . 

 

 The force N  is the reaction of surface on the body and it is called the normal force. The force 

 gm  is the gravity-weight force. The force frF  is the friction force. Neither N nor gm  do 

 work, because they are perpendicular to the force F  and cos 90 0o = . The only force that 

 does the work is the force of friction frF  and it acts against F  and the velocity of body motion. 

  Another example is shown in Fig. 4.10. A body is attached to a cord and revolves in a 

 horizontal circle. The tension T  on the cord does not work on the body because it has no 

 component in the direction of the displacement. The velocity is tangent to the circle and 

 therefore it is perpendicular to the tension ( )⊥T v . 

 

 
Figure 4.10: The body is attached to a cord and revolving in the horizontal circle. 

 

F .  For the scalar equation we can write: 

 cos  W F sϕ= .                 (4.42) 

 There must be a component of F  in the direction of s . The projection of it is shown in Fig. 

 4.11.  
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Figure 4.11: The projection of the force F  acting on the body  

in the direction of the displacement s . 

 

 But because of scalar multiplication properties, we can rewrite this equation also as: 

  cosW F s ϕ= .                 (4.43) 

 This equation represents the projection of the displacement s  in the direction of the force F  

 (Fig. 4.12). 

 

 
 

Figure 4.12: The projection of the displacement s of the body 

in the direction of the force F . 

 

G.  The work is the scalar quantity and can be positive or negative. If the force has the opposite 

 direction as the displacement ( )180ϕ = o , the work is negative ( )cos180 1= −o : 

 ( ) cos  cos180 1α= = = − = −oW Fs Fs Fs Fs .               (4.44) 
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 If the component of the force is in the same direction as the displacement, the work done by the 

 applied force is positive ( 0ϕ = )  

Our definition of the work may not be the same as a physical point of view. For illustration we can 

mention a person holding heavy weight in the air. He may be working hard in physiological sense, 

but as far as physics, his work is zero because no displacement occurs. 

 

Unit of the work is 1 Joule (abbreviation J ). 

 W m= ⋅ = ⋅F s a s ,                         

 and hence for the unit we obtain: 

 2 -2J = Nm = kg m  s m = kg m s2⋅ ⋅ ⋅ ⋅ ⋅ . 
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Work done by a variable force 

Let us consider the work done by the force that is not constant. For simplification we will consider 

one-dimensional case. The force F  acts on a body in the direction x  and varies in the magnitude 

with x  according to a function ( )F x . The body moves under the action of this force from an initial 

position ix  to a final position fx . The dependence of the function ( )F x  on x  is illustrated on the 

plot F  versus x  in Fig. 4.13 .                                                                                           

 

 

 
 

Figure 4.13: The dependence of the ( )F x  on x  with large width of xδ a.) 

and with xδ  approaching zero b.). 

 

We divide the interval from ix  to fx  into N small intervals of equal widths xδ  (Fig. 4.13.a). The 

first interval can be approximated to a rectangle with sides xδ  and 1F , where 1F  is almost constant 

force and xδ  is the displacement from ix  to ix xδ+ . The area of this rectangle is the small work 

1Wδ  for a small displacement xδ  as: 

 1 1W F xδ δ= .                 (4.45) 

In the second rectangle there is the displacement xδ  from ix xδ+  to i 2x xδ+  and ( )F x  is nearly 

constant value 2F . Similarly we can write all other work elements up to N -th one: 
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1 1

2 2

N N

        
 .

W F x
W F x

W F x

δ δ
δ δ

δ δ

=

=

=


                           (4.46) 

In the interval from ix  to fx  the total work W  done by ( )F x  can be expressed as a sum of all small 

work elements: 

 1 2 N

1 2 N    
...

...
W W W W

F x F x F x
δ δ δ
δ δ δ

= + + + =

= + + +
                (4.47) 

or 

 
N

n
n 1

W F xδ
=

= ∑ .                 (4.48) 

If the width of the intervals xδ  is infinitesimally small the force nF  in each interval is equal to 

constant.  We obtain exact value of the work done by the force F : 

 
N

n0 n=1
lim
x

W F x
δ

δ
→

= ∑ .                 (4.49) 

The limit expression can be replaced by the definite integral within the limits from ix  to fx : 

 ( )
f

i

d
x

x

W F x x= ∫ .                 (4.50) 

This definite integral is equal to the area under the ( )F x  versus x  curve between the values ix  and 

fx . 

