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FOREWORD 

Dear Readers, 
 
 
We have written this textbook for the subject Basics of Applied Statistics, which is 

taught in the second year of the Bachelor program. It contains the following chapters: 
Probability, Random variables, Multivariate random variables, Creation of random sample 
and descriptive statistics, Point estimation, Statistical intervals and sample sizes at a given 
point estimation accuracy, Tests of hypotheses for a single sample and Statistical inference for 
two samples.  

 
When writing the text, we placed emphasis on keeping the text as close as possible to 

the Engineer´s way of thinking. We avoided the exact mathematical formulations of the 
definitions. We tried to define new terms so as to be easier for engineers to understand and yet 
not lose their "exactness". The concepts are therefore explained using examples and figures.   

 
Although the textbook was written primarily for the Bachelor program, it will also 

prove useful for students in higher engineering and doctoral studies. For researchers and 
workers in technical fields, it will also be helpful in the processing and evaluation of 
experimental data. 

The textbook contains a lot of example problems and their solutions, in which the basic 
terms are clearly set out. At the end of the textbook, most necessary statistical tables are 
listed. 

 
I wish to thank my reviewers, prof. Ing. Ladislav Starek, CSc., doc. RNDr. Karol 

Pastor, PhD. and PhDr. Jozef Galata, CSc., for their comments and reviewing the manuscript. 
Finally, I would like to express my great appreciation and gratitude to RNDr. Daniela 
Richtáriková, PhD., for her editing work, Mgr. Jana Gabková, PhD., for his valuable 
methodological comments, and Mgr. Milada Omachelová, PhD., for her beautiful pictures. 
 
 
 

         author 
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1 PROBABILITY 

1.1 Random experiment, sample space and event 

Learning goals 

� Explain the terms random experiment, sample space and event. 
� Define the sample space and event of a random experiment. 
� Define a new joint event from existing events by using set operations. 
� Assess if events are mutually exclusive and/or exhaustive. 
� Explain the difference between discrete and continuous random variables. 

Random experiment 

When different results are obtained in repeated trials, the experiment is called a random 
experiment. Some sources of variability in the results are controllable and some are 
uncontrollable in the random experiment. 
For example, when testing the life length of light bulbs, the sources of variability include: 

− material, 
− manufacturing process, 
− production environment (temperature, humidity, etc.)., 
− measuring instrument, 
− drift of current, 
− observer. 

Sample space Ω 

The sample space is the set of all possible results of the random experiment. We define two 
types of sample spaces. 

1. Discrete sample space: consists of a finite (or countably infinite) number of outcomes. 
For example, a coin toss: { }head, tail .Ω =  

2. Continuous sample space: consists of infinite and innumerable outcomes. For 

example, life length of light bulbs: { }: 0x xΩ = ≥ . 

Event E 

An event is a subset of the sample space belonging to the random experiment. 
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Set Operations 

To determine a new composite (joint) event from existing events we will use three set 
operations: 

1. union ( 1 2E E∪ ): combines all outcomes of 1E  and 2E , 

2. intersection ( 1 2E E∩ ): includes outcomes that are common to 1E  and 2E ,   

3. complement ( E ′ or E ): contains outcomes that are not in E . Note that ( )E E′ ′ = , while
E E Ω′∪ = . 

Laws for set operations 

The following laws are used in set operations:  
 

1. commutative law 

1 2 2 1E E E E∩ = ∩ ,       1 2 2 1E E E E∪ = ∪ , 

2. distributive law 

( ) ( ) ( )1 2 3 1 3 2 3E E E E E E E ,∩ ∪ = ∪ ∩ ∪  

( ) ( ) ( )1 2 3 1 3 2 3E E E E E E E ,∪ ∩ = ∩ ∪ ∩  

3. deMorgan´s law 

( )1 2 1 2E E E E′ ′ ′∩ = ∪ ,  ( )1 2 1 2E E E E′ ′ ′∪ = ∩ . 

 

Mutually exclusive events and complete system 

A collection of events kEEE ,,, 21 …  is said to be mutually exclusive (disjoint), if the events 

do not have any outcomes in common, i.e.: 

i jE E∩ =∅    for all pairs ( ):i, j i j≠ . 

The set of events kEEE ,,, 21 …  are said to be exhaustive (form a complete system) if their 

union is equal to Ω , that is 

1 2 kE E E Ω∪ ∪ ∪ =… . 
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Figure 1.1  Mutually exclusive and exhaustive events 

Example 1.1  

The rise time (unit: min) of a reactor for two batches are measured in an experiment.  
1. Define the sample space of the experiment. 

{ }: 0x xΩ = > , where x represents a rise time of the reactor for a certain batch. 

2. Define an event A  where the reactor rise time of the first batch is less than 55 minutes and  
B  where the reactor rise time of the second batch is greater than 70 minutes. 

{ }: 0 55A x x= < <  

{ }: 70B x x= >  

3. Find  , andA B A B B′∪ ∩ . 

{ }:0 55 70A B x x x∪ = < < ∨ > – the reactor rise time is less than 55 min or greater 

than 70 min. 

A B∩ = ∅ – the reactor rise time is less than 55 min and greater than 70 minutes; it 
is impossible. 

{ }: 55A x x′ = ≥ – the reactor rise time is not less than 55 minutes. 

4. Are A and B mutually exclusive? 

Yes, because A B∩ = ∅ . 

5. Are A and B exhaustive? 

No, because A B Ω∪ ≠ .

Diagrams 

Diagrams are often used to display a sample space and events in an experiment: 
1. Venn diagram: A rectangle represents the sample space and circles indicate individual 

events, as illustrated in Fig. 1.2. 
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Figure 1.2  Venn diagrams: union, intersection and complement 

2. Tree diagram: Branches represent possible outcomes, as shown in the following figure. 
The tree diagram method is useful when the sample space is established through several 
steps or stages.  

 

 

Figure 1.3  Tree diagram for outcomes of tossing three coins at the same time 

 

1.2 Interpretations of probability 

Learning goals 

� Explain the term probability. 
� Define the probability of an event. 

Probability 

The probability of an event means the likelihood of the event occurring in a random 
experiment. If Ω  denotes the sample space and A , 1 2 3, , ,A A A … denote events, the following 

conditions should be met: 
1. ( ) 1P Ω =  
2. 0 ( ) 1P A≤ ≤  

3. 1 2 3 1 2 3( ) ( ) ( ) ( ) ,P A A A P A P A P A∪ ∪ ∪ = + + +" "  where the events are mutually 

exclusive. 
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Classical definition of probability 

If the sample space consists of n outcomes that are equally likely, the probability of each 
outcome is 1/n. Then the probability of an event A consisting of k equally likely outcomes is 

n
kAP =)(  

where n is the number of possible outcomes in Ω  and k is the number of equally likely 
elements in A.  
 
Note. For any event A , ( ) 1 ( )P A P A′ = − . 

Statistical definition of probability 

When we conduct n independent trials in the random experiment and monitored event A 

occurs k times, then the relative frequency of the occurrence of events A is 
n
kAhn =)( ; if for 

∞→n  the relative frequencies vary increasingly close within about a specific number, we 
can assume that this number is the probability of event A, i.e. P(A). We estimate the value of 
P(A) with a relative frequency  

n
kAhAP n =≈ )()( . 

Note. There is a significant difference between classical definition of probability and 
statistical definition of probability. 

1.2.1 Probability of joint events 

Learning goals 

� Find the probability of a joint event by using probabilities of individual events. 

Probability of joint events 

The probability of a joint event can often be calculated by using the probabilities of the 
individual events involved. The following rules can be used to determine the probability of a 
joint event when the probabilities of existing events are known:  

 ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩     applies generally;          

( ) ( ) ( )P A B P A P B∪ = +   if A B∩ = ∅ ; 

( ) ( ) ( ) ( )P A B C P A P B P C∪ ∪ = + + − ( ) ( ) ( ) ( )P A B P A C P B C P A B C∩ − ∩ − ∩ + ∩ ∩ . 
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Figure 1.4  Venn diagrams for the probability of joint events 

Example 1.2 

A teacher of statistics tells students that the probabilities of obtaining grades of A, B, C, and 
D or below are 1/5, 2/5, 3/10 and 1/10, respectively. Find the probabilities of obtain signs:  
1. A or B;  
2. B or below. 

Solution 

Let 1 2 3 4, , ,E E E E  denote the events of earning an A, B, C, and D or below, respectively. 

These individual events are mutually exclusive and exhaustive because 

1 2 3 4 1 2 3 4( ) ( ) ( ) ( ) ( )P E E E E P E P E P E P E∪ ∪ ∪ = + + + =  

 
1 2 3 1 1.
5 5 10 10

= + + + =  

1. The event of earning an A or B is 1 2E E∪ . Therefore, 

1 2 1 2 1 2
1 2 3( ) ( ) ( ) ( ) 0 .
5 5 5

P E E P E P E P E E∪ = + − ∩ = + − =  

2. The event of earning a B or below is 2 3 4E E E∪ ∪ , which is equal to 1.E′  Therefore, 

2 3 4 1 1
1 4( ) ( ) 1 ( ) 1 .
5 5

P E E E P E P E′∪ ∪ = = − = − =  

Example 1.3 

Test results of scratch resistance and shock resistance for 100 disks of polycarbonate plastic 
are as follows: 
 

Scratch resistance 
Shock resistance 

High Low 

High 80 9 

Low 6 5 
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Let A  denote the event that a disk has high scratch resistance and A′  denote the event that a 
disk has low scratch resistance. Let B  denote the event that a disk has high shock resistance 
and B′  denote the event that a disk has low shock resistance (see below). 
 

Scratch resistance 
Shock resistance ∑  

High (B) Low (B´) 

High (A) 80 9 89 

Low (A´) 6 5 11 

∑  86 14 100 
 
1. When a disk is selected at random, find the probability that both the scratch and shock 

resistances of the disk are high. 

80( ) 0,8 80 %
100

P A B∩ = = = . 

2. When a disk is selected at random, find the probability that the scratch or shock resistance 
of the disk is high. 

We know that 
89( )
100

P A = , 
86( )

100
P B =  a 

80( )
100

P A B∩ =    

Therefore 

89 86 80 95( ) ( ) ( ) ( ) 95%.
100 100 100 100

P A B P A P B P A B∪ = + − ∩ = + − = =
 

3. Consider the event that a disk has high scratch resistance and the event that a disk has high 
shock resistance. Are these two events mutually exclusive? 

Because 
80( ) 0,

100
P A B∩ = ≠  the events A  and B  are not mutually exclusive. 

1.3 Conditional probability 

Learning goals 

� Explain the term conditional probability of events. 
� Calculate the conditional probability of events. 
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Conditional probability 

The conditional probability ( )P B A  is the probability of an event B , given an event A . The 

following formula is used to calculate the conditional probability: 

( )( )
( )

P A BP B A
P A
∩

= , where ( ) 0P A > . 

Example 1.4 

A new method of monitoring carpal tunnel syndrome at the workplace is tested with two 
groups of people: 50 workers having CTS and 50 healthy workers without CTS (see table 
below).  

Group 
Test result 

Negative Positive 

CTS 10 40 

Healthy 45 5 

 
Let A  denotes the event that a worker has CTS and A′  denotes the event that a worker does 
not have CTS. Let B  denotes the event that a CTS test is positive and B′  denotes the event 
that a CTS test is negative. The summary of CTS test results is as follows: 

Group 
Test result ∑  

Negative (B´) Positive (B) 

CTS (A) 10 40 50 

Healthy (A´) 45 5 50 

∑  55 45 100 

 
1. Find the probability that a CTS test is positive ( B ) when a worker has CTS ( A ). 

We know that 
50( ) ,

100
P A =  

45( )
100

P B =  and 
40( )

100
P A B∩ = , then it is valid: 

( ) 40 /100 4( ) 80%
( ) 50 /100 5

P A BP B A
P A
∩

= = = = . 

2. Find the probability that a worker has CTS ( A ), when a CTS test is positive ( B ). 

( ) 40 /100 40( ) 88,89%
( ) 45 /100 45

P A BP A B
P B
∩

= = = = . 
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1.4 Multiplication and total probability rules 

Learning goals 

� Explain the multiplication rule. 
� Explain the total probability rule. 
� Apply the total probability rule to find the probability of an event when the event is 

partitioned into several mutually exclusive and exhaustive subsets. 

Multiplication rule 

From the definition of conditional probability 

P( A B ) P( B A)P( A) P( A B )P( B ) P( B A)∩ = = = ∩ . 

Total probability rules  

1. When event B  is partitioned into two mutually exclusive events B A∩  and B A′∩ , then 
it is valid: 

( ) ( ) ( )
( ) ( ) ( ) ( ).

P B P B A P B A
P B A P A P B A P A

′= ∩ + ∩ =
′ ′= +  

 

Figure 1.5  Partitioning event B into two mutually exclusive events 
 

 

2. Let kAAA  ..., , , 21  be mutually exclusive and exhaustive events, then it is valid: 

1 2

1 1 2 2

( ) ( ) ( ) ( ) ...
( ) ( ) ( ) ( ) ( ) ( ).

k

k k

P B P B A P B A P B A
P B A P A P B A P A P B A P A

= ∩ + ∩ + + ∩ =

= + + +

"
"  
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Figure 1.6  Partitioning event B into k mutually exclusive events 

Example 1.5 

In Example 1.4, the CTS screening method experiment indicates that the probability of 
screening a worker having CTS ( A ) as positive ( B ) is 0,8 and the probability of screening a 
worker without CTS ( A′ ) as positive ( B ) is 0,1. Then it is valid 

( ) 0,8P B A =    a   ( ) 0,1P B A′ = . 

Suppose that the appearance of CTS in industry has probability ( ) 0,0017 0,17%.P A = =  We 
will find probability that a randomly selected worker has positive CTS test ( B ) at the 
workplace. 

We know that ( ) 0,0017,P A =  then ( ) 1 ( ) 1 0,0017 0,9983P A P A′ = − = − = . 
By using a total probability rule we will get: 

( ) ( ) ( ) ( ) ( )
0,8 0,0017 0,1 0,9983 0,101.

P B P B A P A P B A P A′ ′= × + × =

= × + × =
 

Example 1.6 

Customer reviews are used to evaluate preliminary product design. In the past, 95% of very 
successful products, 60% of moderately successful products and 10% of poor products 
received good ratings. In addition, 40% of the product designs were very successful, 35% 
were moderately successful and 25% of the product designs were poor. We find the 
probability that the product will get good ratings. 

Let 1 2,A A  and 3A  represent events – “very successful product,” “moderately successful 

product,” and “poor product.” Let us denote G  the event of getting good rating from 
customers. Then 

1( ) 0,95P G A = ;   2( ) 0,60P G A = ;   3( ) 0,10P G A = ; 

1( ) 0,40P A = ;   2( ) 0,35P A =    and   3( ) 0,25P A = . 

The events 1 2,A A  and 3A  are mutually exclusive and exhaustive because: 
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1 2 3 1 2 3( ) ( ) ( ) ( )
0,40 0,35 0,25 1 ( ).

P A A A P A P A P A
P Ω

∪ ∪ = + + =
= + + = =

 

When we use the total probability rule, we get: 

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )
0,95 0,40 0,60 0,35 0,10 0,25 0,62 62%.

P G P G A P A P G A P A P G A P A= × + × + × =

= × + × + × = =
 

1.5 Independence of two events 

Learning goals 

� Explain the term independence between events. 
� Assess the independence of two events. 

Independence of events 

Two events A  and B  are stochastically independent if the occurrence of A  does not affect 
the probability of B  and vice versa. In other words, two events A  and B  are independent if 
and only if applies one of the following relations: 

1. ( ) ( )P A B P A=  

2. ( ) ( )P B A P B=  

3. ( ) ( ) ( )P A B P A P B∩ =  

Derivation of the relationship ( ) ( ) ( )P A B P A P B∩ = : 

When events A  and B  are independent, then it is valid: 

( )( ) ( )
( )

P A BP B A P B
P A
∩

= =    ⇒   ( ) ( ) ( )P A B P A P B∩ = . 

Example 1.7 

For the CTS test results in Example 1.4, the following probabilities have been calculated: 

45( )
100

P B =    and   
4( )
5

P B A = . 

We will find out if events A and B are independent. Because 
4( )
5

P B A =  ≠ 
45( )

100
P B = , 

events A  and B  are not independent. This means that the information from the CTS test is 
useful for monitoring workers having CTS at the workplace. 
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1.6 Bayes´ theorem  

Learning goals 

� Apply Bayes´ theorem to find the conditional probability of an event when the event is 
partitioned into several mutually exclusive and exhaustive subsets. 

Bayes´ theorem 

From the definition of conditional probability we get: 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( )
.

( ) ( ) ( ) ( )

P B A P A P B A P AP A BP A B
P B P B P B A P B A

P B A P A
P B A P A P B A P A

∩
= = = =

′∩ + ∩

=
′ ′+

 

The multiplication rule for a collection of k mutually exclusive and exhaustive events 

kAAA  ..., , , 21  and any event B is 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )k kP B P B A P A P B A P A P B A P A= + + +"    

From the two expressions above, the following general result (known as Bayes´ theorem) is 
derived: 

1 2

1 1 2 2

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

.
( ) ( ) ( ) ( ) ( ) ( )

i i i i
i

k

i i

k K

P B A P A P B A P A
P A B

P B P B A P B A P B A
P B A P A

P B A P A P B A P A P B A P A

= = =
∩ + ∩ + + ∩

=
+ + +

"

"

 

Example 1.8 

In Example 1.4 and Example 1.5, the following probabilities have been calculated: 

( ) 0,8P B A = ;   ( ) 0,1P B A′ = ;   ( ) 0,0017P A =    and   ( ) 0,101P B = . 

We will find the probability that a worker has CTS ( A ) when the test is positive ( B ). 
Using Bayes´ theorem we get 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
0,8 0,0017 0,013 1,3%.

0,101

P B A P A P B A P A
P A B

P B P B A P A P B A P A
= = =

′ ′+

×
= = =
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Since the occurrence of CTS in industry is low (0,17%), the probability that a worker 
has CTS is quite small (1,3 %) even if the test is positive. 

 
We show the calculation using the following table. 

Events 
Ai 

Prior 
probabilities 

P(Ai) 

Conditional 
probabilities 

P(B|Ai) 

Joint 
probabilities 

P(Ai ∩ B) 

Posterior 
probabilities 

P(Ai|B) 

A 0,0017 0,8 0,00136 0,01344 

A´ 0,9983 0,1 0,09983 0,98656 

 1,0000  P(B) = 0,10119 1,0000 
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2 RANDOM VARIABLES 

Learning goals 

� Explain the terms random variable X and range of X. 
� Distinguish between discrete and continuous random variables. 

Random variable 

A random variable, denoted by an uppercase (capital letters) such as X, associates real 
numbers individual outcomes of a random experiment. Note that a measured value of X is 
denoted by a lowercase such as 70x = . 
 

The set of possible numbers of X is referred to as the range of X. Depending on the type 
of the range, two categories of random variables are defined: 

1. Discrete random variable: has a finite (or countably infinite) range.  

E.g. tossing a coin: 0X =  for head and 1X =  for tail. 

2. Continuous random variable: has an interval of real numbers for its infinite range. 
E.g. the life length of an Infinity light bulb: 0X ≥ . 

2.1 Discrete random variables 

2.1.1 Probability distributions and probability mass functions 

Learning goals 

� Distinguish between probability mass function and cumulative distribution function. 
� Determine the probability mass function of a discrete random variable. 

Probability distribution 

A probability distribution indicates how probabilities are distributed over possible values of 
X. 
 

Two types of functions are used to express the probability distribution of a discrete 
random variable X: 
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1. probability mass function (p.m.f.): describes the probability of  a value of X, i.e., 
( )iP X x= , 

2. cumulative distribution function (c.d.f.): describes the sum of the probabilities of 
values of X that are less than or equal to a specified value, i.e., )( ixXP ≤ . 

Probability mass function (p.m.f.) 

The probability mass function of a discrete random variable X, denoted as ( )f x , is  

( ) ( )i if x P X x= = , 1 2i nx x , x , , x= … , 

which can be expressed by the table 
 

x 1x  2x  3x  . . . nx  

f(x) 1( )f x  2( )f x  3( )f x  . . . ( )nf x  

 

Probability mass function satisfies the following properties: 

1. ( ) 0if x ≥  for all ix  

2. 
1

( ) 1
n

i
i

f x
=

=∑  

Then its graph is as follows: 
 

 

Figure 2.1 

Example 2.1  

The grades of 50n =  students in a statistics class are summarized as follows: 

Marks A B C D   E FX 

Number of students 5 8 10 12 10 5 
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We determine the probability mass function of X and plot f(x). 

Solution: 

Let random variable X (grade for the course) take its values = 1, 2, 3, 4, 5, 6 x  representing 
marks A, B, C, D, E and FX.  

x  1 2 3 4 5 6 

Number of students 5 8 10 12 10 5 

At first we calculate all the values of probability mass function: 

1
5( ) ( 1) 0,1

50
f x P X= = = =  2

8( ) ( 2) 0,16
50

f x P X= = = =  3
10( ) ( 3) 0,2
50

f x P X= = = =  

4
12( ) ( 4) 0,24
50

f x P X= = = =  5
10( ) ( 5) 0,2
50

f x P X= = = =  6
5( ) ( 6) 0,1
50

f x P X= = = =  

 

Then 

f(x) given by table: f(x) given by graph: 

x f(x) 

1 0,10 

2 0,16 

3 0,20 

4 0,24 

5 0,20 

6 0,10 

∑  1 
 

2.1.2 Cumulative distribution function 

Learning goals 

� Explain the term cumulative distribution function of a discrete random variable X, 
denoted as )(xF . 

� Determine the cumulative distribution function of the discrete random variable. 
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Cumulative distribution function (c.d.f.) 

The cumulative distribution function of a discrete random variable X, denoted as )(xF , is  

∑∑
≤≤

===≤=
xx

i
xx

i
ii

xXPxfxXPxF )()()()(
 

which can be expressed as follows 

1

1 1 2

1 2 2 3

1 2 1 1

0;
( );
( ) ( );

( )
... ...

( ) ( ) ... ( );
1;

i n n

n

x x
f x x x x
f x f x x x x

F x

f x f x f x x x x
x x

− −

<⎧
⎪ ≤ <⎪
⎪ + ≤ <

= ⎨
⎪
⎪ + + + ≤ <
⎪

≤⎩

 

Cumulative distribution function has the following properties: 

1. 1)(0 ≤≤ xF  for any real x 

2. )()( 21 xFxF ≤  for 21 xx <  

3. 1( ) ( ) ( )i i if x F x F x −= −  

 

Figure 2.2  Distribution function given by graph 

Example 2.2  

In the previous example, we calculated the following probabilities: 

( 1) 0,10P X = = ;    ( 2) 0,16P X = = ;    ( 3) 0,20P X = = ;     

( 4) 0,24P X = = ;  ( 5) 0,20P X = = ;  ( 6) 0,10P X = =  

We determine the cumulative distribution function of the variable X and draw its graph.  
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By using the probability mass functions of X we get values of c.d.f. at individual points: 

(1) ( 1) ( 1) 0,1F P X P X= ≤ = = =  

(2) ( 2) ( 1) ( 2) 0,1 0,16 0,26F P X P X P X= ≤ = = + = = + =  

(3) ( 3) 0,10 0,16 0,20 0,46F P X= ≤ = + + =  

(4) ( 4) 0,10 0,16 0,20 0,24 0,70F P X= ≤ = + + + =  

(5) ( 5) 0,10 0,16 0,20 0,24 0,20 0,90F P X= ≤ = + + + + =  

(6) ( 6) 0,10 0,16 0,20 0,24 0,20 0,10 1,00F P X= ≤ = + + + + + =  

( 2) ( 2) ( 1) 0,26 0,10 0,16P X P X P X= = ≤ − ≤ = − =  

Functional notation of c.d.f.: 

0 1
0,10 1 2
0,26 2 3

( ) 0,46 3 4
0,70 4 5
0,90 5 6
1 6

x
x
x

F x x
x
x
x

<⎧
⎪ ≤ <⎪

≤ <⎪
⎪= ≤ <⎨
⎪ ≤ <
⎪

≤ <⎪
⎪ ≤⎩

 

Graph of c.d.f.: 

 

Figure 2.3  Cumulative distribution function X 

2.1.3 Mean and variance of a discrete random variable 

Learning goals 

� Calculate the mean (expected value), variance and standard deviation of a discrete 
random variable. 
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Mean of X 

The mean of X, denoted as μ or )(XE , means that the expected value of X and is defined by 

the relationship 

( ) ( )
x

μ E X x f x= =∑  

Variance of X 

The variance of X, denoted as 2σ  or )(XD , indicates the dispersion of X about μ and is 

defined by the relationship 

2 2 2 2( ) ( ) ( ) ( )
x x

σ D X x μ f x x f x μ= = − = −∑ ∑  

Standard deviation of X 

The standard deviation of X, denoted as σ , is defined by the relationship 

2 2 2 2( ) ( ) ( ) ( )
x x

D X x μ f x x f x μσ σ= = = − = −∑ ∑  

Example 2.3 

We determine the mean, variance and standard deviation of X (Example 2.1). 
The probabilities of the values of X, we have calculated (see Example 2.1), are in the 
following table. 

x 1 2 3 4 5 6 

f(x) 0,10 0,16 0,20 0,24 0,20 0,10
Then 

( ) 1 0,10 2 0,16 3 0,20 4 0,24 5 0,20 6 0,10 3,58
x

xf xμ = = × + × + × + × + × + × =∑  

2 2 2

x

x f ( x )σ μ⎛ ⎞= − =⎜ ⎟
⎝ ⎠
∑  

( )2 2 2 2 2 2 21 0 10 2 0 16 3 0 20 4 0 24 5 0 20 6 0 10 3 58, , , , , , ,= × + × + × + × + × + × − =  

14 98 12 8164, ,= − =  
2 1636,=  

2 2,1636 1,47092σ σ= = =  
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2.1.4 Discrete uniform distribution 

Learning goals 

� Describe the probability distribution of a discrete uniform random variable. 
� Determine the probability function, mean, variance and standard deviation of a discrete 

uniform random variable. 

Probability mass function of a discrete uniform distribution 

A discrete uniform random variable X has an equal probability for each value in its range 
},.,2,1,{ baaa …++ , ba <  (see Figure 2.4). Thus, the probability mass function of X has the 

form 

1
1)(
+−

=
ab

xf , where  , 1, ,x a a b= + …  

 

 

Figure 2.4  A discrete uniform distribution 

The mean and variance of X  are given by relations 

2
a bμ +

=      and     
2

2 ( 1) 1
12

b aσ − + −
=  

Example 2.4 

Suppose that six outcomes are equally likely in the experiment of casting a single die. 
1. Probability mass function of the discrete uniform distribution 
Determine the probability mass function of the number (X) of the die. 

We know that X takes the values 1,2, ,6x = … , 1a =  and 6b = . Thus, the probability 
function of X is 

1 1 1( ) ,
1 6 1 1 6

f x
b a

= = =
− + − +

 1,2, ,6x = …  
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2. Probability 
We find the probability that the number of points in the roll of the dice X  in the experiment 
is greater than two. 

2

1

1 2 2( 2) 1 ( 2) 1 1
6 6 3i

P X P X
=

> = − ≤ = − = − =∑  

3. Mean, variance and standard deviation 
We know that 1a =  and 6b = , then the mean, variance and standard deviation of X is as 
follows: 

1 6 3,5
2 2

a bμ + +
= = =  

2 2
2 2( 1) 1 (6 1 1) 1 2,917 1,708

12 12
b aσ − + − − + −

= = = =  

2,917 1,708σ = =  
 

2.1.5 Binomial distribution 

Learning goals 

� Explain the terms Bernoulli trial and binomial experiment. 
� Describe the probability distribution of a binomial random variable. 
� Determine the probability mass function, mean and variance of a binomial random 

variable. 

Binomial experiment 

Binomial experiment refers to a random experiment consisting of n  repeated trials which 
satisfy the following conditions: 

1. The trials are independent, i.e. the outcome of a trial does not affect the outcomes of 
other trials. 

2. Each trial has only two outcomes, labeled as “success“ and “failure“. 

3. The probability of a „success „in each trial is constant and equals p. 
In other words, a binomial experiment consists of a series of n  independent Bernoulli trials 
(see the definition of Bernoulli trial below) with a constant probability of success (p) in each 
trial. 
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Bernoulli trial 

A Bernoulli refers to a trial that has only two possible outcomes. 
E.g. Bernoulli trials 
1. flipping a coin: { }head, tailΩ =  

2. truth of an answer: { }right, wrongΩ =  

3. status of a machine: { }working,brokenΩ =  

4. quality of a product: { }good,defectiveΩ =  

5. outcome of a task: { }úspešný, neúspešnýΩ =  

Probability mass function of Bernoulli random variable X  is 

1 , 0
( )

, 1
p x

f x
p x
− =⎧

= ⎨ =⎩
 

The mean, variance and standard deviation of a Bernoulli random variable X  are 

pμ = ,         2 (1 )p pσ = −     and    (1 )p pσ = −  

Derivation of the relations for μ , 2σ  and σ  of a Bernoulli random variable 

( ) 0 (1 ) 1
x

xf x p p pμ = = × − + × =∑  

( )2 2 2 2 2 2( ) 0 (1 ) 1 (1 ).
x

x f x p p p p pσ μ⎛ ⎞= − = × − + × − = −⎜ ⎟
⎝ ⎠
∑

 

2 (1 )p pσ σ= = −  

Binomial random variable 

A binomial random variable X  represents the number of trials whose outcome is a „success“ 
out of n  trials in a binomial experiment with a probability of „success“ p  (see Table 2.1). 
General notation of a binomial distribution is ( , )X Bi n p∼ . 

The probability mass function of X  is 

( )( ) 1 ,n xxn
f x p p

x
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

   0, 1, ...,x n=  

General notation of a binomial distribution is ),(~ pnBiX . 



Random Variables 

 

29 

Note. The number of combinations of x  from n  is equal to 
( )

!
! !

n
x

n nC
x x n x

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

. 

 
The mean, variance and standard deviation of a binomial random variable X  are 

npμ = ,     2 (1 )np pσ = −      and     (1 )np pσ = −  

 

Table. 2.1  Properties of binomial distribution 

Distribution Population* 
Parameters 

Probability of 
„success“  

Number of trials 
Frequency of 

„success“ 
binomial infinite p  = constant ° n  = constant variable X  

*  If an item selected from a population is replaced before the next trial, the size of the 
population is considered infinite even if it may be finite. 

°  If the probability of success p  is constant, the trials are considered independent; otherwise, 
the trials are dependent. 

 

Example 2.5 

A test has 50 multi-choice questions. Each question has four choices but only one answer is 
right. Suppose that a student gives his/her answers by simple guess. 
 
1. Probability mass function of a binomial distribution 
Determine the probability mass function of the number of right answers (X) that the student 
gives in the test. 

Since a “right answer” is a success, the probability of a success for each question is 
1 0,25
4

p = = . Thus, the probability mass function of X is given by the relationship 

( ) 5050
( ) 1 0,25 0,75 ,n xx x xn

f x p p
x x

− −⎛ ⎞ ⎛ ⎞
= − = × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 0,1, 2, ,50x = …  

2. Probability 
Find the probability that the student answers at least 30 questions correctly. 

29
50 7

0

50
( 30) 1 ( 30) 1 0,25 0,75 1,6 10x x

x
P X P X

x
− −

=

⎛ ⎞
≥ = − < = − × × = ×⎜ ⎟

⎝ ⎠
∑  
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3. Mean, variance and standard deviation of the correct answers 
The calculation is as follows: 

50 0,25 12,5n pμ = = × =   
2 (1 ) 50 0,25 0,25 9,375n p pσ = − = × × =   and  9,375 3,0619σ = =  

2.1.6 Hypergeometric distribution 

Learning goals 

� Describe the probability distribution of a hypergeometric random variable. 
� Compare the hypergeometric distribution with the binomial distribution. 
� Determine the probability mass function, mean, variance and standard deviation of a hy-

pergeometric random variable. 

Hypergeometric random variable 

A hypergeometric random variable X  represents the number of successes in a sample of size 
n  that is selected at random without replacement from a finite population of size N consisting 

of M  successes and ( )N M−  failures. Since each item selected from the population is not 

replaced, the outcome of a trial depends on the outcome(s) of the previous trial(s). Therefore, 
the probability of success p  at each trial is not constant. 

The probability mass function of X  is given by the relationship 

( ) ;

M N M
x n x

f x
N
n

−⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 { } { }max 0, , , min ,x n M N M n= + − …  

where N, M, n are natural numbers that meet inequalities: .1,1 NMNn <≤<≤  

General notation of a hypergeometric distribution is ),,(~ nMNHX . 

The mean, variance and standard deviation of X  are given by the relationships 

npμ = ,     2 (1 )
1

N nnp p
N

σ −
= −

−
  and  (1 )

1
N nnp p
N

σ −
= −

−
  where  

Mp
N

=  

Note. The variance of a hypergeometric random variable is different from the variance of a 
binomial random variable by ( ) / ( 1)N n N− − , which is called finite population correction 
factor. 
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Hypergeometric versus binomial distribution 

In the hypergeometric distribution the population is finite and probability of success is 
changing, whereas in the binomial distribution the population is infinite and the probability of 
success is constant (see Table 2.3). 

Table 2.2  The characteristics of binomial and hypergeometric distributions 

Distribution Population* 
Parameters 

Probability of 
„success“  

Number of 
trials 

Number of 
„successes“ 

Binomial infinite p  = constant ° n = constant variable X  

Hypergeometric finite p  is changing ° n = constant variable X  

* If an item selected from a population is replaced before the next trial, the size of the 
population is considered infinite even if it may be finite. 

°  If the probability of success p  is constant, the trials are considered independent; otherwise, 
the trials are dependent. 

Example 2.6 

Physical education tutor has prepared interview for a sample of ten randomly selected 
students from the class. The class consists of 30 students, 20 of which are football players and 
10 are basketball players. 
 
1. Probability mass function of the hypergeometric distribution 
Determine the probability mass function of the number of basketball players X in the sample. 

We know that the population includes 30N =  students. The number of selected 
students is 10.n =  Since the number of basketball players is 10, 10.M =  
To determine the range of the number of basketball players (X) in the sample, calculate the 
following: 

{ } { } { }max 0, ( ) max 0,10 (30 10) max 0, 10 0n N M− − = − − = − =  

{ } { }min , min 10,10 10M n = =  

Therefore, the probability mass function of X  is given by the relationship: 

10 30 10 10 20
10 10

( ) ;
30 30
10 10

M N M
x n x x x x x

f x
N
n

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 0,1, 2, ,10x = …  
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2. Probability 
Find the probability that at least one basketball player is in the sample. 

10 20
0 10 0

( 1) 1 ( 0) 1 1 0,006 0,994
30
10

P X P X

⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠≥ = − = = − = − =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

3. Mean, variance and standard deviation of the number of basketball players in the sample 
The calculation is as follows 

10 1
30 3

Mp
N

= = =  

110 3,333
3

n pμ = = × =  

2 21 2 30 10(1 ) 10 1,532567 1,2379
1 3 3 30 1

N nnp p
N

σ − −
= − = × × × = =

− −
 

2.1.7 Poisson distribution 

Learning goals 

� Explain the term Poisson process 
� Describe the probability distribution of a Poisson random variable. 
� Determine the probability mass function, mean and variance of a Poisson random 

variable. 
� Compare the Poisson distribution with the binomial distribution. 

Poisson process 

Suppose that the occurrence of an event over an interval (of time, length, area, space, etc.) is 
countable and the interval can be partitioned into subinterval. Then a random experiment is 
defined as a Poisson process (see Figure 2.5) if it is valid: 

1. The probability of more than one occurrence in a subinterval is infinitesimal 
(approximately zero). 

2. The occurrences of the event in non-overlapping subintervals are stochastically 
indecent-dent. 

3. The probability of one occurrence of the event in a subinterval is the same throughout 
all subintervals and proportional to the length of the subinterval. 
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Figure 2.5.  Poisson process 

In other words, the Poisson process is a binomial experiment with infinite n trials. For 
example: the number of defects of product; the number of customers in a store; the number of 
automobile accidents; the number of e-mails received. 

Poisson random variable 

A Poisson random variable X  represents the number of occurrences of an event of interest in 
a unit interval (of time, space, etc.) specified. 

The probability mass function of X  is given by the following relationship: 

( ) ,
!

xef x
x

λλ−

=  0,1,2,x = …  

The mean and variance of X  are 

μ λ=      and     2σ λ=  

Note. Use consistent units to define a Poisson random variable X  and the corresponding 
parameter λ . For example, the following pairs of X and λ  are equivalent to each other:  
 X  λ  
 counts/unit interval average no. of counts/unit interval 
 No. of flaws a disk 1 
 No. of flaws every 10 disks 10 
 No. of flaws every 100 disks 100 
 

Poisson versus binomial distributions 

In the Poisson distribution, the number of trials is infinite, whereas in the binomial 
distribution the number of trials is finite (see Table 2.3). In other words, the Poisson 
distribution with ( )E X λ=  is the limiting form of binomial distribution with ( )E X np= : 
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( )lim ( , ) lim 1 lim 1
!

x n x x
n xx

x x x

n n eBi n p p p
x x n n x

λλ λ λ− −
−

→∞ →∞ →∞

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Proof. Poisson versus binomial distributions 
Suppose that X  is a binomial random variable with parameters n  and p , and let .n pλ =  
Then 

( ) !lim 1 lim 1
!( )!

x n x
n xx

x x

n np p
x x n x n n

λ λ −
−

→∞ →∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ − ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

( 1) ( 1)lim 1 1
!

n xx

xx

n n n x
x n n n
λ λ λ −

→∞

− − + ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

"
 

 

Table 2.3  The characteristics of binomial and Poisson distributions 

Distribution Population* 
Parameters 

Probability of „success“ No. of trials 
No. of 

„successes“ 
Binomial infinite p  = constant ° n = constant variable X  

Poisson infinite /p nλ= = constant n – infinite variable X  

*  If an item selected from a population is replaced before the next trial, the size of the 
population is considered infinite even if it may be finite. 

°  If the probability of success p  is constant, the trials are considered independent; otherwise, 
the trials are dependent. 

 
As n  rises above all limits, then the following applies: 

( 1) ( 1)lim 1xx

n n n x
n→∞

− − +
=

"
 

/
1lim 1 lim 1

( / )

nn

x x
e

n n

λλ
λλ

λ

−−
−

→∞ →∞

⎡ ⎤⎛ ⎞⎛ ⎞− = + =⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

lim 1 1
x

x n
λ −

→∞

⎛ ⎞− =⎜ ⎟
⎝ ⎠

 

Therefore 

( )lim 1
!

x
n xx

x

n ep p
x x

λλ−
−

→∞

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
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Example 2.7 

The number of customers who buy at a local store has a Poisson distribution with mean 5 
customers every 10 minutes. 
 
1. Probability mass function of the Poisson distribution 
Determine the probability mass function of number of customers X  per hour coming to the 
local store. 
The mean of X  is 

( ) 5E Xλ = =  customers/10 min. × 60 min. = 30 customers /hour 

Therefore, the probability mass function of X  is given by the next relationship: 
30 30( ) ,

! !

x xe ef x
x x

λλ− −

= =  0,1,2,x = …  

2. Probability 
Find the probability that 40 customers come to the local store in an hour. 

30 4030(40) ( 40) 0,014 1,4%
40!

ef P X
−

= = = = =  

3. Mean, variance and standard deviation of the number of customers per hour 
We calculate the mean and variance of X . 

30μ λ= =  customers per hour 

2 30σ λ= =   and  30 5,478σ = =  

2.2 Continuous random variables 

2.2.1 Probability distribution and probability density function 

Learning goals 

� Explain the term probability density function of X. 
� Determine probability distribution of a continuous random variable by using the 

corresponding probability density function. 