 

4.5  The power 

 

 Now we are interested in the fact how rapidly the work is done. The rate at which the work is 

done is called power. The average power P  delivered by an agent that exerts a particular force on a 

body is the total work done by that force on the body divided by the total time interval: 

 WP
t

∆
=

∆
.                  (4.51) 

The instantaneous power P  delivered by an agent is the small amount of work done in the 

infinitesimal time interval dt : 

 d
d
WP
t

= .                  (4.52) 
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Using the definition of dW  we can rewrite the power in the form: 

 d d d
d d d
WP
t t t

⋅
= = = ⋅ = ⋅

F s sF F v .                (4.53) 

If the force acting on the body and the velocity of the body are parallel, the equation (4.53) can be 

arranged as follows: 

  cos 0oP Fv Fv= ⋅ = =F v .                (4.54) 

From this equation it follows that the power is positive. If the force acting on the body and the 

velocity of the body are antiparallel then P  is: 

  cos 180oP Fv Fv= ⋅ = = −F v                  (4.55) 

and the power is negative. 

 If the power is constant in time then P P= . Then we can write: 

 WP
t

=                   (4.56) 

or 

 W Pt= .                  (4.57) 

The SI unit is 1 watt with abbreviation 1 W . Then 

 W mP
t t t

⋅ ⋅
= = =

F s a s                  (4.58) 

and hence in units we get: 

 -1 -1 -2 -1 2 -3W = J s N ms kg m s m s = kg m s= = .  

  

4.6   Kinetic energy 

 

We shall consider how the work acts on the motion of a particle. Let us replace the influence of all 

acting forces by the net force netF . The net work netW  is the work done by all forces that act on the 

particle. Two approaches to find the total work W  are possible. 

 

A . We can find the net force as a sum of all acting forces: 

 net 1 2 N...= + + +F F F F                  (4.59) 

 and then treat this force as a single net force. Then we use the formula for the work in one 

 dimensional case as: 
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 ( )
f

i

d
x

x

W F x x= ∫ .                 (4.60) 

 For more than one dimension we have 

 
f f

i i

d  cos  dW F sϕ= ⋅ =∫ ∫F s .                (4.61) 

B.  We can calculate the work done by each of all forces that act on the particle, where i  is the 

 beginning and f  is the end of the path of the particle under the action of the force F . The angle 

 ϕ  is the angle between the force F  and the displacement s  of the particle. Therefore, 

 

1 1

2 2

N N

d

d

     

d  .

W

W

W

= ⋅

= ⋅

= ⋅

∫
∫

∫


F s

F s

F s

                 (4.62) 

 The total work is given by: 

 1 2 N...W W W W= + + + .                 (4.63) 

 Let us examine the influence of the constant force on the particle moving in one dimension from 

 ix  to fx : 

 ( ) ( )net net f i f iW F x x ma x x= − = − .                (4.64) 

 To determine the final velocity of the particle we must solve the quadratic equation for the 

 variable t : 

 2
f i i

1
2

x x v t at= + + .                 (4.65) 

 Solving this quadratic equation for the value of  t we have: 

 
( )2

i i f i2v v a x x
t

a
− + + −

= .                (4.66) 

 For the final velocity we use the following equation (derived in Chapter 3): 

 f iv v at= + .                  (4.67) 

From this equation the time is 

 f iv vt
a
−

= .                  (4.68) 

 We can set the times t  from equations (4.66) and (4.68) to be equal and then express the final 

 velocity: 
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 ( )2 2
f i f i2v v a x x= + − .                           (4.69) 

 Hence 

 
( )

( )

2 2
f i

f i

2 2
f i

f i net

  
2

2 2

/

.

v v a x x m

mv mv ma x x W

−
= − ⋅

− = − =

                (4.70) 

 Generally, the expression for the kinetic energy is: 

 21
2

K mv= .                  (4.71) 

 Using the equation (4.70) for the net work we obtain: 

 net f iW K K K= − = ∆ .                 (4.72) 

The last equation is called the work-energy theorem. 