Probability distribution 

Probability distribution of a continues random variable X is unambiguously defined by the 
probability density function )(xf  or cumulative distribution function )(xF . 
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Probability density function 

Probability density function )(xf  of a continues random variable X  satisfies the following 
properties: 

1. ( ) 0f x ≥  

2. ( ) 1f x dx
∞

−∞

=∫  

3. 
2

1

1 2( ) ( )
x

x

P x X x f x dx≤ ≤ = ∫   pre arbitrary 1x  a 2x  

4. ( ) 0P X x= =  

From properties of density it follows that 

  1 2 1 2 1 2 1 2( ) ( ) ( ) ( )P x X x P x X x P x X x P x X x≤ ≤ = ≤ < = < ≤ = < <  

Example 2.8 

Suppose that X  has the probability density function 

, 0
( )

0, inde

xe x
f x

−⎧ >
= ⎨
⎩

 

Calculate the following probabilities: ( 2),P X <  (2 4)P X≤ <  a ( 4).P X ≥  

a) 
2 2

2

0
0 0

( 2) ( ) 0,86x xP X f x dx e dx e− −⎡ ⎤< = = = − =⎣ ⎦∫ ∫  

b) 
4 4

4 4 2

2
2 2

(2 4) ( ) 0,12x xP X f x dx e dx e e e− − − −⎡ ⎤≤ < = = = − = − + =⎣ ⎦∫ ∫  

c) 4

0 0

( 4) ( ) lim( ) 0,02x x

x
P X f x dx e dx e e

∞ ∞
− − −

→∞
≥ = = = − + =∫ ∫  

Note. ( 2)P X < + (2 4)P X≤ < + ( 4) 1P X ≥ =  

2.2.2 Cumulative distribution functions 

Learning goals 

� Explain the term cumulative distribution function of X . 
� Determine the cumulative distribution function of a continuous random variable. 
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Cumulative distribution function (c.d.f.) 

The cumulative distribution function of a continuous random variable X  is  

( ) ( ) ( )
x

F x P X x f u du
−∞

= ≤ = ∫ . 

and satisfies the following properties: 

1. 0 ( ) 1F x≤ ≤  

2. 1 2( ) ( )F x F x≤  if 1 2x x<  

3. ( )( ) dF xf x
dx

=  for all x for which the derivative exists 

4. ( ) lim ( ) 0
x

F F x
→−∞

−∞ = =  and ( ) lim ( ) 1
x

F F x
→∞

∞ = =  

Other features of the probability density function and cumulative distribution function  

1.   
0

0 0( ) ( ) ( )
x

P X x F x f x dx
−∞

≤ = = ∫    

2.   
2

1

1 2 2 1( ) ( ) ( ) ( )
x

x

P x X x F x F x f x dx≤ ≤ = − = ∫    

3.   
3

3 3( ) 1 ( ) ( )
x

P X x F x f x dx
∞

≥ = − = ∫    

 

Figure 2.6  Properties of continuous distribution 
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Example 2.9 

Let the probability density function of X (Example 2.8) is 

, 0
( )

0, elsewhere

xe x
f x

−⎧ >
= ⎨
⎩

 

Determine the cumulative distribution function of X. In the calculation we use the probability 
density function of X. Then it holds 

0

0
0 0

( ) ( ) ( ) 1
x x

xu u x xF x P X x f u du e du e e e e− − − − −⎡ ⎤= ≤ = = = − = − + = −⎣ ⎦∫ ∫  

Therefore, 

0 0
( )

1 , 0x

x
F x

e x−

<⎧
= ⎨

− ≤⎩
 

 

2.2.3 Numerical characteristics of a continuous random variable 

Learning goals 

� Calculate the mean, variance and standard deviation of a continuous random variable. 

Mean of X  

The mean (expected value) of X  is given by the relationship:  

( ) ( )E X xf x dxμ
∞

−∞

= = ∫  

Variance of X  

The variance of X  is 

2 2 2 2( ) ( ) ( ) ( )D X x f x dx x f x dx
ο

σ μ μ
∞ ∞

− ∞ −∞

= = − = −∫ ∫  

Standard deviation of X  

The standard deviation of X  is given by the formula: 

( )D Xσ =  
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Example 2.10 

The probability density function of X  is defined (Example 2.8) as 

, 0
( )

0, inde

xe x
f x

−⎧ >
= ⎨
⎩

 

Determine the mean, variance and standard deviation of .X  

1. The mean of X  is  

0 0

( ) xxf x dx xe dxμ
∞ ∞

−= =∫ ∫  

We use the method of integration by parts and get: 

( ) 0

0 0

lim lim( ) 1x x x x

x x
xe dx xe e dx e eμ

∞ ∞
− − − −

→∞ →∞
= = − + = + =∫ ∫  

2. The variance of X  is 

2 2 2 2 2 2

0 0 0

( ) 1x xx f x dx x e dx x e dxσ μ μ
∞ ∞ ∞

− −= − = − = −∫ ∫ ∫  

The integral is computed using the method per-partes: 

2 2 2 0

0 0 0

lim( ) 0 2 2 2 1 2x x x x

x
x e dx x e e xe dx xe dx

∞ ∞ ∞
− − − − −

→∞
= − + + = = × =∫ ∫ ∫  

Therefore, 

2 2

0

1 2 1 1xx e dxσ
∞

−= − = − =∫  

3. The standard deviation of X  is 1σ = . 
 

2.2.4 Continuous uniform distribution 

Learning goals 

� Describe the probability distribution of a continuous uniform random variable. 
� Determine the probability density function, cumulative distribution function, mean, 

variance and standard deviation of a continuous uniform random variable. 
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Probability density function 

A continuous uniform random variable X has a constant probability density function over 
the range of X (see Figure 2.7):  

1 pre
( )

0 inde

a x b
f x b a

⎧ ≤ ≤⎪= −⎨
⎪⎩

   

Cumulative distribution function  

A continuous uniform random variable X has a cumulative distribution function 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤

<≤
−
−

<

=

xb

bxa
ab
ax

ax

xF

1

0

)(

 

 

 
Figure 2.7  Continuous uniform distribution 

 

The mean and variance of X are given by the following formulas: 

2
a bμ +

=     and    
2

2 ( )
12

b aσ −
= , where a x b≤ ≤  

Example 2.11 

Suppose that a random number generator produces real numbers that are uniformly distributed 
between numbers 0 and 100. Determine the probability density function, cumulative 
distribution function, probability, mean and variance 2σ  the random variable generated. 
1. Probability density function  
We know that 0a =  and 100b = , then applies: 

1 1 1( ) ,
100 0 100

f x
b a

= = =
− −

  0 100x≤ ≤  
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2. Cumulative distribution function  

For 0 100x< <  is 
1 0( )

100 0 100 0 100 0 100

x

a

x xF x du= = − =
− − −∫ , then 

0 0

( ) 0 100
100
1 100

x
xF x x

x

<⎧
⎪⎪= ≤ <⎨
⎪

≤⎪⎩

 

3. Probability  
Find the probability that a random variable (X) generated is between 10 and 90. 

[ ]
90 90

90

10
10 10

1 1 1 4(10 90) ( ) (90 10)
100 100 100 5

P X f x dx dx x≤ ≤ = = = × = × − =∫ ∫  

4. Mean and variance  
Calculate the mean and variance of X. 

0 100 50
2 2

a bμ + +
= = =  

2 2
2 2( ) (100 0) 833,333 28,8675

12 12
b aσ − −

= = = =  

2.2.5 Normal and standard normal distributions 

Learning goals 

� Describe the properties of a normal distribution. 
� Standardize a normal random variable. 
� Using statistical tables to calculate probabilities. 

Probability density function 

A normal random variable with mean μ and variance 2σ  has the probability density 
function 

2

2
( )

21( )
2

x

f x e
μ
σ

σ π

−−
= ,  x−∞ ≤ ≤ ∞  

A normal (Laplace – Gauss) distribution with mean μ and variance 2 ,σ  denoted as 
2( , ),N μ σ  is symmetric about μ and bell-shaped (see Figure 2.8). The symmetry of a normal 

curve implies 
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( ) ( ) 0,5P X P Xμ μ< = > =  

The parameters μ and 2σ  determine the center (location) and shape of the normal (Gauss) 
curve, respectively. As illustrated in Figure 2.8, the larger the value of μ, the more to the right 
the center of the Gauss curve is located; the smaller the value of 2σ , the sharper the Gauss 
curve.  

 

Figure 2.8  Gauss curves for selected parameter values μ  a 2σ  

Probabilities of normal distribution 

Selected probabilities of a normal distribution are displayed in Figure 2.9. The area under the 
normal curve beyond 3σ±  is quite small (less than 0,003). Since 99,73 % of possible values 
of X are within the interval ( 3 , 3 )μ σ μ σ− + ,  the range of 6σ  is considered as width of a 

normal distribution. 

 

Figure 2.9  Probabilities of a normal distribution 

Standard normal random variable 

Any normal random variable of X with the parameters μ and 2σ  can be transformed to a 
standard normal random variable of Z with the parameters 1μ =  and 2 1σ = , denoted as 

(0,1)Z N∼ .   
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Table 2.4  Relationship between cumulative distribution functions 

Transformation 
2( , )N μ σ  →  (0,1)N  

X  →  
XZ μ
σ
−

=  

x  →  
xz μ
σ
−

=  

( ) ( )F x P X x= ≤  →  ( ) ( )z P Z zΦ = ≤  

( ) xF x μΦ
σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠  

 

Note. The value of xz μ
σ
−

=  is called the z-score. 

 
( ) 1 ( ) ( ) ( ) 1z z z zΦ Φ Φ Φ− = − ⇔ − + =  

 

 

Figure 2.10 

To calculate the probabilities we use statistical tables, that contain values of the function 
2

21( ) d
2

z t

z e tΦ
π

−

−∞

= ∫  for given z. 
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Table 2.5  A brief overview of the comparison of normal and standard normal distribution 

Distribution normal standard normal 

 2( , )N μ σ  (0,1)N  

Random variable 
X 

XZ μ
σ
−

=  

Value of random 
variable 

x 
xz μ
σ
−

=  

Mean ( )E X Rμ = ∈  0μ =  

Variance 2 ( )D Xσ =  2 1σ =  

Probability density 
function 

21
21( )

2

x

f x e
μ

σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=   

for  ∞<<∞− x  

2

21( )
2

z

z eϕ
π

−

=   

for  z−∞ < <∞  

Cumulative 
distribution 
function 

texF
x t

d
2

1)(
2

2
1

∫
∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

−

= σ
μ

πσ
 

for  ∞<<∞− x  

 
 

2

21( ) d
2

z t

z e tΦ
π

−

−∞

= ∫  

for  z−∞ < <∞  

 
 

Properties  –  symmetrical about μ  
–  has a bell shape 
 ( ) 68, 27%P Xμ σ μ σ− < < + =  
 ( 2 2 ) 95, 45%P Xμ σ μ σ− < < + =

 ( 3 3 ) 99, 73%P Xμ σ μ σ− < < + =  

–  symmetrical about μ  
–  has a bell shape 
 ( 1 1) 68, 27%P Z− < < =  
 ( 2 2) 95, 45%P Z− < < =  
 ( 3 3) 99, 73%P X− < < =  

 

1

0,5

m=0
z

FHzL
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Example 2.12 

Compute the following probabilities: 
1. ( 2,11) 1 ( 2,11) 1 0,98257 0, 01743P Z P Z> = − ≤ = − =  

2. ( 0, 41) ( 0, 41) 1 ( 0, 41) 1 0, 65910 0,3409P Z P Z P Z< − = > = − ≤ = − =  

3. ( 2.91) ( 2,91) 0,99819P Z P Z> − = < =  

4. ( 1, 09 2,37) (2,37) ( 1, 09)P Z Φ Φ− < < = − − =  

( )(2,37) 1 (1,09)
0,99111 (1 0,86214)
0,99111 0,13786 0,85325

Φ Φ= − − =

= − − =
= − =

  

5. )6,4( −≤ZP  – is not in statistical tables, can be calculated using statistical software 
Statgraphics, Minitab, Statistica, SPSS, SPlus and the other.  

6. We want to find the value z such that ( ) 0, 02P Z z> = . This probability expression can be 
written as 1 ( ) 0, 02 ( ) 0,98P Z z P Z z− ≤ = ⇔ ≤ = . Now statistical table is used in reverse. 
We search through the probabilities to find the value that corresponds to 0,98. Because we 
do not find 0,98 exactly, we take the nearest value of the probability that is 0,98030, 
corresponding to 2, 06.z =  

7. We are finding the value of z such that ( ) 0,98P z Z z− < < = . Because of symmetry of the 
standard normal distribution, if the area of the shaded region in Figure 2.9 is to equal 0,98, 
the area in each tail of distribution must equal (1- 0,98)/2 = 0,01 . Therefore, the value for z  
corresponds to a probability of 0,99. The nearest probability in Table is 0,99010, when 

2,33.z =  

 

Figure 2.11 

  

-z z0 z

jHzL
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Example 2.13 

The line width of for semiconductor manufacturing is assumed to be normally distributed 
with mean of 0,5 micrometer (μm) and the standard deviation of 0,05 micrometer (μm). 
 
1. We calculate the probability that a line width is greater than 0,62 μm. 
When the width of the line is marked as X its distribution is then 2(0,5;0,05 ).X N∼  We 
calculate the following probability: 

( 0,62) 1 ( 0,62) 1 (0,62)
0,62 0,51 1 ( 2,4) 1 (2,4)

0,05
1 0,9918 0,0082 0,82%

P X P X F

P Z P Z Φ

> = − ≤ = − =

−⎛ ⎞= − ≤ = − ≤ = − =⎜ ⎟
⎝ ⎠

= − = =

 

  

Figure 2.12a Figure 2.12b 
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2. We want to calculate the probability that a line width is between 0,47 μm and 0,63 μm. 
We calculate the following probability: 

(0,47 0,63) (0,63) (0,47)
0,47 0,5 0,63 0,5 ( 0,6 2,6)

0,05 0,05
(2,6) (1 (0,6) 0,9953 1 0,7257 0,721 72,1%

P X F F

P Z P Z

Φ Φ

≤ ≤ = − =

− −⎛ ⎞= ≤ ≤ = − ≤ ≤ =⎜ ⎟
⎝ ⎠

= − − = − + = =

 

 

 
 

Figure 2.13a Figure 2.13b 
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3. We want to find the value of x below which is the 90% of values of the sample. 
We are looking for the value of x for which is valid: 

( ) 0,90P X x< =  

0,5 ( ) 0,90
0,05

xP Z P Z z−⎛ ⎞< = < =⎜ ⎟
⎝ ⎠

 

The closest value to the value of the probability 0,90, found in statistical tables, is 0,8997. The 
corresponding value is 1,28.z =   

Then from 0,5 1,28
0,05

x −
= , we get 1,28 0,05 0,5 0,064 0,5 0,564x = × + = + = . 

  

Figure 2.14a Figure 2.14b 
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3 MULTIVARIATE RANDOM VARIABLES 

3.1 Two discrete random variables 

Learning goals 

� Determine joint, marginal and conditional probabilities for two discrete random 
variables X  and Y  by using corresponding probability distributions. 

� Calculate the mean and variance of X  and Y  by using corresponding marginal 
probability distribution. 

� Calculate the conditional mean and conditional variance of X  given Y y=  (or Y given 
X x= ) by using the corresponding conditional probability distribution. 

� Assess the independence of X  and .Y  
 

Probability distribution of two random variables 

Three kinds of probability distributions are used to describe the stochastic characteristics of 
two random variables X and Y: 

1. joint probability distribution 

2. marginal probability distribution 

3. conditional probability distribution 

Joint probability mass function 

The joint probability mass function (p.m.f.) of two discrete random variables X and Y, denoted 
as ( , )XYf x y , satisfies the following conditions: 

1. ( , ) 0XYf x y ≥  

2. ( , ) 1XY
x y

f x y =∑∑  

3. ( )( , ) ,XYf x y P X x Y y= = =  
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Marginal probability mass function 

The marginal p.m.f.´s of X and Y with the joint p.m.f. ( , )XYf x y  are  

( )( ) ( , )
x

X XY
R

f x P X x f x y= = =∑  

( )( ) ( , )
y

Y XY
R

f y P Y y f x y= = =∑  

where xR  and yR  denote the set of all points in the range of ),( YX  for which xX =  and 

yY = , respectively. 

The marginal p.m.f. ( )Xf x  satisfies the following properties: 

1. ( ) ( ) 0Xf x P X x= = ≥  

2. ( ) 1X
x

f x =∑  

Similar relationships can be applied to ( ).Yf y  

The mean and variance of X  are 

( ) ( )X X
x

E X xf xμ= =∑  

( ) 2 2 2 2( ) ( ) ( )X X X X X
x x

D X x μ f x x f x μσ= = − = −∑ ∑  

Conditional probability mass function 

Recall that ( ) ( ) / ( )P B A P A B P A= ∩  (see Section 1.3. Conditional probability). In parallel, 

the conditional p.m.f. of X  given Y y= , denoted as ( )X yf x , with the joint p.m.f. ),( yxf XY  

is  

( , )( , )( ) ( )
( ) ( )

XY
X y

Y

f x yP X x Y yf x P X x Y y
P Y y f y
= =

= = = = =
=

 

The conditional p.m.f. ( )X yf x  satisfies the following: 

1. ( ) 0X yf x ≥  

2. ( ) 1X y
x

f x =∑  

Similar relationships apply to ( ).Y xf y  
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The conditional mean and conditional variance of X  given Y y=  are 

( ) ( )X y X y
x

E X y xf xμ= =∑  

( ) 2 2 2 2( ) ( ) ( )X y X y X y X y X y
x x

D X y x μ f x x f x μσ= = − = −∑ ∑  

Similar relationships apply to ( ), ( ).E Y x D Y x  

Independence 

Two random variables X  and Y  are independent if knowledge of the values of X  does not 
affect any probabilities of the values of Y  and vice versa. Thus, two independent random 
variables X  a Y  satisfy any of the following: 

1. ( ) ( )XX yf x f x=  

2. ( ) ( )YY xf y f y=  

3. ( , ) ( ) ( )XY X Yf x y f x f y=  

Example 3.1 

The number of defects on the front side ( X ) of a wooden panel and the number of defects on 
the rear side (Y ) of the panel are under study. 
1. Suppose that the joint p.m.f. of X  and Y  is modeled as 

( , ) ( )XYf x y c x y= + , 1,2,3x =  and 1,2,3y = 

Determine the value of .c  

The joint p.m.f. of ( , )XYf x y  must satisfy any of the following: 

a) ( , ) ( ) 0XYf x y c x y= + ≥  

b) ( , ) 1XY
x y

f x y =∑∑  

For the first condition, 0c ≥  because 0x >  and 0.y >  

Next, for the second condition: 

3 3 3 3

1 1 1 1

( , ) ( ) 36 1
x y x y

f x y c x y c
= = = =

= + = =∑∑ ∑∑  ⇒ 1 / 36c =  

Therefore, the joint p.m.f. of X and Y is 
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1( , ) ( )
36XYf x y x y= + , 1,2,3x =  and  1,2,3y =  

2. We determine the marginal p.m.f. of X. We find the mean and variance of X. 
The marginal probabilities of X are: 

3 3

1 1

1 1 1(1) (1, ) (1 ) 9
36 36 4X XY

y y

f f y y
= =

= = + = ⋅ =∑ ∑  

3 3

1 1

1 1 1(2) (2, ) (2 ) 12
36 36 3X XY

y y

f f y y
= =

= = + = ⋅ =∑ ∑  

3 3

1 1

1 1 5(3) (3, ) (3 ) 15
36 36 12X XY

y y

f f y y
= =

= = + = ⋅ =∑ ∑  

Note that ( ) (1) (2) (3) 1X X X X
x

f x f f f= + + =∑ . 

The mean and variance of X are 
3

1

( ) ( ) 1 (1) 2 (2) 3 (3)X X X X
x

E X xf x f f fμ
=

= = = ⋅ + ⋅ + ⋅ =∑  

 1 1 51 2 3 2,17
4 3 12

= × + × + × =  

3
2 2 2

1

( ) ( )X X X
x

D X x f xσ μ
=

⎛ ⎞= = − =⎜ ⎟
⎝ ⎠
∑  

( )2 2 2 21 (1) 2 (2) 3 (3) 2,17X X Xf f f= ⋅ + ⋅ + ⋅ − =  

2 2 2 2 21 1 51 2 3 2,17 0,80
4 3 12

⎛ ⎞= × + × + × − =⎜ ⎟
⎝ ⎠

 

 
3. We determine the conditional p.m.f. of Y given 2.X =  We find the conditional mean and 
conditional variance of Y given 2.X =  

The conditional marginal probabilities of Y given 2X =  are: 

2
(2,1) (1 / 36)(2 1) 1(1)
(2) 1 / 3 4

XY
Y

X

ff
f

+
= = =  

2
(2,2) (1 / 36)(2 2) 1(2)
(2) 1 / 3 3

XY
Y

X

ff
f

+
= = =  

2
(2,3) (1 / 36)(2 3) 5(3)
(2) 1 / 3 12

XY
Y

X

ff
f

+
= = =  

Note that 2 2 2 2( ) (1) (2) (3) 1Y Y Y Y
y

f y f f f= + + =∑ . 
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The conditional mean and conditional variance of Y given 2X =  are: 
3

2 2 2 2 2
1

( 2) ( ) 1 (1) 2 (2) 3 (3)Y Y Y Y Y
y

E Y yf y f f fμ
=

= = = ⋅ + ⋅ + ⋅ =∑  

 1 1 51 2 3 2,17
4 3 12

= × + × + × =  

3
2 2 2

2 2 2
1

( 2) ( )Y Y Y
y

D Y y f yσ μ
=

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠
∑  

 ( )2 2 2 2
2 2 21 (1) 2 (2) 3 (3) 2,17Y Y Yf f f= ⋅ + ⋅ + ⋅ − =  

 2 2 2 2 21 1 51 2 3 2,17 0,80
4 3 12

⎛ ⎞= × + × + × − =⎜ ⎟
⎝ ⎠

 

4. We verify that the number of defects on the front side ( X ) of the wood panel and the 
number of defects on the rear side (Y ) of the panel are independent.  
Check if 

(1,1) (1) (1)XY X Yf f f= ⋅  

We know that 
1 1(1,1) (1 1)
36 18XYf = + = , 

1(1)
4Xf =  a 

1(1)
4Yf = , then 

1 1 1 1(1,1) (1) (1)
18 4 4 16XY X Yf f f⎛ ⎞ ⎛ ⎞= ≠ = × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Thus, the number of defects on the front side ( X ) of a wooden panel and the number of 
defects on the rear side (Y ) of the panel are not independent. 

3.2 Multiple discrete random variables 

3.2.1 Joint probability distributions 

Learning goals 

� Explain the joint, marginal and conditional probability distribution of multi discrete 
random variables. 

� Explain the independence of multi discrete random variables. 

Joint probability mass function 

A joint p.m.f. of discrete random variables nXXX ...,,, 21  is given by the relationship 

)...,,,()...,,,( 221121...21 nnnXXX xXxXxXPxxxf
n

====  



Multivariate Random Variables 

 

54 

and defined for all 1 2, ,..., nx x x  in the range of nXXX ...,,, 21 . 

Marginal probability mass function 

Let the discrete random variables nXXX ...,,, 21  have joint p.m.f. )...,,,( 21...21 nXXX xxxf
n

, then 

the marginal p.m.f. of iX  is 

1 2 ... 1 2
( )

( ) ( ) ( , ,..., )
i n

i

X i i i X X X n
R x

f x P X x f x x x= = = ∑ , 

where ( )iR x  denotes the set of all points in the range of 1 2, ,..., nX X X  for which ii xX = . 

Independence 

The discrete random variables nXXX ...,,, 21  are independent if and only if 

1 2 1 2... 1 2 1 2( , ,..., ) ( ) ( ) ... ( )
n nX X X n X X X nf x x x f x f x f x=  for all 1 2, ,..., nx x x . 

3.3 Two continuous random variables 

Learning goals 

� Determine joint, marginal and conditional probabilities for two continuous random 
variables X  and Y  by using corresponding probability distributions. 

� Calculate the mean and variance of X  and Y  a continuous random variable by using 
the corresponding marginal probability distribution. 

� Calculate the conditional mean and conditional variance of X  given Y y=  and of Y  
given X x=  by using the corresponding conditional probability distributions. 

� Assess the independence of X  and .Y  

Joint probability density function 

The joint probability density function (p.d.f.) of two continuous random variables X  and Y  
satisfies the following:  

1. ( , ) 0XYf x y ≥  

2. ( , ) 1XYf x y dxdy
∞ ∞

−∞ −∞

=∫ ∫  
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Marginal probability density function 

The marginal p.d.f.´s of X and Y with the joint p.d.f. ),( yxf XY  are 

( ) ( , )X XY
y

f x f x y dy= ∫  

( ) ( , )Y XY
x

f y f x y dx= ∫  

The marginal p.d.f. of X satisfies the following: 

1. ( ) 0Xf x ≥  

2. ( ) 1X
x

f x dx =∫  

The mean and variance of X are 

( ) ( )X X
x

E X xf x dxμ= = ∫  

2 2 2 2( ) ( ) ( ) ( )X X X X X
x x

D X x f x dx x f x dxσ μ μ= = − = −∫ ∫  

Conditional probability distribution 

The conditional p.d.f. of X given Y y=  with joint p.d.f. ),( yxf XY  is  

( , )( )
( )

XY
X y

Y

f x yf x
f y

=  

The conditional p.d.f. ( )X yf x  satisfies the following: 

1. ( ) 0X yf x ≥  

2. ( ) 1X y
x

f x dx =∫  

The conditional mean and conditional variance of X given Y y=  are 

( ) ( )X y X y
x

E X y xf x dxμ= = ∫  

2 2 2 2( ) ( ) ( ) ( )
x

X y X y X y X y X y
x R

D X y x f y dy y f y dyσ μ μ= = − = −∫ ∫  

Similar relationships apply to ( ), ( ), ( ), ( ), ( ), ( ).Yf y E Y D Y f Y x E Y x D Y x  
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Independence 

Two continuous random variables X and Y are independent if any of the following is true: 

1. ( ) ( )XX yf x f x=  

2. ( ) ( )YY xf y f y=  

3. ( , ) ( ) ( )XY X Yf x y f x f y=  

Example 3.2  

Two measurement methods are used to evaluate the surface smoothness of a paper product. 
Let X and Y denote the measurements of each of the two methods. 
1. Suppose that the join p.d.f. of  X and Y is modeled by 

( , ) ,XYf x y c=  0 4,x< <  1 1x y x− < < +  

Determine the value of c. 

The ranges of X and Y are given in the following picture. Note that the range of 
integration for X is divided into two parts:  

I. 0 1x< ≤ , 0 1y x< < +    and   II. 1 4x< < , 1 1x y x− < < +     

 

Figure 3.1 

The joint p.d.f. of X and Y must satisfy: 

a) ( , ) 0XYf x y c= ≥  

b) ( , ) 1XY
y x

f x y dxdy =∫ ∫  

For the first condition, 0c ≥  because 0x >  and 0.y >  

According to the second conditions we calculate: 
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1 1 4 1 1 4

0 0 1 1 0 1

( , ) ( 1) 2
x x

XY
y x x

f x y dxdy cdydx cdydx c x dx c dx
+ +

−

= + = + + =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  

[ ] [ ]( )
1

1 42
0 1

0

1 32 6 7,5 1
2 2

c x x c x c c c
⎛ ⎞⎡ ⎤= + + = + = =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

1/ 7,5 2 /15c = =  
Then the joint p.d.f. of X and Y is 

2( , ) ,
15XYf x y =  0 4,x< <  1 1x y x− < < +  

2. We find the marginal p.d.f., the mean and variance of X. 

The marginal p.d.f. of X is 
1

0
1

1

2 2 ( 1), 0 1
15 15

( ) ( , )
2 2 42 , 1 4

15 15 15

x

X XY x
y

x

dy x x
f x f x y dy

dy x

+

+

−

⎧
= + < ≤⎪

⎪= = ⎨
⎪ = × = < <⎪⎩

∫
∫

∫
 

The mean and variance of X is 
1 4

0 1

2 4( ) ( ) ( 1)
15 15X

x
E X xf x dx x x dx xdxμ= = = + + =∫ ∫ ∫  

 ( )
1 1

43 2 2

1
0 0

2 1 1 2 2 5 2 1915 2,11
15 3 2 15 15 6 15 9

x x x
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + = ⋅ + ⋅ = =⎜ ⎟ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

 

21 4
2 2 2 2 2

0 1

2 4 19( ) ( ) ( 1)
15 15 9X X

x
D X x f x dx x x dx x dxσ μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫  

 
1 1 4 2

4 3 3

0 0 1

2 1 1 4 1 19
15 4 3 15 3 9

x x x
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞= + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

2
22 7 4 63 19 989 1,221 1,11

15 12 15 3 9 810
⎛ ⎞= ⋅ + ⋅ − = = =⎜ ⎟
⎝ ⎠

 

3. We find the conditional p.m.f., conditional mean and conditional variance of Y given 
      2.X =  

The conditional p.m.f. of Y given 2X =  is 

2
(2, ) 2 /15 1( ) ,
(2) 4 /15 2

XY
Y

X

f yf y
f

= = =   1 3y< <  

The conditional mean and conditional variance of Y given 2X =  are 
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33 3
2 2

2 2
11 1

1 1 1 1( 2) ( ) (3 1) 2
2 2 2 4Y YE Y yf y dy ydy yμ

⎛ ⎞⎡ ⎤= = = = = ⋅ − =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∫ ∫  

3 3
2 2 2 2 2

2 2 2
1 1

1( 2) ( ) 2
2Y Y YD Y y f y dy y dyσ μ= = − = − =∫ ∫  

 
3

3 2 3 2 2

1

1 1 12 (3 1) 2 0,33 0,58
2 3 6

y
⎛ ⎞⎡ ⎤= − = ⋅ − − = =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 

4. Independence 

Check if 2 ( ) ( ) :YYf y f y=  

2
(2, ) 1( ) ,
(2) 2

XY
Y

X

f yf y
f

= =   1 3y< <  

Note that range of X for 1 3y< <  is 1 1.y x y− < < +  
Then the marginal p.d.f. of Y for 1 3y< <  is 

[ ]( )
1

1

1
1

2 2 4( ) ( , ) ,
15 15 15

y
y

Y XY y
x y

f y f x y dx dx x
+

+

−
−

= = = =∫ ∫   1 3y< <  

Since 2
1 4( ) ( ) ,
2 15YYf y f y⎛ ⎞ ⎛ ⎞= ≠ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 the measurement of the two methods X and Y are not 

independent. 

3.4 Multiple continuous random variables 

Learning goals 

� Explain the joint, marginal and conditional probabilities of multiple continuous random 
variables. 

� Explain the independence of multiple continuous random variables. 

Joint probability density function 

The joint p.d.f. of multiple continuous random variables 1 2, ,..., nX X X  satisfies the following:   

1. 
1 2 ... 1 2( , ,..., ) 0

nX X X nf x x x ≥  

2. 
1 2 ... 1 2 1 2( , ,..., ) 1

nX X X n nf x x x dx dx dx
∞ ∞ ∞

−∞ −∞ −∞

=∫ ∫ ∫" …  
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Marginal probability density function 

When )...,,,( 21...21 nXXX xxxf
n

 is the joint p.d.f. of the continuous random variables 1X , 2X , ... 

nX , then the marginal p.d.f. of iX  is 

1 2 ... 1 2 1 2 1 1
( )

( ) ( , ,..., )
i n

i

X i X X X n i i n
R x

f x f x x x dx dx dx dx dx− += ∫∫ ∫" … …  

where ( )iR x  is the set of all points in the range of nXXX ...,,, 21  for which ixX = . 

Mean and variance 

The mean of iX  is given by 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

= nnXXXii dxdxdxxxxfxXE
n

…" 2121... )...,,,()(
21

 

The variance of iX  is given by 

1 2

2
... 1 2 1 2( ) ( ) ( , ,..., )

i ni i X X X X n nD X x f x x x dx dx dxμ
∞ ∞ ∞

−∞ −∞ −∞

= −∫ ∫ ∫" …  

Independence of random variables 

The continuous random variables nXXX ...,,, 21  are independent if and only if satisfies: 

)()()()...,,,( 2121... 2121 nXXXnXXX xfxfxfxxxf
nn

…=  

for all nxxx ...,,, 21 . 

3.5 Covariance and correlation 

Learning goals 

� Explain the terms covariance and correlation between two random variables X and Y. 
� Calculate the covariance and correlation coefficient of the random variables X and Y. 

Covariance   

The covariance between two random variables X and Y (denoted as ),cov( YX  or XYσ ) 
indicates the linear relationship between X and Y: 

[ ]( )( ) ( ) ,XY X Y X YE X Y E XYσ μ μ μ μ= − − = −     XYσ−∞ < < ∞  



Multivariate Random Variables 

 

60 

Derivation of the relationship 

[ ] [ ]( )( )X Y X Y X YE X Y E XY Y Xμ μ μ μ μ μ− − = − − + =  

( ) ( ) ( )X Y X YE XY E Y E Xμ μ μ μ= − − + =  

( ) X Y Y X X YE XY μ μ μ μ μ μ= − − + =  

( ) X YE XY μ μ= −  

Covariance properties: 

1. cov( , ) cov( , )X Y Y X=  

2. cov( , ) ( ) ( )X Y D X D Y≤ ⋅  

3. XYσ  depends on the variances of X and Y 

Correlation coefficient 

The correlation between two random variables X and Y represents the normalized linear 
relationship between X and Y ( XYσ  normalized by Xσ  and Yσ ):  

( )cov ,  
( ) ( )

XY
XY

X Y

X Y
D X D Y

σρ
σ σ

= =  

Properties of the correlation coefficient: 

1. [ 1;1],XYρ ∈ −  

2. 1XYρ =  – direct linear dependence; with increasing values of X the values of Y increase, 

3. 1XYρ = −  – indirect linear dependence; with increasing values of X the values of Y 

decrease, 

4. XYρ  is a dimensionless. 

Independence of X an Y 

When X and Y are independent, then 

0XY XYσ ρ= =  

This is only necessary (not sufficient) condition for the independence of X and Y. In other 
words, even if 0XY XYσ ρ= =  we cannot say that X and Y are independent. 

Covariance matrix 

The covariance of random variables X a Y was defined above. Let us have a random vector 

( ) TT
21  ..., , , X=nXXX , then we can define the covariance matrix. 
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The covariance matrix of the random vector ( ) TT
21  ..., , , X=nXXX  is 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

σσσ

σσσ
σσσ

"
#%##

"
"

21

22221

11211

Σ  

where 

( ) jinjiXX jiij ≠==   , ..., ,2 ,1,   , ,covσ  are the covariance between the components of a 

random vector; 

( ) niXX iiiii  ..., ,2 ,1   , ,cov 2 === σσ  are the variances of the individual components of a 

random vector. 

The covariance matrix is a square and symmetric matrix. When any two elements of a random 
vector are independent or at least uncorrelated, then the covariance matrix is diagonal. This 
means that the elements out of diagonal are equal to zero. In addition, if the variances of all 

the variables iX  ( ni  ..., ,2 ,1= ) are the same, ( ) 2σ=ixD  ( ni  ..., ,2 ,1= ), then the covariance 

matrix of the random vector  ( ) TT
21 ..., , , X=nXXX  has the form EΣ 2σ= , where E  is 

identity matrix which means that the diagonal elements are equal to one and the others are 
zero. 

Correlation matrix 

Correlation matrix of a random vector ( ) TT
21  ..., , , X=nXXX  is 

1
1

1

12 1n

21 2n

n1 n2

ρ ρ
ρ ρ

Ρ

ρ ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# # % #
"

 

where 

( )cov  i j ij
ij

i j i j

X , X
,

σ
ρ

σ σ σ σ
= =  1, 2, ...,   i, j n, i j= ≠  the correlation coefficient between the 

i-th and j-th component of the random vector; 
( )cov  

1i i ii
ii

i j i i

X , X σρ
σ σ σ σ

= = = , 1, 2, ..., i n=  is the correlation coefficient between the i-th 

and i-th component of the random vector. 
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The correlation matrix is square and symmetric matrix. When any two elements of a random 
vector are independent or at least uncorrelated, then the correlation matrix is identity matrix.  

Example 3.3 

The number of defects on the front side ( X ) of a wooden panel and the number of defects on 
the rear side (Y ) of the panel are under study (Example 3.1). Calculate the value of the 
covariance and correlation coefficient. 

We known that joint p.m.f. of X and Y is 1( , ) ( )
36XYf x y x y= + , 1,2,3x =  and 

1,2,3y = , then applies: 
3 3 3 3

1 1 1 1

1( ) ( , ) ( )
36XY

y x y x

E XY xyf x y xy x y
= = = =

= = + =∑∑ ∑∑  

 [1 1 1 (1 1) 2 1 (2 1) 3 1 (3 1)
36

= ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ + +"  

] 11 3 (1 3) 2 3 (2 3) 3 3 (3 3) 168 4,67
36

+ ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ + = × =  

From the symmetry of ( , )XYf x y  is known that X Yμ μ=  and X Yσ σ= . In Example 3.1 

was calculated 2,17Xμ =  and 0,80Xσ = . Therefore 

( ) 4,67 2,17 2,17 0,04XY X YE XYσ μ μ= − = − × = −  

0,04 0,06
0,80 0,80

XY
XY

X Y

σρ
σ σ

−
= = = −

×
 

Thus, there is a weak negative correlation between the number of defects on the front 
side ( X ) of a wooden panel and the number of defects at the rear side (Y ) of the wood panel. 

Example 3.4 

Consider two measuring methods (Example 3.2). 

a) Calculate the value of the covariance and correlation coefficient. 

b) Determine the covariance and correlation matrix. 

We know that measurements of X and Y have joint p.m.f. 2( , ) ,
15XYf x y =  0 4,x< <  

1 1,x y x− < < +  then: 
14 1 4 42

2

0 1 0 01

2 2 4( )
15 15 2 15

xx

x x

yE XY xy dydx x dx x dx
++

− −

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫  
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43

0

4 4 64 256 5,68888
15 3 15 3 45

x⎡ ⎤
= = ⋅ = =⎢ ⎥

⎣ ⎦
 

The mean and variance of X were calculated in Example 3.3: 2,11Xμ =  and 1,11.Xσ =  

To be able to calculate the value of the covariance and correlation coefficient, it remains to 
calculate Yμ  and Yσ . 
The region of integration for variable Y is divided into three parts: 
I. 0 1y< ≤ , 0 1x y< < +  
II. 1 3y< ≤ , 1 1y x y− < < +  
III. 3 5y< < , 1 4y x− < <  

 

Figure 3.2 

The marginal p.d.f. of Y is 

1

0
1

1

4

1

2 2 ( 1), 0 1
15 15

2 2 4( ) ( , ) 2 , 1 3
15 15 15

2 2 (5 ), 3 5
15 15

y

y

Y XY
x y

y

dx y y

f y f x y dx dx y

dx y y

+

+

−

−

⎧
= + < ≤⎪

⎪
⎪
⎪= = = × = < ≤⎨
⎪
⎪
⎪ = − < <
⎪⎩

∫

∫ ∫

∫

 

The mean and variance of Y are 
1 3 5

0 1 3

2 4 2( ) ( ) ( 1) (5 )
15 15 15Y

y

E Y yf y dy y y dy y dy y y dyμ= = = + + + − =∫ ∫ ∫ ∫  

 ( )
1 1 5 5

33 2 2 2 3

1
0 0 3 3

2 1 1 2 2 5 1
15 3 2 15 15 2 3

y y y y y
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= + + + − =⎜ ⎟ ⎜ ⎟⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠  
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1 16 44 97 2,1556
9 15 45 45

= + + = =  

21 3 5
2 2 2 2 2 2

0 1 3

2 4 2 97( ) ( ) ( 1) (5 )
15 15 15 45Y y

y

D Y y f y dy y y dy y dy y y dyσ μ
⎛ ⎞ ⎛ ⎞= = − = + + + − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫ ∫ ∫ ∫

21 3 5
2 2 2

0 1 3

2 4 2 97( 1) (5 )
15 15 15 45

y y dy y dy y y dy ⎛ ⎞= + + + − − =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

 
1 1 3 5 5 2

4 3 3 3 4

0 0 1 3 3

2 1 1 4 1 2 5 1 97
15 4 3 15 3 15 3 4 45

y y y y y
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞= + + + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

2
27 104 164 97 5617 1,38691 1,17767

90 45 45 45 4050
⎛ ⎞ ⎛ ⎞= + + − = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

a) Then the value of covariance is 
256 190 97 461( ) 1,13827
45 90 45 405XY X YE XYσ μ μ= − = − ⋅ = =  

And the value of correlation coefficient is 
461
405 0,872386

989 5647
810 4050

XY
XY

X Y

σρ
σ σ

= = =
×

  

b) For the random vector ( )T TX , Y = X  from the calculated values can be determined 

correlation matrix 

1 1 0,87
1 0,87 1

XY

YX

ρ
Ρ

ρ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 and covariance matrix  

2

2

1,11 1,14
1,14 1,18

2
XX XY X XY

2
YX YY YX Y

σ σ σ σ
σ σ σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

Σ  

  



Multivariate Random Variables 

 

65 

3.6 Bivariate normal distribution 

Learning goals 

� Explain the joint probability density function of bivariate normal random variables. 
� Determine the joint, marginal and conditional probabilities of bivariate normal random 

variables. 