 The net work done by the forces acting on a particle is equal to the change in the kinetic 

 energy of the particle. 

The general proof of the work-energy theorem is as follows: 

 net
d d d
d d d
v v xF ma m m
t x t

= = =                           (4.73) 

 net
d
d
vF mv
x

=                  (4.74) 

 net net
dd d  d  
d
vW F x mv x mv v
x

= = =∫ ∫ ∫                (4.75) 

 
f f

i i

net  d  d
v v

v v

W mv v m v v= =∫ ∫                 (4.76) 

 net f i
1 1
2 2

2 2W mv mv= − .                           (4.77) 

 

4.7  Conservative and nonconservative forces 

 

It is useful to divide the forces into two kinds: conservative and nonconservative ones. The 

conservative force depends only on the position.  The work acting on a particle moving between 

any two points depends only on the initial and final position of these points. If the work done by the 

force depends on the path length, this force is called the nonconservative force. 
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  To illustrate behavior of the conservative systems we consider the one-dimensional motion of a 

particle acted on by three separate forces. 

 

A . The spring force 

In Fig. 4.14 we can see a block of mass attached to a spring of the force constant k . For the force 

proportional to the displacement acting on the spring it holds: 

 kF x= − .                  (4.78) 

Minus sign in this expression means that the force is always directed toward the equilibrium 

position. The work done by this force is: 

 ( ) ( ) 21d k d k
2

W F x x x x x= = − = −∫ ∫ .               (4.79) 

Assume that the block slides without friction across a horizontal surface. Five situations can occur.  

1.  In the situation 1 an external agent compresses the spring and the block is       

 displaced to the distance x d= +  from its relaxation position at 0x = . 

2.   The external agent is suddenly removed at time 0t = . The spring begins to do work on the 

 block. The block moves from the position x d= +  to 0x = . The work of the transition from the 

 situation 1 to the situation 2 is then: 

  
0

2 21 1k k
2 2d

W x d = − =  
.                (4.80) 

3.   Passing through the position 0x =  the sign of the force reverses. The spring  acts to slow down 

 the block doing the negative work on it. The position of the block changes from the position 

 0x =  to x d= − . During the transition from the situation 2 to 3 the force does work: 

  
2

2

0

k 1 k
2 2

d
xW d

−
 

= − = − 
 

.                (4.81) 

4.   When the block returns to its relaxation position from x d= −  to 0x =  the spring force does 

 work: 

  
0

2 21 1k k
2 2d

W x d
−

 = − =  
.                (4.82) 

5.   The last situation shows the block being pushed back to its initial position from 0x =  to 

x d= + . The work done by the force is: 

  
2

2

0

k 1 k
2 2

d
xW d

 
= − = − 
 

.                (4.83) 
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Figure 4.14:Movement of the block of mass attached to the spring. 

 

 Individual contributions of work in all stages summed together give us the total work. This 

 total work that gets the block into its beginning position in complete cycle is zero. 

   

   

B . The force of gravity. 

In Fig. 4.15 we have a ball acted on by the Earth’s gravity. We have three situations: 
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Figure 4.15: The ball is thrown upward (1), stopping in the air (2) 

and falling down (3). 

 

1.  The ball is ejected upward by an external agent that gives initial speed 0v  and an initial 

 kinetic energy 2
0

1
2

mv . The first trajectory of the ball is from 0y =  up to the top at y h= , 

 where h  is the height of the throw. The ball is rising and the Earth does work on it: 

  ( ) [ ]0
0

d d
h

hW m g y mg y mgh= ⋅ = − = − = −∫ ∫F s .              (4.84) 

 The change of the kinetic energy from the position 1 to 2 is: 

  2 2 2
2 1 0 0 0

1 1 1
2 2 2/ vK W K K mv mv mv=∆ = = − = − = − .                        (4.85) 

2.  At the top the ball stops its motion and its velocity is zero. The position of the ball changes 

 from y h=  to 0y = . The force of gravity begins to do work: 

  [ ]
0

0d d
h

h

W mg y mgh mgh= ⋅ = = − =∫ ∫F s .               (4.86) 

  For the change of the kinetic energy it holds: 

  2 2 2
2 1 0

1 1 1
2 2 2/ vK W K K mv mv mv=

 ∆ = = − = − − − = 
 

.              (4.87) 

 The total work done by the force of gravity during the round trip is zero. 