Bivariate normal random variables 

The joint probability density function of two normal random variables X and Y with means 

Xμ  and ,Yμ  variances 2
Xσ  and 2

Yσ  and correlation coefficient XYρ  ( 1 1XYρ− < < ) is  

2

2 22

1 1 ( )( , ) exp
2(1 )2 1

X
XY

XY XX Y XY

xf x y μ
ρ σπσ σ ρ

⎧ ⎡ −⎪= − −⎨ ⎢−− ⎪ ⎣⎩  
2

2

2 ( )( ) ( ) ,XY X Y Y

X Y Y

x y yρ μ μ μ
σ σ σ

⎫⎤− − − ⎪− + ⎬⎥
⎪⎦⎭

,x y−∞< <∞  

 

 

Figure 3.3  Bivariate normal distribution with different values of XYρ  

Marginal probability distribution 

The marginal probability distributions of X and Y are normal with means Xμ  and Yμ  and 

variances 2
Xσ  and 2

Yσ , respectively.  

Conditional probability distribution 

The conditional probability distribution of Y given xX =  is normal with mean 

( ) ( )Y
Y XY X

X

E Y x xσμ ρ μ
σ

= + −  
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and variance 
2 2( ) (1 )Y XYD Y x σ ρ= −  

Example 3.5 

Let X and Y represent two dimensions of an injection molded part. Suppose that X and Y have 
a bivariate normal distribution with means 3,00Xμ =  and 7,70Yμ = , and variances 

2 20,04Xσ =  and 2 20,08 .Yσ =  Assume that X and Y are independent, i.e., 0.XYρ =  Determine 

probability that 2,95 3,05X< <  and 7,60 7,80.Y< <  

Because X and Y are independent, 

(2,95 3,05;7,60 7,80) (2,95 3,05) (7,60 7,80)P X Y P X P Y< < < < = < < < <  

By standardizing both X and Y we have: 

2,95 3,00 3,05 3,00(2,95 3,05)
0,04 0,04

X

X

XP X P μ
σ

⎛ ⎞−− −
< < = < < =⎜ ⎟

⎝ ⎠
 

( 1,25 1,25) ( 1,25) ( 1,25)P Z P Z P Z= − < < = < − < − =  

0,894 0,106 0,789= − =  

7,60 7,70 7,80 7,70(7,60 7,80)
0,08 0,08

Y

Y

YP Y P μ
σ

⎛ ⎞−− −
< < = < < =⎜ ⎟

⎝ ⎠
 

 ( 1,25 1,25) 0,789P Z= − < < =  

Thus, 

(2,95 3,05;7,60 7,80) 0,789 0,789 0,623P X Y< < < < = × =  

3.7 Linear combinations of random variables 

Learning goals 

� Explain the term linear combination of random variables. 
� Determine the mean and variance of linear combination of random variables. 

Linear combination 

A random variable Y is sometimes defined by a linear combination of several random 
variables nXXX ,,, 21 … : 

1 1 2 2 n nY k X k X k X= + + +… , where ki´s are constants 
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Rules for linear combination 

The following rules are useful to determine the mean and variance of a linear combination of 
X and Y. 
1. Rules for means 

a) ( )E b b=  

b) ( ) ( )E aX aE X=  

c) ( ) ( )E aX b aE X b+ = +  

d) ( ) ( ) ( )E aX bY aE X bE Y± = ±  

e) ( )( ) ( )k k kE aX a E X=  

where a, b, k are constants. 
2. Rules for variances 

a) ( ) 0D b =  

b) 2( ) ( )D aX a D X=  

c) 2 2( ) ( ) ( ) ( )D aX b a D X D b a D X+ = + =  

d) 2 2( ) ( ) ( ) 2 cov( , )D aX bY a D X b D Y ab X Y± = + ±  
2 2( ) ( ) ( ),D aX bY a D X b D Y± = +  if X and Y are independent. 

Note. Notice that cov( , ) XY XY X YX Y σ ρ σ σ= =   

 
The rules 1d) and 2d) can be extended for nn XkXkXkY +++= …2211  as follows: 

1 1 2 2
1

( ) ( ) ( ) ( ) ( )
n

n n i i
i

E Y k E X k E X k E X k E X
=

= + + + = ∑…  

1
2 2 2
1 1 2 2

1 1

1
2

1 1 1

( ) ( ) ( ) ( ) 2 cov( , )

( ) 2 cov( , )

n n

n n i j i j
i j i

n n n

i i i j i j
i i j i

D Y k E X k E X k E X k k X X

k E X k k X X

−

= = +

−

= = = +

= + + + + =

= +

∑ ∑

∑ ∑∑

…
 

Example 3.6 

The width of a casing X and the width of a door Y (both variables in meters) are normally 
distributed with means 0,61Xμ = m and 0,51Yμ = m, and standard deviations 0,0030Xσ = m 

and 0,0015Yσ = m, respectively. Assume that the width of the casing X and the width of the 

door Y are independent. Determine the mean and standard deviation of the difference between  
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the width of the casing X and the width of the door Y. 

2(0,61;0,0030 ),X N∼  2(0,51;0,0015 )Y N∼  and cov( , ) 0,X Y =  because X and Y 
are independent. 

Therefore, 

( ) ( ) ( ) 0,61 0,51 0,10E X Y E X E Y− = − = − = m 
2 2 6( ) ( ) ( ) 2cov( , ) 0,0030 0,0015 0 3,15 10D X Y D X D Y X Y −− = + − = + − = ⋅  

3.8 Moment generating functions 

Learning goals 

� Explain the term moment generating function. 
� Determine the moment generating function a kth moments of a random variable X. 
� Find the mean and variance of X by using the first and second moments of X. 

Moment generating function 

The moment generating function of a random variable X (denoted as ( )XM t ) is the expected 

value of ,tXe  i.e.,  

( ), if is a discrete random variable

( ) ( )
( ) , if is a continuous random variable

itx
i

i
tX

X
tx

e f x X

M t E e
e f x dx X

∞

−∞

⎧
⎪⎪= = ⎨
⎪
⎪⎩

∑

∫
 

The moment generating function of X is unique if it exist and completely determines the 
probability distribution of X. Thus, if two random variables have the same moment generating 
function, they have the same probability distribution. 

Moment 

If ( ) ( )k
XM t  denotes the kth derivative of ( ),XM t  the kth moment of X about the origin ( 0t = ) 

is 

( )

( ), if is a diskrete random variable

( ) (0)
( ) , if is a continuous random variable

k
i i

i
k k

X
k

x f x X

E X M
x f x dx X

∞

−∞

⎧
⎪⎪= = ⎨
⎪
⎪⎩

∑

∫
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Derivation of the relationship 
We know that the kth derivative of ( )XM t  is 

( )

( ), if isdiscrete random variable
( )( )

( ) , if iscontinuous random variable

k tx

k x
k X

X k
k tx

x e f x X
d M tM t

dt x e f x dx X
∞

−∞

⎧
⎪⎪= = ⎨
⎪
⎪⎩

∑

∫
 

Application of moments 

The mean and variance of X can be determined by using the first and second moments of X: 

( ) (0)X XE X Mμ ′= =  

[ ] [ ]2 22 2( ) ( ) (0) (0)X X XE X E X M Mσ ′′ ′= − = −  

Example 3.7 

The geometric random variable X has probability distribution 
1( ) (1 ) ,xf x p p −= −  1,2, ,x n= …  

1. We find the moment generating function of X. 
From the definition of moment generating function we get 

11

1 1

( ) ( ) (1 ) (1 )
xtx tx x t t

X
x x x

M t e f x e p p pe p e
∞ ∞ −−

= =

⎡ ⎤= = − = −⎣ ⎦∑ ∑ ∑  

Note that the sum of the infinite geometric sequence 2( , , , )a ar ar …  is 

1

1

,
1

n

n

aS ar
r

∞
−

=

= =
−∑  where 1r <  

Thus 

( )
1 (1 )

t

X t

peM t
p e

=
− −

 

2. We determine the mean and variance of X by using the first and second moments of X 
about the origin. 
The first moment of X about the origin ( 0=t ) is 

{ }1
0

0

1 (1 )( )(0)
t t

X
X

t
t

d pe p edM tM
dt dt

−

=

=

⎡ ⎤⎡ ⎤− −⎣ ⎦⎡ ⎤ ⎢ ⎥′ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  
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[ ]

2

2 2

0

(1 ) (1 )
1 (1 ) 1 (1 ) 1 (1 )1 (1 )

t t

t t

t

pe p p e p p p
p e p pp e

=

⎡ ⎤− −⎢ ⎥= + = + =
− − − −⎢ ⎥ − −⎡ ⎤− −⎣ ⎦⎣ ⎦

 

2
(1 ) 1p p p

p p p
−

= + =  

The second moment of X about the origin ( 0=t ) is 

2

2
00

( ) ( )(0) X X
X

tt

d M t dM tM
dt dt ==

′⎡ ⎤ ⎡ ⎤′′ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
{ } { }1 22

0 0

1 (1 ) (1 ) 1 (1 )t t t t

t t

d pe p e d p p e p e

dt dt

−

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

2 2 2

2 3

0

1 2 (1 ) 2 (1 )

1 (1 ) 1 (1 )

t t

t t

t

p p e p p e
p p e p e

=

⎡ ⎤− −⎢ ⎥= + + =
⎢ ⎥⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

[ ] [ ]
2 2

2 3 2 3

1 2 (1 ) 2 (1 ) 1 2 (1 ) 2 (1 )
1 (1 ) 1 (1 )

p p p p p p p p
p p p pp p

− − − −
= + + = + + =

− − − −
 

2

2 2

1 2(1 ) 2(1 ) 2p p p
p p p p

− − −
= + + =  

Therefore the mean and variance of X are 

1( ) (0)X XE X M
p

μ ′= = =  

[ ] [ ]2 22 2( ) ( ) (0) (0)X X XE X E X M Mσ ′′ ′= − = − =  

2

2 2

2 1 1p p
p p p

⎛ ⎞− −
= − =⎜ ⎟

⎝ ⎠
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3.9 Chebyshev´s inequality 

Learning goals 

� Explain the use of Chebyshev´s inequality rule. 
� Bound the probability of a random variable X by using Chebyshev´s inequality rule and 

compare the bound probability with the corresponding actual probability. 

Chebyshev´s inequality 

A relationship between the mean and variance of a random variable X having a certain 
probability distribution is formulated by Chebyshev as follows: 

( ) 2

1 ,P X c
c

μ σ− ≥ ≤  0c >  

By using Chebyshev´s inequality rule, a bound probability of any random variable can be 
determined. In Tab. 3.1 are presented bound probabilities of a normal random variable X with 
parameters μ  and 2σ  and corresponding actual probabilities. 

Tab. 3.1 Bound probabilities and actual probabilities of a normal random variable X 

c 
Probability condition 

( )P X c− ≥μ σ  

Bound probability 
(1/c2) Actual probability 

1,5 ( )1,5P X μ σ− ≥  0,444 0,134 

2 ( )2P X μ σ− ≥  0,250 0,046 

3 ( )3P X μ σ− ≥  0,111 0,003 

4 ( )4P X μ σ− ≥  0,063 < 0,001 

 
The actual probability is calculated by adjusting the probabilistic relationship as follows:  

  ( ) ( ) ( )1
X

P X c P c P Z c P Z c
μ

μ σ
σ

⎛ − ⎞
− ≥ = ≥ = ≥ = − < =⎜ ⎟

⎝ ⎠
   

  1 ( )P c Z c= − − < <  
When the last relationship gradually substituted for c values 1,5; 2; 3; 4 and do the 
calculation, we obtain the value of the actual probabilities (Tab. 3.1). 
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Example 3.8 

Suppose that the photoresist thickness X in semiconductor manufacturing has a continuous 
uniform distribution with a mean of 10 μm and a standard deviation of 2,31 μm over the range 
6 14x< <  μm. We bound the probability that the photoresist thickness is less than 7 or 
greater than 13 μm. Then we compare the bounded probability with the actual probability. 
 
The probability density function of the uniform random variable X is 

1 1 1( ) ,
14 6 8

f x
b a

= = =
− −

  6 14x< <  

Using Chebyshew´s inequality we get: 

( ) ( ) 2

( 7) ( 13) ( 10 7 10) ( 10 13 10)
( 10 3) ( 10 3)

10 3 10 1/

P X P X P X P X
P X P X

P X P X c cσ

< + > = − < − + − > − =
= − < − + − > =

= − > = − > <

 

Therefore 33 2,31 1,3
2,31

c c c= ⋅ = ⋅ ⇒ =σ �  

Then the bound probability is 

( ) 2 2

1 110 3 0,59
1,30

P X
c

⎛ ⎞− > < = =⎜ ⎟
⎝ ⎠

 

and the actual probability equals 

[ ]
13

13

7
7

1 1 6( 7) ( 13) 1 (7 13) 1 1 1 0,25
8 8 8

P X P X P X dx x< + > = − < < = − = − = − =∫  

The actual probability is less than the bound probability, which supports the Chebyshev´s 
inequality. 
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4 CREATION OF RANDOM SAMPLE AND DESCRIPTIVE 
STATISTICS 

Learning goals 

� Recognize the difference between population and random sample. 
� Describe the terms random sample and statistic. 
� Distinguish between the terms statistic and value of the statistic. 
� Distinguish between the terms ordered random sample, order statistic and value of or-

der statistic. 
� Explain why picking a representative random sample is important in research. 

Population 

Probability distribution is often used as a model for a population. The population that is 
normally distributed with parameters μ  and 2σ , is called normal population or population 
with normal distribution. For example a design engineer may consider as normal population 
all values of the internal diameter of the piston ring automobile engine.  

Random sample 

Random sample is taken from the population under study, which is created by a certain ran-
dom mechanism, to avoid bias (over- or underestimation).  

Consider a random variable X  with distribution function ( )F x  and experiment, the re-
sults of which can be regarded as the value of this random variable. When we make n trials in 
a given experiment independently and under the same conditions, we get n observations 

1 2, , , nx x x… , which represent the values of random variables nXXX ,,, 21 … . 

Exactly is a random sample defined as follows: 
The random variables nXXX ,,, 21 …  make random sample of size n  if: 

1. are independent of each other, 

2. every iX  has the same probability distribution )(xf . 

Thus, the joint probability density function (mass function) of nXXX ,,, 21 …  is 

)()()(),,,( 212121 nnXXX xfxfxfxxxf
n

"…… =  

 



Creation of Random Sample and Descriptive Statistics 

 

74 

Statistic 

A statistic is a function of random variables nXXX ,,, 21 …  from a random sample, which 

does not depend on the parameters of the probability distribution of the random variable X . 
The obvious is that statistic is a multivariate random variable, denoted generally by 

) ,..., ,( 21 nXXXT . 

Value of statistic 

The value that can acquire statistic ) ,..., ,( 21 nXXXT  in one random sample realization 

nxxx ,,, 21 …  is called a value of statistic and denoted ) ,..., ,( 21 nxxxT . 

Ordered random sample and its realization 

Let us have observations nxxx ,,, 21 … , which are realizations of a random sample 

nXXX ,,, 21 … . When we arrange observations by size in ascending order we get 

)()2()1( nxxx ≤≤≤ " , what are realization of an ordered random sample (1) (2) ( ), , , nX X X… . 

Order statistic and its value 

A random variable )(iX  from an ordered random sample represents the ith order statistic and a 

value ( )ix  is the value of ith order statistic. 

4.1 The numeric methods of descriptive statistics 

Learning goals 

� Describe the basic statistical characteristics and their values used in descriptive statis-
tics. 

The most commonly used statistics and their values 

• Sample mean X  Value of sample mean x  

1

1 n

i
i

X X
n =

= ∑  
1

1 n

i
i

x x
n =

= ∑  

A sample mean characterizes the central location of data. 
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• Sample variance 2S  Value of sample variance 2s  

( )22

1

1
1

n

i
i

S X X
n =

= −
− ∑  

( )

2
2

2 1 12

1

/
1

1 1

n n

i in
i i

i
i

x x n
s x x

n n
= =

=

⎛ ⎞− ⎜ ⎟
⎝ ⎠= − =

− −

∑ ∑
∑  

A sample variance characterizes the variability of the data.  

• Sample standard deviation S Value of sample standard deviation s 

( )∑
=

−
−

==
n

i
i XX

n
SS

1

22

1
1  ( )∑

=

−
−

==
n

i
i xx

n
ss

1

22

1
1  

A sample standard deviation charakterizes the variability of the data.  

• Sample standard error Value of sample standard error 

( )∑
=

−
−

=
n

i
i XX

nnn
S

1

2

)1(
1  ( )∑

=

−
−

=
n

i
i xx

nnn
s

1

2

)1(
1  

A sample standard error charakterizes the variability of sample mean of the data. 

Other basic statistical characteristics used 

• Value of sample median medx x= �   

divides the ordered data set ( )(1) (2), , , nx x x…  into two equal parts. In this data set the sample 

median represents the percentile 0,50x  and also the second quartile 2q , that is 

med 0,50 2 .x x x q= = =�  

• Percentile px   

The procedures to find a value of p−percentile px  from n ascendingly ordered observa-

tions ( )(1) (2), , , nx x x…  are as follows: 

Step 1:  we calculate the position number r by using n  and p  

 
, if  is odd

( 1) if  is even
np n

r
n p n

⎧
= ⎨ +⎩
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Step 2:  we determine px  based on the position number r  

( )

( ) ( ) ( )

, if  is an integer

( )( ), if  is not an integer,
r

p
r r r

x r
x

x x x r r r
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

⎧⎪= ⎨ + − − ⎢ ⎥⎣ ⎦⎪⎩
 

where the symbols r⎡ ⎤⎢ ⎥  means „rounding up“ and r⎢ ⎥⎣ ⎦  „rounding down“. 

A value of percentile px  for { }0,25; 0,50; 0,75p =  is called a value of quartile of the data 

set. The following three values of guartiles divide a set of data into four equal parts in as-
cending order: 

– first (lower) quartile                       : 1 0,25q x=  

– second (middle) quartile (median) : 2 0,50q x=  

– third (upper) quartile                       : 3 0,75q x=  

• Value of sample mode mod ˆx x=   

is the most frequently occurring value in the data. Data set can have no mode, one mode 
(unimodal), or more modes (bimodal, trimodal, etc.). 

• Minimum minx   

is the minimum value of a realization of a sample, that is a set of data ( )(1) (2), , , nx x x… . 

• Maximum maxx  

is the maximum value of a realization of a sample, that is a set of data ( )(1) (2), , , nx x x… . 

• Sample range 
is the difference between the maximum and minimum value of a data set ( )(1) (2), , , nx x x… : 

max min ( ) (1)nR x x x x= − = −  

• Value of lower (first) quartile 1 0,25q x=   

is the value dividing the data set ( )(1) (2), , , nx x x…  into two parts such that 25 % of the val-

ues is not greater than this value and 75 % of the values is not less than this value. 

• Value of upper (third) quartile 3 0,75q x=  

is the value dividing the data set ( )(1) (2), , , nx x x…  into two parts such that 75 % of the val-

ues is not greater than this value and 25 % of the values is not less than this value. 

• Intequartile range (IQR)  

is the difference between the upper quartile and lower quartile of a data set: 
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3 1 0,75 0,25IQR q q x x= − = −  

• Sample skewness expresses the asymmetry of a frequency distribution of the data set 

1 2, , , nx x x… . The measure of this asymmetry is sample skewness coefficient: 

3

1
3

( )

( 1)( 2)

n

i
i

n x x

n n s
=

−

− −

∑
,  pre 3n ≥  a 0s ≠  

• Standardized sample skewness coefficient is normally distributed (0,1)N  for 150n > : 

3

1
3

( )
6

( 1)( 2)

n

i
i

n x x

n n s n
=

−

− −

∑
 

Note. For symmetrical frequency distribution, this coefficient is equal to zero. For distri-
bution skewed to the left, this coefficient is negative. For distribution skewed to the right 
this coefficient is a positive. 