If a body moves under the action of a force that does no total work during any round trip, then the 

force is conservative. Otherwise it is noncoservative one. In other words, if the work done by a 
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force moving a body from an initial location to a final location is independent on the path taken 

between these two points, then the force is conservative,  otherwise it is nonconservative one. 

 In Fig. 4.16 we can see the path of the particle moving from the point 1 to the point 2. 

 
Figure 4.16: The path of the particle from the point a to b. 

 

We have the particle moving from the point a  to the point b and back. Let us consider that the force 

F  acting on the particle is the conservative one. The total work done on the particle by that force 

during complete cycle must be zero  

 
ab 1 ba 2

b a

path 1 path 2
a b

0 

d d 0 ,

, ,

/

+ =

⋅ + ⋅ =∫ ∫

W W

/F s F s
                (4.88) 

where ab 1,W  is the work done by the force when particle moves from a  to b along the path 1 and 

ba 2,W  is the work done by the force when the particle moves from b to a along the path 2 . The last 

equation is the first criterion for a conservative force - the mathematical statement equivalent. 
 

4.8  Potential energy 

 

Potential energy, represented by the symbol U , is an energy of configuration of a system. It is an 

energy stored by the system because of relative position or orientation of the parts of the system. 

 Let us consider a system on which only one force acts. When we change the configuration of 

the system (e.g. moving one of its parts), the work W  is done by the conservative force. We define 

the change in potential energy U∆  corresponding to a particular change in configuration: 
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 U W∆ = − .                (4.89) 

It is the negative value of the work done by the conservative force (for instance the force acting on 

the spring). Let us look at the configuration of the block in the spring, (Fig. 4.14), when the spring is 

in the relaxed state. The work done by the spring force on the block, with respect to the state when 

the block is momentarily at rest, is: 

 21
2

W kd= − .                 (4.90) 

Therefore the change of potential energy of the system is: 

 21
2

U W kd∆ = − = + .                 (4.91) 

From the work energy theorem the change in the kinetic energy of the block is: 

 0U K∆ + ∆ =                  (4.92) 

or 

 ( ) 0U K∆ + = .                 (4.93) 

The change of the total energy ( )U K+  is zero. If the change of the sum ( )U K+  is zero, then the 

value of this sum must be constant: 

 constant.U K E+ = =                   (4.94) 

The equation (4.94) represents the mechanical energy conservation law. The quantity E  is called 

the total mechanical energy. 
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5  Gravitational field 
 

Gravitational field is a model used in physics to explain the gravity in the universe. Still today, three 

fundamental physical theories explain gravity in different ways. 

 

• The gravitational field in classical mechanics is not an actual entity, but merely a model 

used to describe the effects of gravity. The gravitational field can be determined using Newton's law 

of universal gravitation. Determined in this way, the gravitational field around a single particle is a 

vector field consisting at every point of a vector pointing directly towards the particle. The 

magnitude of the field at every point is calculated with the Newton’s law, and represents the force 

per unit mass of any object at that point in the space. The field around multiple particles is merely 

the vector sum of the fields around each individual particle. 

 

• The gravitational field in theory of relativity is determined as the solution of Einstein's 

field equations. These equations are dependent on the distribution of matter and energy in a space, 

unlike Newtonian gravity, which is dependent only on the distribution of matter. The fields 

themselves in general relativity represent the curvature of spacetime. General relativity states that 

being in a region of curved space is equivalent to accelerating up the gradient of the field. By 

Newton's second law, this will cause an object to experience a fictitious force if it is held still with 

respect to the field. This is why a person will feel himself pulled down by the force of gravity while 

standing still on the Earth's surface. In general the gravitational fields predicted by general relativity 

differ in their effects only slightly from those predicted by classical mechanics, but there are a 

number of easily verifiable differences, one of the most well known being the bending of light in 

such fields. 