• Sample kurtosis expresses the taperness of a frequency distribution of the data set 

1 2, , , nx x x… . The measure of this taperness is sample kurtosis coefficient: 

4
2

1
4

( 1) ( )
3( 1)

( 1)( 2)( 3) ( 2)( 3)

n

i
i

n n x x
n

n n n s n n
=

+ −
−

−
− − − − −

∑
 pre 4n ≥  a 0s ≠  

• Standardized sample kurtosis coefficient is given by: 

4
2

1
4

( 1) ( )
3( 1) 24

( 1)( 2)( 3) ( 2)( 3)

n

i
i

n n x x
n

n n n s n n n
=

⎛ ⎞+ −⎜ ⎟−⎜ ⎟−
− − − − −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑
 

Note. For values from the normal distribution the coefficient is approximately equal to ze-
ro. In comparison with normal distribution, a positive value of the coefficient means the 
distribution is more acute, while a negative value indicates a flatter distribution. 

• Sample variation coefficient (v %) measures the magnitude of the standard deviation val-
ue as a percentage of the sample mean value according to: 

( )2

1

1
1

100 100

n

i
i

x x
ns

x x
=

−
−

× = ×
∑
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4.2 Graphical methods of descriptive statistics 

Learning goals 

� Explain the use of stem-and-leaf diagram. 
� Construct a stem-and-leaf diagram to visualize a set of data. 
� Explain the terms frequency, relative frequency, cumulative frequency a cumulative rel-

ative frequency. 
� Explain construction of a frequency table.  
� Explain construction of a histogram and polygon from the frequency table.  
� Explain the use of a box plot. 
� Explain the use of a normal probability plot. 

Stem-and-leaf diagram 

A stem-and-leaf diagram is a good tool to graph a data set ( )(1) (2), , , nx x x… , where each num-

ber contains at least two digits. The following steps are applied to construct a stem-and-leaf 
diagram: 

Step 1: Determine stems and leaves. 
Divide each number ( )ix  into two parts: 1. stem for the “significant” digits (one or 

two digits in most cases) and 2. leaf for the “less significant” digit (last digit usual-
ly). The analyst should exercise his/her own discretion to determine which digits 
are most significant with consideration of the range of data. 

Step 2: Arrange the stems and leaves. 
The stems are arranged in ascending order. Then, beside each stem, corresponding 
leaves are listed next to each other in a row. The leaves of each stem are arranged in 
ascending order. 

Step 3: Summarize the frequency of leaves for each stem. 

Example 4.1  

From the following data we construct diagram stem-and-leaf, which represents the frequency 
distribution diagram. 

i ix  i ix  i ix  i ix  

1 24,0 5 22,3 9 21,8 13 23,2 
2 22,4 6 22,6 10 32,2 14 23,9 
3 22,4 7 25,2 11 23,9 15 23,8 
4 24,3 8 24,1 12 23,5 16 21,7 
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Solution 

First, the data is arranged in ascending order: 

i ( )ix  i ( )ix  i ( )ix  i ( )ix  

1 21,7 5 22,4 9 23,5 13 24,0 
2 21,8 6 22,6 10 23,8 14 24,1 
3 22,3 7 23,2 11 23,9 15 24,3 
4 22,4 8 23,2 12 23,9 16 25,2 

Let the first two digits of the data form the stems. We list the stem values in ascending order 
into the column. Then we make a vertical line and write the leaf of each observation into the 
horizontal line of the corresponding stem. In this way we obtain the resulton on Figure 4.1. 
 

Stem Leaf Frequency 
      21. 
      22.  
      23. 
      24. 
      25. 

7 8 
3 4 4 6 
2 2 5 8 9 9 
0 1 3 
2 

2 
4 
6 
3 
1 

 

Le
af

 

  9   
  9   
 6 8   
 4 5 3  
8 4 2 1  
7 3 2 0 2 

Stem 21. 22. 23. 24. 25. 

Figure 4.1  A stem-and-leaf diagram Figure 4.2  Shape of the distribution 

When we turn the diagram on the left hand side and look at columns of numbers above the 
line, we see the shape of the distribution. 
Note. If necessary, stem-and-leaf can be:  
a) compressed by merging of neighboring rows in one line (common class), see Figure 4.3. 

50 0 1  
50 – 51 0 1 ∗ 4 

51 4 
52 5 6 

52 – 53 5 6 ∗ 3 6 8 
53 3 6 8 
54 2 4 5 7 

54 – 55 2 4 5 7 ∗ 3 4 9 9 
55 3 4 9 9   
56 0 1 2 7 

56 – 57 0 1 2 7 ∗ 3 5 8 
57 3 5 8 
58 1 2 6 9 

58 – 59 1 2 6 9 ∗ 1 7 
59 1 7 

 
                581  591 

Figure 4.3  Compression of stem-and-leaf diagram 
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b) splitting by dividing each of rows into two rows (classes), for example, see Figure 4.4. 
 

51 6 8 9 9 
 51∗  

51D 6 8 9 9 

52 0 3 4 7 52∗ 0 3 4 
52D 7 

53 3 7 8 8 53∗ 3 
53D 7 8 8 

Figure 4.4  Split of stem-and-leaf diagram 

The first class of the digits 0-4 we mark "∗" and the other with the digits 5-9 we mark " D ". 
 

Table of frequencies 

Creating a table of frequencies is a good method to describe a large set of data. Original data 
are classified into classes (categories). Then frequencies of each class are found and frequen-
cy distribution is created.The procedure of constructing the table of frequencies consists of the 
following steps: 

1. We determine the number of classes which will contain the table of frequencies. If we 
can not determine the number of classes, one of the following formulas will help us 

( )1 3,322 logk n= + ⋅      or     nk = 

2. Determine the maximum maxx  and minimum minx  value of a set of data.  

3. Class width can be determined as follows: 

max minx x Rh
k k
−

≥ =  

The result should be rounded up to an integer so that each value of the data is contained 
in the table of frequencies. 

4. Create a class. 
Lower limit of the first class 0t  we choose either the smallest value in a data set or a 

value slightly smaller than the smallest value. The upper limit of the last k-th class kt  is 

chosen either the greatest value in a set of data or a value slightly greater than the max-
imum value. In the table is 0 mint x≤ , maxkt x≥ . 
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Each class represents the interval [ )1,i it t +  of length h, specifically 1i it t h+ = + , where. 

0,1,..., 1i k= − . For example, the first class: [ )0 1, ,t t  the second class: 

[ ) [ )1 2 0 1, ,t t t h t h= + + , etc. 

5. Class representative it  is a middle of the ith interval (ith class), that is 
2

1 ii
i

tt
t

+
= − . 

6. Each value of the data set is recorded in the row of the relevant class. 

7. Count the number of the data set in each class. We get the frequency of classes in  that 

we record in the appropriate column. 

8. Calculate the relative frequencies, cumulative frequencies, cumulative relative frequen-
cies, and write them in the next three columns. 
Thus, we created the entire table of frequencies (Table 4.1). 

Table 4.1  Table of frequencies 

Class 
number 

Lower 
limit 

Upper 
limit 

Class repre-
sentative 

Absolute 
frequency 

Relative 
frequency 

Cumulative 
relative fre-

quency 
1. 0t  1t  1t  1n  nnf /11 =  1f  

2. 1t  2t  2t  2n  nnf /22 =  21 ff +  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

k. 1−kt  kt  kt  kn  nnf kk /=
 

1=∑
i

if  

    nn
i

i =∑  1=∑
i

if   

 
Note. When rounding relative frequency values it must be ensured that the sum of the round-
ed figures is equal to one. 
 
Using the table of frequencies we can construct a histogram and polygon of frequencies, rela-
tive frequencies, cumulative frequency and cumulative relative frequencies. All these graphs 
show us a way of frequency distribution of the measured data. All these graphs show us a way 
of frequency distribution of the measured data. 
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Histogram 

A histogram is a bar graph in which the length (on the vertical axis) and width (on the hori-
zontal axis) of each bar are proportional to the frequency in  (or relative frequency if ) and 

size h  of corresponding class interval [ )1,i it t + , respectively. The shape of a histogram of 

a small set of data may vary significantly as the number of class intervals and corresponding 
class intervals width change. As the size of a data set becomes large (say, 75 or above), the 
shape of the histogram becomes stable. 

Polygon of frequencies 

A polygon of frequencies consists of line of segments that passes through the points [ ];i it n  or 

[ ];i it f , where it  are midpoints of the intervals [ )1,i it t +  and in  or if  are the absolute or rela-

tive frequencies of selected classes. 

 
Figure 4.4 

The stem-and-leaf diagram and histogram provide a general visual view of a data set, while 
numerical quantities such as x  or s  provide information about only one feature (characteris-
tic properties) of the data. 

Box plots  

The box plot is a graphical display that simultaneously describes several important features of 
a data set, such as center, spread, departure from symmetry and identification of unusual ob-
servations or outliers. 

A box plot displays (see Figure 4.5): 
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– the three quartiles, the minimum and maximum of the data on a rectangular box, aligned 
either horizontally or vertically; 

– the box encloses the interquartile range (IQR) with the left (or lower) edge at the first 
(or lower) quartile 25,01 xq =  and the right (or upper) edge at the third (or upper) quar-

tile; 
– in the rectangle is a line segment parallel to the lower and upper limit, which is the se-

cond quartile (which is the 50th percentile or the median) xxxq ~
med5,02 === ;  

–  a line or whisker extends from each end of the box: 
a) the lower whisker is a line segment from the first quartile to the smallest data point 

within IQR5,1 ×  from the first (or lower) quartile, 

b) the upper whisker is a line segment from the third quartile to the largest data point 
within IQR5,1 ×  from the third (or upper) quartile; 

– data farther from the box than the whiskers are plotted as individual points; a point be-
yond a whisker, but less than IQR3×  from the box edge, is called an outlier and is ly-

ing in intervals ( )0,25 0,253 IQR, 1,5 IQRx x− × − ×  or ( )0,75 0,751,5 IQR, 3 IQR ;x x+ × + ×  

– a point more than IQR3×  from the box edge is called an extreme outlier and is lying 

in intervals ( )0,25, 3 IQRx−∞ − ×  or ( )0,75 3 IQR, .x + × ∞  

 
Figure 4.5  Description of a box plot 

Note. Outliers and extreme outliers are values relatively very small or very large in relation to 
other data. Usually arise from three causes: 

a) value is measured, recorded or inserted into the computer incorrectly, 
b) measured value belongs to a different population, 
c) value is measured and recorded correctly, but represents a rare event that may occur. 

Given the above reasons it is necessary to consider whether these values in the random sam-
pling of data leave or retire. 
  



Creation of Random Sample and Descriptive Statistics 

 

84 

Normal probability plots 

This chart is a special case of a probabilistic graph, which makes it possible to visually assess 
whether the data come from a normal distribution.  

Its construction lies in the fact that the horizontal axis is plotted by the arranged values 

)()2()1( ,,, nxxx …  and the vertical axis by values 
0,375 100
0,25

j
n
−

×
+

 (in percentage). The graph is 

then the set of points ( )
0,375; 100
0,25j j

jX x
n
−⎡ ⎤= ×⎢ ⎥+⎣ ⎦

, 1,2,...,j n= , which is approximated in 

terms of the least-squares method by linear function – line. The fewer the points deviate from 
the straight line, the more likely it is that the measured data come from a normal distribution. 

If we want to be sure that the measured data actually come from population with a nor-
mal distribution, it is necessary to test normality of the measured data, for example by using 
Shapiro-Wilk test (see chapter 7.6.2). 

 

 

Figure 4.6 

4.3 Presentation of numerical and graphical methods of a descriptive sta-
tistics on data from a random sample 

Example 4.2 

Alfa Machine carves a component used in the special security locks of the company Mul T 
Lock on the required width of 8,500 mm. Randomly select 30 parts and check them by one 
measuring tool for prescribed width. 

On the measured data (Table 4.2) we present numerical and graphical methods of a de-
scriptive statistics.  
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Table 4.2 

i ix  i ix  i ix  i ix  i ix  i ix  

1 8,462 6 8,505 11 8,482 16 8,493 21 8,511 26 8,497 

2 8,489 7 8,519 12 8,499 17 8,510 22 8,496 27 8,506 

3 8,500 8 8,486 13 8,498 18 8,502 23 8,470 28 8,501 

4 8,486 9 8,502 14 8,462 19 8,526 24 8,539 29 8,49 

5 8,504 10 8,498 15 8,534 20 8,498 25 8,514 30 8,479 

Solution 

Before access to the basic data processing, the measured values of the part width must be ar-
ranged in ascending order. The sorted data values represent the value of order statistic (Table 
4.3). 

Table 4.3 

i ( )ix  i ( )ix  i ( )ix  i ( )ix  i ( )ix  i ( )ix  

1 8,462 6 8,486 11 8,497 16 8,499 21 8,504 26 8,514 

2 8,462 7 8,486 12 8,497 17 8,500 22 8,505 27 8,519 

3 8,470 8 8,489 13 8,498 18 8,501 23 8,506 28 8,526 

4 8,479 9 8,493 14 8,498 19 8,502 24 8,510 29 8,534 

5 8,482 10 8,496 15 8,498 20 8,502 25 8,511 30 8,539 

 
1. The numeric methods of descriptive statistics 
The calculation of basic statistical (or sample) characteristics can be made by the current sta-
tistical software. 

Value of sample mean: 
30

1 1

1 1 (8,462 8,462 8,467... 8,539) 8,49883
30 30

n

i i
i i

x x x
n = =

+ + +
= = = =∑ ∑  

Value of sample variance: 

( )22

1
2 2 2

1
1

(8,462 8,49883) (8,462 8,49883) ... (8,539 8,49883) 0,00322006
29

n

i
i

s x x
n =

= − =
−

− + − + + −
= =

∑
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Value of sample standard deviation: 

( )22

1

1 0,00322006 0,0179445
1

n

i
i

s s x x
n =

= = − = =
− ∑  

Value of sample standard error: 

( )2

1

1 1 0,00322006 0,00327621
( 1) 30

n

i
i

s x x
n nn =

= ⋅ − = =
− ∑  

Value of sample median (second quartile) ( )med 2 0,50 :x x q x= = =�   

For 30n =  calculated ( 1) (30 1) 0,5 15,5r n p= + = + × =  is not an integer. 

0,5 ( ) ( ) ( )( )( )r r rx x x x r r
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= + − − =⎢ ⎥⎣ ⎦  

( 15,5 ) ( 15,5 ) ( 15,5 )( )(15,5 15,5 )x x x
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= + − − =⎢ ⎥⎣ ⎦  

(15) (16) (15)( )(15,5 15) 8,498 (8,499 8,498) 0,5 8,4985x x x= + − − = + − × =  

med 0,50 8,4985x x x= = =�  

Value of sample mode mod ˆx x= : 

Most frequent value in the data (3 times) is only one value, namely 8.498. The data set thus 
have one mode – it is unimodal. 

mod ˆ 8,498x x= =  

Minimum: min (1) 8,462x x= =  

Maximum: max (30) 8,539x x= =  

Sample range: max min 8,539 8,462 0,077R x x= − = − =  

Value of lower (first) quartile 1 0,25 :q x=   

For 30n =  calculated ( 1) (30 1) 0,25 7,75r n p= + = + × =  is not an integer. 

1 0,25 ( ) ( ) ( )( )( )r r rq x x x x r r
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= = + − − =⎢ ⎥⎣ ⎦  

( 7,75 ) ( 7,75 ) ( 7,75 )( )(7,75 7,75 )x x x
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= + − − =⎢ ⎥⎣ ⎦  

(7) (8) (7)( )(7,75 7) 8,486 (8,489 8,486) 0,75 8,48825x x x= + − − = + − × =  

1 0,25 8,48825 8,489q x= = ≈  

Value of upper (third) quartile 3 0,75 :q x=   

For 30n =  calculated ( 1) (30 1) 0,75 23,25r n p= + = + × =  is not an integer. 

3 0,75 ( ) ( ) ( )( )( )r r rq x x x x r r
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= = + − − =⎢ ⎥⎣ ⎦  
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( 23,25 ) ( 23,25 ) ( 23,25 )( )(23,25 23,25 )x x x
⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦

= + − − =⎢ ⎥⎣ ⎦  

(23) (24) (23)( )(23,25 23) 8,506 (8,510 8,506) 0,25 8,5061x x x= + − − = + − × =  

3 0,75 8,5061 8,506q x= = ≈  

Interquartile range: 3 1 0,75 0,25IQR 8,506 8, 489 0,017q q x x= − = − = − =  

Standardized sample skewness coefficient: 30 3 , 0,0179445 0n s= ≥ = ≠  

( )

3

1
3

3 3 3

3

( )
6

( 1)( 2)

30 (8,462 8, 49883) (8,462 8,49883) ... (8,539 8,49883) 6
29 28 0,0179445 30

0,0306566 0

n

i
i

n x x

n n s n
=

−
=

− −

− + − + + −
= =

⋅ ⋅
= >

∑

 
The value of standardized sample skewness coefficient is positive and very small, it means 
that our data distribution is approximately symmetric distribution that is slightly skewed to 
the right. 
Standardized sample kurtosis coefficient: 30 4 , 0,0179445 0n s= ≥ = ≠   

4
2

1
4

( 1) ( )
3( 1) 24

( 1)( 2)( 3) ( 2)( 3)

n

i
i

n n x x
n

n n n s n n n
=

⎛ ⎞
+ −⎜ ⎟−⎜ ⎟− =

− − − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

( )4 4 4 2

4

30 31 (8,462 8,49883) (8,462 8,49883) ... (8,539 8,49883) 3 29 24
29 28 27 0,0179445 28 27 30

0,66439 0

⎛ ⎞⋅ − + − + + − ⋅⎜ ⎟= − =
⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠

= >  
The value of the standardized sample kurtosis coefficient is positive, it means that our data 
distribution is compared with the normal distribution more sharp. 
Sample variation coefficient (v %): 

( )2

1

1
1100 100

n

i
i

x x
ns

x x
=

−
−

× = × =
∑

 
2 2 2(8,462 8,49883) (8,462 8,49883) ... (8,539 8,49883)

29 100
8,49883

− + − + + −

= × =
 

0,21114=  
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Table 4.4  Review of basic statistical (or sample) characteristics calculated using the statis-
tical software Statgraphics Centurion XV 

 Explanation 

Count  30 sample size 

Average 8,49883 value of sample mean 

Median 8,4985 value of sample median 

Mode 8,498 value of sample mode 

Variance 0,000322006 value of sample variance 

Standard deviation 0,0179445 value of sample standard deviation 

Coeff. of variation 0,211141% value of sample coefficient of variation 

Standard error 0,00327621 value of sample standard error 

Minimum 8,462 value of sample minimum 

Maximum 8,539 value of sample maximum 

Range 0,077 value of sample range 

Lower quartile 8,489 value of sample lower quartile 

Upper quartile 8,506 value of sample upper quartile 

Interquartile range 0,017 value of sample interquartile range (IQR) 

Stnd. skewness 0,0306566 value of standardized sample skewness coefficient 

Stnd. kurtosis 0,66439 value of standardized sample kurtosis coefficient 

 
2. Graphical methods of descriptive statistics 
All of the above graphs, including tables of frequencies, we also present in the Statgraphics 
Centurion XV. 
 
Stem-and Leaf Diagram 
Let the first three digits of data are stems. 
 

Stem Leaf  Stem-and-Leaf Display for Šírka: unit = 0,001   1|2 rep-
resents 0,012 
 
           LO|8,462 8,462  
 
      2   846| 
      4   847|09 
      8   848|2669 
     (8)  849|36778889 
     14   850|0122456 
      7   851|0149 
      3   852|6 
 

           HI|8,534 8,539  

8,46 22 
8,47 09 
8,48 2669 
8,49 36778889 
8,50 0122456 
8,51 0149 
8,52 6 
8,53 49 

Figure 4.7  Stem-and-leaf diagram  Figure 4.8  Stem-and-leaf diagram in the 
Statgraphics Centurion XV 
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Note. In this type of graph Statgraphics Centurion XV marked out outliers: 
– low: LO|8,462   8,462  t.j.  (1) (2) 8,462x x= =  

– high: HI|8,534   8,539   t.j. (29) 8,534x = a (30) 8,539x =  

We will check them even on a box plot and determine whether these values are only outliers 
or extreme outliers. 
 
Table of frequencies 

a) We determine the number of classes k: 

b) ( )1 3,322log 1 3,322log(30) 5,907 6k n= + = + = ≈  or 30 5,477 6k n= = = ≈ . 

c) We calculate the width of the class: max min 0,077 0,012833 0,015
6

x xh
k
−

= = = ≈ . 

d) We choose: 0 min8,45 8,462t x= < = , 6 max8,54 8,539t x= > = . 

e) We construct a table of frequencies (Table 4.5). 
 