 

• The gravitational field in quantum theory is mediated by the hypothetical elementary 

particle called graviton. If it exists, the graviton must be massless particle and it must have a spin of 

2. Gravitons are postulated because of the great success of the standard model of elementary 

particles at modeling the behavior of all other forces of nature with similar particles: 

electromagnetism with the photon, the strong interaction with the gluons, and the weak interaction 

with the W and Z bosons. 
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This chapter deals with the theory of gravitational field in the framework of the classical mechanics. 

Next two approaches are subjects of more advanced textbooks on theory of relativity or quantum 

theory. In the classical limit, both approaches give identical results, including Newton's law of 

universal gravitation. 

 

5.1  The gravitational force 

 

In 1687 Sir Issac Newton formulated the law which has the fundamental role in classical mechanics 

for description of gravitational force. Newton’s law of universal gravitation says: “Every particle in 

the universe attracts every other particle with a force directly proportional to the product of their 

masses and inversely proportional to the square of the distance between them. The direction of this 

force is along the line joining the particles.” 

It is usually written as the vector equation 

 rF 3
21

r
mmG−= .      (5.1) 

The force F is the gravitational force exerted on the particle of mass m2 by the particle of mass m1. 

The vector r is the position vector of the particle of mass m2 with respect to the particle of mass m1. 

The minus sign indicates that the gravitational force is opposite direction as the direction of position 

vector, it means that the gravitational force has the direction towards the particle of mass m1. The 

magnitude of the position vector in the numerator can be divided with the cube of the position vector 

in the denominator. The multiplication by the displacement vector thus gives the direction to the 

gravitational force but the dependence remains inversely proportional to the square of the distance 

between the particles. The notation is drawn in Figure 5.1. 

 

 
 

Figure 5.1: The Newton’s law of universal gravitation. 

 

m1 

m2 

r 

F 
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The constant G is called the universal gravitational constant and its value is  

 ( ) 11 3 1 26.67428 67 10 m kg sG − − −= ⋅ ⋅ ⋅ .      (5.2) 

If the particle of mass m is placed inside the gravitational field created by system of n particles, the 

resulting gravitational force can by calculated as the sum of all gravitational forces acting on it 

 ∑ ∑−==
n

i

n

i
i3

i
i rFF

r
MGm ,      (5.3) 

where ri is the position vector of the particle of mass Mi. If the particle is placed inside the 

gravitational field created by an object with continuously distributed mass M, the resulting 

gravitational force can be obtained by replacing the sum in (5.3) by integral 

  ∫∫ −== rFF 3
dd
r
MGm ,      (5.4) 

where r is the position vector of the mass element dM. 

 

5.2  The gravitational field 

 

If we want to study the properties of the gravitational field we have to introduce the quantity which 

characterizes the gravitational field itself. Such physical quantity is called gravitational field and it is 

defined as 

  
m
FE = .      (5.5) 

The F is the gravitational force acting on the particle of mass m. Using the Newton’s law of 

universal gravitation, we can express the gravitational field created by the particle of mass M in a 

particular point in space with the position vector r as: 

  rE 3r
MGm−= .      (5.6) 

Analogously as for gravitational force our result for gravitational field can by generalized for the 

system of particles 

 ∑ ∑−==
n

i

n

i
i3

i
i rEE

r
MG       (5.7) 

as well as for the object with continuously distributed mass 

 ∫∫ −== rEE 3
dd
r
MG .      (5.8) 
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5.3  The gravitational potential energy 

 

Now we will describe the motion of a particle of mass m in gravitational field created by the particle 

of mass M from the energetic point of view. The work done by the gravitational force F when the 

particle moves from the point r1 to the point r2 is defined as: 

 ∫ ⋅=
2

1

d12

r

r

rFW .      (5.9) 

Using Newton’s law of universal gravitation we can express this work as: 

 ∫ ∫ 







−=



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



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2

1

2

1

2

1 12
3312

111dd
r

r

rr
r

r

r

r rr
GmM

r
GmM

r
rGmM

r
mMGW .  (5.10) 

The gravitational potential energy at the point r2 with respect to the point vector r1 is defined as: 

 21 12U W= − ,      (5.11) 

and thus we can write 

 21
1 2

1 1U GmM
r r

 
= − 

 
.      (5.12) 

The absolute gravitational potential energy at the point r is defined as a potential energy with respect 

to infinity, which can be expressed as: 

 
1 1 2

1 1lim
r

GmMU GmM
r r r→∞

  
= − = −  

  
.     (5.13) 

The minus sign indicates that the potential energy is negative at any finite distance, that is, the 

potential energy is zero at infinity and decreases as the separation distance decrease. This 

corresponds to the fact that the gravitational force is attractive. 

 

5.4  The gravitational potential 

 

If we want to characterize the properties of gravitational field without dependence on the mass of 

moving particle, we have to introduce gravitational potential: 

 UV
m

= .      (5.14) 
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Now, we can express the gravitational potential as: 

 MV G
r

= − .      (5.15) 

Analogously as for gravitational force and gravitational field our result for the gravitational potential 

can by generalized for the system of particles 

 
n n

i
i

i=1 i i

MV V G
r

= = −∑ ∑       (5.16) 

as well as for the object with continuously distributed mass 

 dd MV V G
r

= = −∫ ∫ .      (5.17) 

 

5.5  The relation between gravitational field and gravitational potential 

 

The relation between the gravitational field and gravitational potential will be clear if we express the 

gravitational potential in terms of gravitational force 

 ∫
∞

⋅−=−==
r

drF
mm

W
m
UV 1 .      (5.18) 

Using the definition of gravitational field we get 

 ∫
∞

⋅−=
r

drEV .      (5.19) 

It means that 

 drE ⋅−=dV .      (5.20) 

The gravitational field and the gravitational potential are functions of x, y, z, therefore 

 ( )d d d d d dx y z
V V Vx y z E x E y E z
x y z

∂ ∂ ∂
+ + = − + +

∂ ∂ ∂
.      (5.21) 

If we compare the left and the right sides of this equation we can see that 

 x
VE
x

∂
= −

∂
      (5.22) 

 y
VE
y

∂
= −

∂
      (5.23) 

 z
VE
z

∂
= −

∂
      (5.24) 
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From these equations follows that the gravitational field is equal to the negative of the derivative of 

the potential with respect to some coordinate. These scalar expressions can be rewritten into vector 

form as 

 







∂
∂

+
∂
∂

+
∂
∂

−= kjiE
y
V

y
V

x
V .      (5.25) 

This operation is called gradient and thus this equation is usually written as: 

 Vgrad−=E .      (5.26) 

 

5.6  Homogeneous gravitational field of the Earth 

 

Using the second Newton’s law of dynamic we can see that if only the gravitational force exerts on a 

particle, the gravitational field equals to the acceleration of this particle 

 aaFE ===
m

m
m

.      (5.27) 

The acceleration of free falling body in gravitational field is called the acceleration of gravity and 

near the Earth’s surface it can be calculated as: 

 
( )

24
11 3 1 2 2

2 6

5.98 10 kg6.67 10 m kg s 9.83m s
6.37 10 m

2
E

E

Mg G
R

− − − −×
= = × ⋅ ⋅ = ⋅

×
.      (5.28) 

The ME is the mass of the Earth and the parameter RE represents the mean radius of the Earth. In 

height h above the Earth’s surface the acceleration of gravity varies as: 

 ( )
( )

E
2

E

Mg h G
R h

=
+

.      (5.29) 

For most practical applications the gravitational field of the Earth can be considered as homogeneous 

field and all quantities are usually calculated using the acceleration of gravity. Then, the 

gravitational force is 

 gF m= .      (5.30) 

The gravitational potential energy is 

 mghU = .      (5.31) 

The gravitational potential is  

 mgV = .      (5.32) 
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Appendix A - International system of units 
 

Table A-1: Base units 

Quantity Name Symbol 

Length meter M 

Mass kilogram kg 

Time second S 

electric current ampere A 

thermodynamics temperature kelvin K 

amount of substance mole mol 

luminous intensity candela cd 

 

Table A-2: Supplementary units 

Quantity Name Symbol 

plane angle radian rad 

solid angle steradian sr 

 