Table 4.5  Table of frequencies 

Class 
number 

Lower 
limit 

Upper 
limit 

Class repre-
sentative 

Absolute 
frequency 

Relative fre-
quency 

Cumulative 
relative fre-

quency 
1. 8,450 8,465 8,4575 2 0,0667 0,0667 

2. 8,465 8,480 8,4725 2 0,0667 0,1334 

3. 8,480 8,495 8,4875 5 0,1667 0,3001 

4. 8,495 8,510 8,5025 14 0,4666 0,7667 

5. 8,510 8,525 8,5175 4 0,1333 0,9000 

6. 8,525 8,540 8,5325 3 0,1000 1,0000 

    30i
i

n =∑ 1=∑
i

if   

Note. In the rounding of values of relative frequency it must be ensured that the sum of the 
rounded figures is equal to one. 
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Table 4.6  Table of frequencies in Statgraphics Centurion XV 

Frequency Tabulation for Šírka súčiastky 
 Lower Upper   Relative Cumulative Cum. Rel. 
Class Limit Limit Midpoint Frequency Frequency Frequency Frequency 
 at or below 8,45  0 0,0000 0 0,0000 
1 8,45 8,46667 8,45833 2 0,0667 2 0,0667 
2 8,46667 8,48333 8,475 3 0,1000 5 0,1667 
3 8,48333 8,5 8,49167 12 0,4000 17 0,5667 
4 8,5 8,51667 8,50833 9 0,3000 26 0,8667 
5 8,51667 8,53333 8,525 2 0,0667 28 0,9333 
6 8,53333 8,55 8,54167 2 0,0667 30 1,0000 
 above 8,55  0 0,0000 30 1,0000 

Mean = 8,49883   Standard deviation = 0,0179445 
 
Histogram and polygon of frequencies 

Figure 4.9  Histogram with normal distribution curve (Gaussian curve)  
and polygon frequencies in Statgraphics Centurion XV 

Both chart show the character frequency distribution - measured data can come from a normal 
distribution. 
 
Normal probability plot 

 
Figure 4.10  Normal probability plot in Statgraphics Centurion XV 
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The presented points (Figure 4.10) deviate only minimally from the approximation line. 
Conclusion: From the last three graphs we conclude that the measured data can come from a 
normal distribution. More exactly, we check the normality of data using a normality test (e.g. 
Shapiro–Wilk test, see subchapter 7.6.2). 
 
Box-and-whisker plot 

 

Figure 4.11  Box-and-whisker diagram in Statgraphics Centurion XV 

The point in rectangle represents the mean of 8,49883.x =  
Even in this type of the chart the outliers are marked:  

– lower:  (1) (2) 8,462x x= = , 

– upper: (29) 8,534x = a (30) 8,539x = . 

We find whether the values are only outliers or extreme outliers. Calculate the intervals: 
– interval for lower outliers: 

( ) ( )0,25 0,253 IQR ; 1,5 IQR 8,489 3 0,017;8,489 1,5 0,017

(8,435; 8,4635)

x x− × − × = − × − × =

=
 

– interval for lower extreme outliers: 

( ) ( )0,25, 3 IQR ;8,489 3 0,017 ( ;8,435)x−∞ − × = −∞ − × = −∞  

– interval for upper outliers: 

( ) ( )0,75 0,751,5 IQR; 3 IQR 8,506 1,5 0,017; 8,506 3 0,017

(8,5315; 8,557)

x x+ × + × = + × + × =

=
 

– interval for upper extreme outliers: 

( ) ( )0,75 3 IQR; 8,506 3 0,017; (8,557; )x + × ∞ = + × ∞ = ∞  
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Conclusion: The values (1) (2) 8, 462x x= =  are from the interval (8,435; 8,4635) , therefore 

they are lower outliers. The values (29) 8,534x =  and (30) 8,539x =  are from the interval 

(8,5315; 8,557) , therefore they are upper outliers. Based on the causes of occurrence of these 
values it is necessary to consider whether these values will stay in or wil be discarded from a 
random sample. Since the lower outliers are very close to the upper limit of the interval 
(8,435; 8,4635)  and the upper outliers are in very close proximity to the lower limit of the 

interval (8,5315; 8,557) , we decided to retain them in the random sample. 
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5 POINT ESTIMATION 

Learning goals 

� Describe the terms parameter, point estimator and point estimate. 
� Identify two major areas of statistical inference. 
� Distinguish between point estimation and interval estimation. 
� Determine the point estimate of a parameter. 

Parameter (θ ) 

A parameter θ  represents a characteristic of the population under study. It is constant but 

unknown in most cases e.g. mean (μ ), variance ( 2σ ), proportion ( p ), correlation coefficient 

( ρ ) and regression coefficient (β ). 

Statistical inference 

Statistical inference refers to making decisions or drawing conclusions about a population by 
analyzing a random sample from the population. Two major areas of statistical inference can 
be defined: 

1. Parameter estimation: Estimates the value of θ . E.g. 150=μ  

2. Hypothesis testing: Tests an assertion of θ . E.g. 150:0 =μH  

Parameter estimation 

Parameter estimation is further divided into two areas: 

1. Point estimation: Estimates the exact location of θ . E.g. 150=μ  

2. Interval estimation: Establishes an interval that includes the true value of θ  with a 
designated probability (1 α− , where α  usually equals 0,1; 0,05; 0,01). E.g. 

(145 155) 0,95P μ< < =  

Point estimator (Θ̂ )  

A point estimator (Θ̂ ) is a statistic (function of random sampling) used to estimate θ . It is a 
random variable because a statistic is a random variable. E.g. Point estimator of μ  is sample 

mean ∑
=

=
n

i
i nXX

1
/ . 
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A single numerical value of Θ̂  determined by a particular random sample is called a point 

estimate of θ  (denoted by θ̂ ). 

Example 5.1. 

Suppose that the life length of an INFINITY light bulb X  has a normal distribution with 
mean μ  and variance 2σ . A random sample of size 25=n  light bulbs was examined and the 
sum of the life lengths was 14 900 hours. Estimate the mean life length (μ ) of an INFINITY 
light bulb. 

14900ˆ 745
25

i
i

x
x

n
μ = = = =

∑
 hrs 

5.1 General concepts of point estimation 

Learning goals 

� Explain the terms unbiased estimator, minimum variance unbiased estimator (MVUE), 
standard error and mean square error (MSE) of an estimator. 

� Select the appropriate point estimator of θ  in terms of unbiasedness, minimum variance 
and minimum mean square error each. 

Unbiased estimator 

An unbiased estimator is a point estimator (Θ̂ ) whose expected value is equal to the true 
value of θ , i.e. 

θE =)ˆ(Θ  

Note that several unbiased estimators can be defined for a single parameter θ. 

Bias of point estimator (Θ̂ ) 

The bias of point estimator Θ̂  is the difference between the expected value of Θ̂  and the true 
value of θ : 

θEB −= )ˆ()ˆ( ΘΘ  
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Figure 5.1  Bias of a point estimator Θ
�

 

Example 5.2 

Let nXXX ,,, 21 …  denote a random sample of size n  from a probability distribution with 

μ=)(XE  and 2)( σ=XD . Show if the sample mean nXX
n

i
i /

1
∑
=

=  is an unbiased estimator 

of the population mean μ : 

1 1 1

1 1 1( ) / ( )
n n n

i i
i i i

E X E X n E X n
n n n

μ μ μ
= = =

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

Since ( )E X μ= , X  is an unbiased estimator of μ . 

Minimum variance unbiased estimator (MVUE) 

A minimum variance unbiased estimator of θ  is the unbiased Θ̂  with the smallest variance. 
By using the MVUE of θ , the unknown parameter θ  can be estimated accurately and 
precisely. 

 
Figure 5.2  Variances of unbiased estimators of θ  

Example 5.3 

Let nXXX ,,, 21 …  denote a random sample of size 1>n  from a population with μ=)(XE  

and 2)( σ=XD . Both 1X  and X  are unbiased estimators of μ  because their expected values 
are equal to μ . Of the two estimators, which is preferred to estimate μ  and why? 
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The variances of 1X  and X  are: 
2

1)( σ=XD  
2

2 2
2 2 2

1 1 1( ) / ( )i i
i i i

D X D X n D X n
n n n n

σσ σ⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

Since ( )
2

2
1( ) ( )D X D X

n
σσ

⎛ ⎞
= > =⎜ ⎟

⎝ ⎠
 for 1n > , X  is preferred to estimate μ  with higher 

accuracy. 

Standard error ( Θσ ˆ ) 

The standard error of a point estimator Θσ ˆ  is the standard deviation of a point estimator Θ̂ . It 

can be used as a measure to indicate the precision of parameter estimation. 
If Θσ ˆ  includes unknown parameters that can be estimated, use of the estimates of the 
parameters in calculating Θσ ˆ  produces an estimated standard error Θ̂s . 

Example 5.4 

The random variable X  (Example 5.1) has a normal distribution with mean μ  and variance 
2σ . The random sample of size 25=n  was examined. 

1. Standard  error  
Assuming 22 40=σ , determine the standard error of the sample mean ( X ). Note that 

∑
=

=
n

i
i nXX

1
/ ~ )/,( 2 nN σμ . 

8
25

40
===

nX

σσ hrs 

2. Estimated  standard  error 

Suppose that 2σ  is unknown and the sample variance 22 35=Xs . Calculate the estimated 

standard error of the sample mean ( X ). 

7
25

35ˆ
====

n
s

n
s X

X

σ h 

Mean square error (MSE) of estimator 

The mean square error (MSE) of a point estimator Θ̂  is the expected squared difference 
between Θ̂  and θ : 
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( ) ( ) ( )2 22

2

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )
ˆ ˆ ˆ( ) for unbiased because ( ) 0

MSE E θ E E θ E

D B

D B

Θ Θ Θ Θ Θ

Θ Θ

Θ Θ Θ

= − = − + − =

= +

= =

  

The derivation of the formula: 

( ) ( ) ( )( )
( ) ( )( ) ( )( )
( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

2
2

2 2

2 2

2 2

2

ˆ ˆ ˆ ˆ ˆ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

MSE(Θ E Θ θ E Θ E Θ θ E Θ

E Θ E Θ Θ E Θ θ E Θ θ E Θ

E Θ E Θ E Θ E Θ Θ E Θ E θ E Θ

E Θ E Θ E θ E Θ

D Θ B Θ

⎛ ⎞= − = − − − =⎜ ⎟
⎝ ⎠

= − − − − + − =

= − − − − + − =

= − + − =

= +

 

 
Note. Biased estimate of the parameter with the smallest error MSE (the most accurate) is 
sometimes used instead of an unbiased estimate with less accuracy. 
 

 

Figure 5.3  A biased estimator 1Θ̂  with a smaller mean square error 

than that of the unbiased estimator 2Θ̂  

Example 5.5 

Suppose that the means and variances of 1Θ̂  and 2Θ̂  are θΘ =)ˆ( 1E , θΘ 9,0)ˆ( 2 =E , 

5)ˆ( 1 =ΘD  and 4)ˆ( 2 =ΘD . Which estimator is preferred to estimate θ  and why? 

For 1Θ̂  

0)ˆ()ˆ( 11 =−=−= θθθΘΘ EB  

2
1 1 1

ˆ ˆ ˆ( ) ( ) ( ) 5 0 5MSE D BΘ Θ Θ= + = + =  
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For 2Θ̂  

θθθθΘΘ 1,09,0)ˆ()ˆ( 22 −=−=−= EB  

2 2
2 2 2

ˆ ˆ ˆ( ) ( ) ( ) 4 0,01MSE D BΘ Θ Θ θ= + = +  

By subtracting 2
ˆ( )MSE Θ  from 1

ˆ( )MSE Θ  we get: 

2 2
1 2

ˆ ˆ( ) ( ) 5 (4 0,01 ) 1 0,01MSE MSEΘ Θ θ θ− = − + = −  

The preferred estimator of θ  for precise estimation depends on the range of θ  as follows: 

a) 1Θ̂ , if 10≥θ  because 1 2
ˆ ˆ( ) ( )MSE MSEΘ Θ≤  and 1Θ̂  is unbiased, 

b) 2Θ̂ , if 10θ <  because 1 2
ˆ ˆ( ) ( )MSE MSEΘ Θ> . 

5.2 Methods of point estimation 

Learning goals 

� Explain the utility of the maximum likelihood method. 
� Find a point estimator of θ  by using the maximum likelihood method. 

Maximum likelihood method 

The method of maximum likelihood is used to derive a point estimator of θ . This method 
finds a maximum likelihood estimator of θ  which maximizes the likelihood function of a 
random sample nXXX ,,, 21 … : 

);();();()( 21 θθθθ nxfxfxfL "=  

where nXXX ,,, 21 …  are independent random variables with the same probability density 

function );( θxf . 

Example 5.6 

Let nXXX ,,, 21 …  denote a random sample of size n  from an exponential distribution with 
the parameter λ . Find the maximum likelihood estimator of λ . 

The probability density function of an exponential distribution is 
xexf λλλ −=);(  

Thus the likelihood function of nXXX ,,, 21 …  is 
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∑
=== =

−

=

−∏
n

i
i

i
x

n
n

i

x
n eexfxfxfL 1
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21 );();();()(

λ
λ λλλλλλ "  

Then the log likelihood function ( ( ) 0L λ > ) is 

∑−=
=

n

i
ixnL

1
ln)(ln λλλ  

The derivative of )(ln λL  is 

∑−=⎟
⎠
⎞⎜

⎝
⎛ ∑−=

==

n

i
i

n

i
i xnxn

d
d

d
Ld

11
ln)(ln

λ
λλ

λλ
λ  

By equating this derivative of )(ln λL  to zero, the point estimator of λ  which maximizes 
)(λL  is 

Xx

n
n

i
i

1ˆ

1

==

∑
=

λ  

5.3 Sampling distributions of means 

Learning goals 

� Explain the term sampling distribution. 
� Explain the central limit theorem (CLT). 
� Determine the distribution of a sample mean by applying the central limit theorem. 

Sampling distribution 

A sampling distribution is the probability distribution of a statistic (a function of random 
variables such as sample mean and sample variance).  The sampling distribution of a statistic 
depends on the following: 

– The distribution of the population 
– The size of the sample 
– The method of sample selection 

Sampling distribution of X  

Suppose that a random sample of size n  is taken from a normal distribution with mean μ  and 

variance 2σ .  
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Then the sampling distribution of the sample mean is 

n

X
X

n

i
i∑

== 1 ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

N
2

,σμ  

The derivation of the relationship 
Since nXXX ,,, 21 …  are independent and normally distributed with the same μ=)(XE  and 

2)( σ=XD , the distribution of X  is normal with mean and variance 

[ ] =++=⎟
⎠
⎞

⎜
⎝
⎛ +++

= )()()(1)( 21
21

n
n XEXEXE

nn
XXX

EXE ""
 

μμμμμ =×=+++= n
nn
1)(1 "  

[ ] =+++=⎟
⎠
⎞

⎜
⎝
⎛ +++

= )()()(1)( 212
21

n
n XDXDXD

nn
XXX

DXD ""
 

n
n

nn

2
2

2
222

2

1)(1 σσσσσ =×=+++= "  

Central limit theorem (CLT) 

Let nXXX ,,, 21 …  denote a random sample of size n  taken from a population ( X ) with 

mean μ  and variance 2σ . Then the limiting form of the distribution of the sample mean X  
is 

nXX
n

i
i /

1
∑
=

= ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

N
2

,σμ    ⇒   
n

XZ
/σ
μ−

= ~ ( )1,0N  

as n  approaches infinity ( n→∞). This normal approximation of X  is called the central limit 
theorem (CLT). 

As displayed in Figure 5.4, the distributions of the sample means from uniform, 
binomial and exponential distributions become normal distributions as their sample sizes n  
become sufficiently large. In most cases, if 30≥n , normal approximation of X  will be 
satisfactory regardless of the distribution of X . In case 30<n , if the distribution of X  is 
close to the normal, a normal approximation of X  will be acceptable. 

 
Based on the central limit theorem, the sampling distribution of X  where X  is normal or 
non-normal is as follows: 



Point Estimation 

 

101 

1. Normal population, X ~ ),( 2σμN , than 

nXX
n

i
i /

1
∑
=

= ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

N
2

,σμ , 

where 1, , nX X…  are independent random variables normally distributed 2( , )N μ σ . 

2. Non-normal population with parameters μ  and 2σ  

a) Normal approximation applicable, then 

nXX
n

i
i /

1
∑
=

= ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

N
2

,σμ , if 30≥n  or the distribution of X  is close to the normal 

b) Normal approximation inapplicable, then 

it would be difficult to find the distribution of X  if 30<n  and the distribution of X  
is significantly deviated from the normal. In this case, use non-parametric statistics 
for statistical inference. 

 

 

Figure 5.4  Sampling distribution of X : a) ),0(~ bRX ; b) )2,0,(~ nBiX ; c) )1(~ =λEX  

Example 5.7 

Suppose that the waiting time ( X ; unit: min.) of a customer to pick up his/her prescription at 
a drug store follows an exponential distribution with 20)( =XE min and ( ) 400D X = min2. A 

random sample of size 40=n  customers is observed. What is the distribution of the sample 
mean? 
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Since 30≥n , normal approximation is applicable to X  even if X  is exponentially 
distributed. Thus, the sampling distribution of X  is 

X ~
2 400, (20, ) (20,10)

40
N N N

n
σμ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
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6 STATISTICAL INTERVALS AND SAMPLE SIZE AT 
A GIVEN POINT ESTIMATE ACCURACY 

Learning goals 

� Distinguish between confidence, prediction and statistical tolerance intervals. 
� Interpret a 100(1 ) %α−  confidence interval (CI). 

� Explain the relationship between the length of a CI and precision of estimation. 
� Identify the error ( E ) when estimating the actual parameter. 

Statistical intervals 

While point estimation estimates the exact location of a parameter (θ ), interval estimation 
establishes bounds of plausible values for θ . Three types if statistical intervals are defined: 

1. Confidence interval (CI): Bounds a parameter of the population distribution.  
E.g. when X ~ ),( 2σμN , then 90 % CI on μ  indicates that the CI contains the value of 
μ  with 90 % confidence. 

2. Prediction interval (PI): Bounds a future observation.  
E.g. when 2( , ),X N μ σ∼  then 90 % PI on a new observation indicates that the PI 
contains a new observation with 90 % confidence. 

3. Statistical tolerance interval (TI): Bounds a selected proportion of the population 
distribution.  
E.g. a 95 % TI on X  with 90 % confidence indicates that the TI contains 95 % of X  
values with 90 % confidence. 

Confidence interval 

A %)1(100 α−  confidence interval on a parameter θ  has both lower and upper bounds 
 ( uθl ≤≤ ), or lower bound ( l θ≤ ) or upper bound (θ u≤ ), which are computed by using a 
sample from a population. Since different samples will produce different values of l  and u , 
the lower– and upper–confidence limits are considered values of random variables L  and U  
which satisfy the following: 

( ) 1 100(1 )P L Uθ α α≤ ≤ = − = − ,   10 ≤≤ α . 
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Since L  and U  are random variables, a CI is a random interval. A 100(1 ) %α−  CI indicates 

that, if CIs are established from an infinite number of random samples, 100(1 ) %α−  of the 
CIs will contain the true value of θ . 
There are two types of confidence intervals: 

1. Two–sided CI: Specifies both the lower– and upper–confidence limits of θ , such as 
uθl ≤≤ . 

E.g. 750730 ≤≤ Xμ  hrs, where X  is life length of an INFINITY light bulb. 

2. One–sided CI: Defines either the lower– or upper–confidence limits of θ , such as 
θl ≤  or uθ ≤ . 

E.g. Xμ≤730  or 750≤Xμ  hrs, where X  is life length of an INFINITY light bulb. 

Length of CI and precision of estimation 

The length of a CI refers to the distance between the upper and lower limits ( lu − ). The 
wider the CI, the more confident we are that the interval actually contains the true value of θ  
(see Figure 6.1), but less informed we are about the true value of θ . 
 

 
Figure 6.1  Confidence intervals on the mean life length ( Xθ μ= ) of an INFINITY 

light bulb with selected levels of confidence 
The length of a CI on θ  is inversely related to the precision of estimation on θ : the wider the 
CI, the less precise the estimation of θ . 