Table A-3: Some derived units 

Quantity Name Symbol Equivalent 

frequency hertz Hz s-1 

force newton N kg.m.s-2 

pressure pascal Pa kg.m-1.s-2 

energy joule J kg.m2.s-2 

power watt W kg.m2.s-1 

electric charge coulomb C A.s 

electric potential volt V N.m.A-1.s-1 

electric resistance ohm Ω N.m.A-2.s-1 

capacitance farad F A2.s2.N-1.m-1 

magnetic flux weber Wb N.m.A-1 

Inductance henry H N.m.A-2 

magnetic field tesla T N.m-1.A-1 
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Appendix B – Fundamental physical constants 
 

Table B-1: Values of some fundamental physical constants 

Constant Symbol Value* Unit 

Speed of light in vacuum c 2.99792458×108 m.s-1 

Gravitational constant G 6.67428(67)×10-11 m3. kg-1.s-2 

Elementary charge e 1.602176487(40)×10-19 C 

Electric constant ε0 8.854187817...×10-12 F.m-1 

Magnetic constant μ0 1.2566370614...×10-6 N.A-2 

Planck constant h 6.62606896(33)×10-34 J.s 

Avogadro constant NA 6.02214179(30)×1023 mol-1 

Universal gas constant R 8.314472(15) J.mol-1.K-1 

Boltzmann constant k 1.3806504(24)×10-23 J.K-1 

Faraday constant F 9.64853399(24)×104 C mol-1 

Stefan-Boltzmann constant σ 5.670400(40)×10-8 W.m-2.K-4 

Rydberg constant R∞ 1.0973731568527(73)×107 m-1 

Fine structure constant α 7.2973525376(50) )×10-3  

Electron rest mass me 9.109389215(45)×10-31 kg 

Proton rest mass mp 1.672621637(83)×10-27 kg 

Neutron rest mass mn 1.674927211(84)×10-27 kg 

Electron magnetic moment μe -9.28476377(23)×10-24 J.T-1 

Proton magnetic moment μp 1.410606662(37)×10-26 J.T-1 

 

* According to the National Institute of Standards and Technology. 
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Appendix C – Basic differentiation rules 

 

Constant multiplication rule: 

( ) ( )dd
d d

f x
cf x c

x x
  =       (C-1) 

Addition rule: 

( ) ( ) ( ) ( )d dd
d d d

f x g x
f x g x

x x x
 + = +       (C-2) 

Multiplication rule: 

( ) ( ) ( ) ( ) ( ) ( )d dd
d d d

f x g x
f x g x g x f x

x x x
  = +       (C-3) 

Division rule: 

( )
( )

( ) ( ) ( ) ( )

( ) ( )

d d
d d d
d

f x g x
g x f xf x x x

x g x f x g x

− 
= 

  
     (C-4) 

 

Table C-1: Derivatives of fundamental functions 

( )f x  ( )d
d
f x

x
 

nx  1nnx −  

xa  lnxa a  

ln x  1
x

 

sin x  cos x  

cos x  sin x−  

tan x  
2

1
cos x

 

cot x  
2

1
sin x

−  
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Appendix D – Basic integration rules 

 

Constant multiplication rule: 

( ) ( )d dcf x x c f x x=∫ ∫     (D-1) 

Addition rule: 

( ) ( ) ( ) ( )d d df x g x x f x x g x x + = + ∫ ∫ ∫     (D-2) 

Per-partes method: 

( ) ( ) ( ) ( ) ( ) ( )d d
d d

d d
g x f x

f x x f x g x g x x
x x

   
= −   

   
∫ ∫     (D-3) 

Substitution method: 

( )( ) ( ) ( )
( ) ( ) ( ) ( )( )d

ddd d d
d

u g xg x
f g x f u u F u F g xg xx u x

x

 =
  = = = =  

∫ ∫     (D-4) 

 

Table D-1: Integrals of fundamental functions 

 ( )f x  ( )df x x∫  

nx  1

;  1
1

nx c n
n

+

+ ≠ −
+

 

1
x

 
ln x  

xa  
ln

xa c
a
+  

ln x  lnx x x c− +  

sin x  cos x c− +  

cos x  sin x c+  

tan x  ln cos x c− +  

cot x  ln sin x c+  
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