Error E in estimation of parameter θ  

ˆ ,E θ θ= −  

where θ̂  is a point estimate of the true value of θ . 
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6.1 Confidence interval on the mean of a normal distribution with 
variance known 

Learning goals 

� Determine the point estimator of μ  when 2σ  is known and the sampling distribution of 
the point estimator. 

� Establish a %)1(100 α−  CI on μ  where 2σ  is known. 

� Determine a sample size to satisfy a predetermined level of error ( E ) in estimating μ . 

� Find the critical value of the normal distribution in tables in Appendix. 

Inference context 

• Parameter of interest:  μ  

• Point estimator of μ :  X ~ ),(
2

n
N σμ , 2σ  known  

• Statistic: 
n

XZ
/σ
μ−

= ~ (0,1)N , where (0,1)N  denotes the standard normal distribution 

Confidence interval formula 

A %)1(100 α−  CI on μ  when 2σ  is known is 

n
kX

n
kX σμσ

αα +≤≤−  for two−sided CI, 

μσ
α ≤−

n
kX 2  for one−sided IS with the lower bound, 

n
kX σμ α2+≤  for one−sided IS with the upper bound, 

where kα  and 2k α  are critical values of (0,1)N  (see Appendix). 

The derivation of the formula for a two−sided CI 

By using the statistic 
n

XZ
/σ
μ−

= ~ )1,0(N , we get 

1
/

XP k k
nα α
μ α

σ
−⎛ ⎞

− ≤ ≤ = −⎜ ⎟
⎝ ⎠
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1P X k X k
n nα α
σ σμ α⎛ ⎞− ≤ ≤ + = −⎜ ⎟

⎝ ⎠
 

Therefore 

L X k
nα
σ

= −    and   U X k
nα
σ

= +  

Note that, for a one−sided CI, use 2k α  instead of kα  to derive the corresponding limit. 

Determination of sample size 

To establish a 100(1 )%α−  CI on μ  which does not exceed a predefined level of μ−= xE , 

the sample size is determined by the formula 

2kn
E
ασ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

Note. In case n  is not an integer, round up the value. 

Example 6.1  

Suppose that the life length of an INFINITY light bulb ( X ; unit: hour) follows the normal 
distribution with a mean μ  and the variance 22 40=σ , e.g. 2( , 40 )X N μ∼ . A random 
sample of 30 bulbs is tested as shown below, and the sample mean is found to be 780=x  
hours. 

No. Life length No. Life length No. Life length 
1 727 11 831 21 725 
2 755 12 742 22 735 
3 714 13 784 23 770 
4 840 14 807 24 792 
5 772 15 820 25 765 
6 750 16 812 26 749 
7 814 17 804 27 829 
8 820 18 754 28 821 
9 753 19 715 29 816 
10 796 20 845 30 743 

 
1. Confidence interval on μ , 2σ  is known 

Construct a 95 % two−sided confidence interval on the mean life length (μ ) of an INFINITY 
light bulb. 

( ) 1 0,95 0,05P l uμ α α≤ ≤ = − = ⇒ =  
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95 % two−sided CI on μ : 

n
kX

n
kX σμσ

αα +≤≤−  

30
40780

30
40780 05,005,0 kk +≤≤− μ  

30
4096,1780

30
4096,1780 ×+≤≤×− μ

314,794686,765 ≤≤ μ  
 
2. Sample size selection 
Find a sample size n  to construct a two−sided 95 % confidence interval on μ  with an error 
20 hours. 

163664,15
20

4096,1
20

40 22
05,0

2

≈=⎟
⎠
⎞

⎜
⎝
⎛ ×

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
=⎟

⎠
⎞

⎜
⎝
⎛=

k
E

kn σα  

6.2 Confidence interval on the mean of a normal distribution 
with unknown variance 

Learning goals 

� Determine the point estimator of μ  when 2σ  is unknown and the sampling distribution 
of the point estimator. 

� Establish a %)1(100 α−  CI on μ  where 2σ  is unknown. 

� Find the critical value of the t -distribution in tables in Appendix. 

Inference context 

• Parameter of interest:  μ  

• Point estimator of μ :  X ~ ),(
2

n
N σμ , 2σ  is unknown 

• Statistic:  
/

XT
S n

μ−
= ~ ( 1)t n − , where S is an estimator of σ  and )1( −nt  denotes the 

t–distribution (Student) with the degrees of freedom 1n −  (Janiga, 2013, subchapter 
3.8.2).  
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Confidence interval formula 

A %)1(100 α−  CI on μ  when 2σ  is unknown is 

n
SntX

n
SntX );1();1( αμα −+≤≤−−  for two−sided CI, 

μα ≤−−
n

SntX )2;1(  for one−sided CI with the lower bound, 

( 1;2 ) SX t n
n

μ α≤ + −  for one−sided CI with the upper bound, 

where ( 1; )t n α−  and ( 1; 2 )t n α−  are critical values of a t–distribution with the degrees of 
freedom 1n −  (see Appendix). 

The derivation of the formula for a two−sided CI 

( )( 1; ) ( 1; ) 1P t n T t nα α α− − ≤ ≤ − = −  

ααμα −=⎟
⎠

⎞
⎜
⎝

⎛ −≤
−

≤−− 1);1(
/

);1( nt
nS

XntP  

ααμα −=⎟
⎠

⎞
⎜
⎝

⎛ −+≤≤−− 1);1();1(
n

SntX
n

SntXP  

Therefore 

n
SntXL );1( α−−=       and      

n
SntXU );1( α−+=  

 

Example 6.2  

Suppose that the life length of an INFINITY light bulb ( X ; unit: hour) follows the normal 
distribution with unknown parameters μ  and 2σ . The random sample of size 30=n  bulbs is 
tested (see Example 6.1). Construct a 95 % two−sided CI on the mean life length (μ ) of an 
INFINITY light bulb. 

The point estimates values of 780=x  and 40,0164s =  needed for the construction of 
CI were obtained from data on life bulbs given in Example 6.1. 

( ) 0,95 1 0,05P l uμ α α≤ ≤ = = − ⇒ =  
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95 % two−sided CI on μ : 

n
SntX

n
SntX );1();1( αμα −+≤≤−−  

30
0164,40)05,0;29(780

30
0164,40)05,0;29(780 tt +≤≤− μ

30
0164,40045,2780

30
0164,40045,2780 ×+≤≤×− μ

941,794059,765 ≤≤ μ  
 
Notice that the CI constructed by using the t−distributed sample data 941,794059,765 ≤≤ μ  
is wider than the corresponding CI constructed on the bases of the normal distributed sample 
data 314,794686,765 ≤≤ μ . 

6.3 Confidence interval on the variance of a normal distribution 

Learning goals 

� Determine the point estimator of 2σ  and the sampling distribution of the point 
estimator. 

� Establish a %)1(100 α−  CI on 2.σ   

� Find the critical value of the 2χ −distribution in tables in Appendix. 

Inference context 

• Parameter of interest:  2σ  

• Point estimator of 2σ :  
1

)(
1

2

2

−

−
=
∑
=

n

XX
S

n

i
i

, where nXXX ,,, 21 …  is random sample 

taken from ),( 2σμN  

• Statistic:  
2

2
2

( 1)n SΧ
σ
−

= ~ )1(2 −nχ , where 2S  is an estimator of 2σ  and )1(2 −nχ  

denoted 2χ –distribution with the degrees of freedom 1n −  (Janiga, 2013, subchapter 
3.8.1).  
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Confidence interval formula 

A %)1(100 α−  CI on 2σ is 

)2/1;1(
)1(

)2/;1(
)1(

2

2
2

2

2

αχ
σ

αχ −−
−

≤≤
−
−

n
Sn

n
Sn  for twoo−sided CI, 

2
2

2

);1(
)1( σ
αχ

≤
−

−
n

Sn  for one−sided CI with the lower bound, 

)1;1(
)1(

2

2
2

αχ
σ

−−
−

≤
n

Sn  for one−sided CI with the upper bound, 

where 2 ( 1; / 2)nχ α− , 2 ( 1;1 / 2)nχ α− − , 2 ( 1; )nχ α−  and 2 ( 1;1 )nχ α− −  are critical 

values of a )1(2 −nχ  distribution (see Annex).  

The derivation of the formula for a two−sided CI 

( )2 2 2( 1;1 / 2) ( 1; / 2) 1P n nχ α χ χ α α− − ≤ ≤ − = −  

2
2 2

2

( 1)( 1;1 / 2) ( 1; / 2) 1n SP n nχ α χ α α
σ

⎛ ⎞−
− − ≤ ≤ − = −⎜ ⎟

⎝ ⎠
 

2 2
2

2 2

( 1) ( 1) 1
( 1; / 2) ( 1;1 / 2)
n S n SP
n n

σ α
χ α χ α

⎛ ⎞− −
≤ ≤ = −⎜ ⎟− − −⎝ ⎠

 

Therefore 

)2/;1(
)1(

2

2

αχ −
−

=
n

SnL       and      
)2/1;1(

)1(
2

2

αχ −−
−

=
n

SnU  

 

Example 6.3  

Let the life length of an INFINITY light bulb X  has a normal distribution with mean μ  and 
variance 2σ , which are unknown. A random sample of size 30n =  bulbs is tested and the 
sample variance is found to be 22 0164,40=s . Construct a 95% two–sided confidence 
interval on the variance of the life length of an INFINITY light bulb 2σ .  

( )2 0,95 1 0,05P l uσ α α≤ ≤ = = − ⇒ =  

95 % two−sided CI on 2σ : 
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)2/1;1(

)1(
)2/;1(

)1(
2

2
2

2

2

αχ
σ

αχ −−
−

≤≤
−
−

n
Sn

n
Sn  

)2/05,01;29(
0164,40)130(

)2/05,0;29(
0164,40)130(

2

2
2

2

2

−
×−

≤≤
×−

χ
σ

χ
 

0,16
1,46438

7,45
1,46438 2 ≤≤ σ  

21016,70 2902,38σ≤ ≤  
222 87,5388,31 ≤≤ σ  

6.4 A large–sample confidence interval for a population proportion 

Learning goals 

� Determine the point estimator of p  and the sampling distribution of the point estimator. 

� Establish a %)1(100 α−  CI on p . 

� Determine a sample size to satisfy a predetermined level of error ( E ) in estimating p . 

Inference context 

• Parameter of interest:  p  

• Point estimator of p :  
n
XP =ˆ , where X ~ ),( pnB  

• Statistic:  
npp

pPZ
/)1(

ˆ

−
−

= ~ )1,0(N  if (1 ) 9np p− > ; P̂  is an estimator of p 

Sampling distribution of the estimator P̂  

The mean and variance of a binomial random variable X ~ ),( pnB  are 

npXE =)(     and    )1()( pnpXD −=  

Thus 

pnp
n

XE
nn

XEPE ===⎟
⎠
⎞

⎜
⎝
⎛=

1)(1)ˆ(  

n
pppnp

n
XD

nn
XDPD )1()1(1)(1)ˆ( 22

−
=−==⎟

⎠
⎞

⎜
⎝
⎛=  
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Conditions for approximation of a binomial distribution ),( pnB  by a normal distribution are 
complied, because p  is neither close to zero nor close to one and n  is relatively large so that 

(1 ) 9np p− > . 

Therefore the approximate distribution of P̂  is 

⎟
⎠
⎞

⎜
⎝
⎛ −

≈
n

pppNP )1(,ˆ   ⇒  
ˆ

(0,1)
(1 ) /
P pZ N

p p n
−

= ≈
−

 

Confidence interval formula 

A %)1(100 α−  CI on p  is 

n
PPkPp

n
PPkP )ˆ1(ˆˆ)ˆ1(ˆˆ −

+≤≤
−

− αα  for two−sided CI, 

2

ˆ ˆ(1 )ˆ P PP k p
nα
−

− ≤  for one−sided CI with the lower bound, 

2

ˆ ˆ(1 )ˆ P Pp P k
nα
−

≤ +  for one−sided CI with the upper bound. 

The derivation of the formula for a two−sided CI 

( ) 1P k Z k− ≤ ≤ = −α α α  

ααα −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤

−
−

≤− 1
/)1(

ˆ
k

npp
pPkP  

ααα −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+≤≤

−
− 1)1(ˆ)1(ˆ

n
ppkPp

n
ppkPP  

We use an estimator P̂  of the unknown parameter p . 

ααα −=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+≤≤

−
− 1)ˆ1(ˆˆ)ˆ1(ˆˆ

n
PPkPp

n
PPkPP  

Therefore 

n
PPkPL )ˆ1(ˆˆ −

−= α    a   
n

PPkPU )ˆ1(ˆˆ −
+= α  
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Determination of sample size 

In estimating p  the following formulas are used to calculate a sample size n  for a predefined 
level of error: 

2

(1 )kn p p
E
α⎛ ⎞= −⎜ ⎟

⎝ ⎠
   if p  is known 

2

0,25kn
E
α⎛ ⎞= ×⎜ ⎟

⎝ ⎠
   if p  is unknown 

Example 6.4  

A sample of 40=n  bridges in a certain region is tested for metal corrosion. It was found 
28=x  corroded bridges. 

1. Confidence interval on p  

Construct a 95 % two−sided confidence interval on the proportion of corroded bridges p  in 
the region. 

( ) 0,95 1 0,05P l p u α α≤ ≤ = = − ⇒ =  7,0
40
28ˆ ===

n
xp  

Since both 287,040ˆ =×=pn  and 123,040)ˆ1( =×=− pn  are greater than five, the sampling 

distribution of P̂  is approximately normal. 
95 % two−sided CI on p  is 

n
ppkpp

n
ppkp )ˆ1(ˆˆ)ˆ1(ˆˆ −

+≤≤
−

− αα  

40
)7,01(7,07,0

40
)7,01(7,07,0 05,005,0

−×
+≤≤

−×
− kpk

 

07,096,17,007,096,17,0 ×+≤≤×− p  

8372,05628,0 ≤≤ p  

84,056,0 ≤≤ p  
2. Sample size selection 
Determine a sample size n  to establish a 95 % two−sided CI on p  with an error equal to 0,05 
from the true proportion. 

3852,38425,0
05,0
96,125,0

05,0
25,0

22
05,0

2

≈=×⎟
⎠

⎞
⎜
⎝

⎛=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×⎟

⎠
⎞

⎜
⎝
⎛=

k
E
k

n α
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6.5 A prediction interval for a future observation 

Learning goals 

� Determine the distribution of the prediction error XX n −+1 . 

� Establish a %)1(100 α−  prediction interval (PI) for a new observation. 

Sampling distribution of prediction error XXE n −= +1  

Let nXXX ,,, 21 …  is a random sample from a normal population with mean μ  and variance 
2σ . We wish to predict a new observation 1+nX . If X  is used as a point estimator of 1+nX , 

then the distribution of corresponding prediction error E  is 

XXE n −= +1 ~ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +

n
N 11,0 2σ , 

because 1+nX ~ ( )2,N μ σ , X ~
2

,N
n
σμ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the statistics 1+nX  and X  are independent. 

Thus 

n

XXZ n

11

1

+

−
= +

σ
~ ( )21,0N , if 2σ  is known 

n
S

XXT n

11

1

+

−
= + ~ ( )1−nt , if 2σ  is unknown 

Two–sided prediction interval formula 

n
kXX

n
kX n

1111 1 ++≤≤+− + σσ αα , 2σ  is known 

1
1 1( 1; ) 1 ( 1; ) 1nX t n S X X t n S
n n

α α+− − + ≤ ≤ + − + , 2σ  is unknown 

Example 6.5  (Prediction interval on 1+nX , 2σ  unknown) 

From the light bulb life length data in Example 6.2 the following quantities have been 
obtained: 30=n , 780=x  a 22 40=s . Construct a 95 % two–sided prediction interval on the 
life length of the next light bulb tested ( 31X ). 
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( ) 0,95 1 0,05P l p u α α≤ ≤ = = − ⇒ =  

95 % two−sided PI: ( 2σ  unknown) on 31X  

n
SntXX

n
SntX n

11);1(11);1( 1 +−+≤≤+−− + αα  

31
1 1780 (29;0,05) 40,0164 1 780 (29;0,05) 40,0164 1

30 30
t X t− × × + ≤ ≤ + × × +  

31780 2,045 40,677873 780 2,045 40,677873X− × ≤ ≤ + ×  

31780 83,18625 780 83,18625X− ≤ ≤ +  

31696,81375 863,18625X≤ ≤  

Note that this t − based PI [ ]696,81375; 863,18625  is wider than the corresponding t − based 
CI on μ  [ ]765,065; 794,935  in Example 6.2). 

6.6 Statistical tolerance intervals for a normal distribution  
with unknown parameters 

Learning goals 

� Establish a p tolerance interval with %)1(100 α−  confidence for a normal population 

with unknown parameters μ  and 2σ . 

Statistical tolerance interval 

Suppose that the life length X  of an INFINITY light bulb follows a normal distribution with 

mean 780=μ  and variance 22 40=σ . Then the interval 

( 1,96 ; 1,96 ) (780 1,96 40; 780 1,96 40)μ σ μ σ− + = − × + ×  

includes 95 % of the light bulb population in terms of life length. The interval
)96,1;96,1( σμσμ +−  is called statistical tolerance interval. 

When μ  and 2σ  are unknown, it may be used data 1 2, , , nx x x…  from the sample of size 

n  to compute the values of sample mean ∑
=

=
n

i
ix

n
x

1

1  and sample standard deviation 

2

1

1 ( )
1

n

i
i

s x x
n =

= −
− ∑ . Then it is possible to establish the interval )96,1;96,1( sxsx +− . 
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However, due to sampling variability in x  and 2s , the estimated statistical tolerance interval 
includes less than 95% of the population values. The solution to this problem lies in replacing 
the value of 1.96 by some other value that will create the interval containing 95% of the 
values of the population with some level of confidence. 

Definition of the two–sided and one–sided statistical tolerance interval  

The 100(1 ) %α−  two–sided statistical tolerance interval (Garaj, I., Janiga, I., 2002) is 
the interval 

( ; )x ks x ks− +  

for which the following equation is valid 

[ ]( ) 1P P x ks X x ks p α− < < + ≥ = − , 

where ( , ,1 )k k n p α= −  is tolerance factor (see Appendix), 1 α−  is a confidence and p is the 

proportion of values from distribution 2( , ).N μ σ  

The 100(1 ) %α−  one–sided statistical tolerance interval (Garaj, I., Janiga, I., 2005) is 
the interval 

( , )x ks−∞ +  or ( , )x ks− ∞  

for which the following is valid 

[ ]( ) 1P P X x ks p α< + ≥ = −     or    [ ]( ) 1P P x ks X p α− < ≥ = −  

where ( , ,1 )k k n p α= −  is tolerance factor (see Appendix), 1 α−  is a confidence and p is the 

proportion of values from distribution 2( , ).N μ σ  

Example 6.6  

From the data on the light bulbs life length, which come from a normal distribution, we obtain 
values: 30,n =  780=x  a 40,0164.s =  Construct a two−sided statistical tolerance interval 
with 90 % confidence that covers at least 95 % of the life length measurement of light bulbs. 

For 30=n , 0,95p =  a 1 0,90α− =  can be found in the appropriate table (see 

Appendix) the value of 2,4166k = . The values are substituted into the relationship 
( , )x ks x ks− +  and we obtain:   

(780 2,4166 40,0164;780 2,4166 40,0164)− × + ×  

               (780 96,7036;780 96,7036)− +  

                      (683,2964; 876,7036)  
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After rounding down the lower limit and rounding up the upper limit we obtain the interval 
(683,29; 876,71) . 

We want to construct a one–sided statistical tolerance interval with 90 % confidence 
that covers at least 95 % of the life length measurement of light bulbs. 

 
For 30n = , 0,95p =  and 1 0,90α− =  the value 2,0799k =  can be found in the 

appropriate table (see Appendix). The values are substituted into the relationship ( , )x ks− ∞  
and we obtain: 

(780 2,0799 40,0164; )− × ∞  

               (780 83,2301; )− ∞  

                 (696,7698896; )∞  

After rounding down the lower limit to three decimal places we obtain the interval 

(696,769; )∞ . 
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7 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE 

7.1 Hypothesis testing 

Learning goals 

� Explain the terms null hypothesis, alternative hypothesis, test statistic, acceptance 
region, rejection region, critical value, type I error probability (α), type II error 
probability (β) and power of a test (1 β− ). 

� Establish the acceptance and rejection regions of hypothesis test at α. 
� Determine the type II error probability and power of a test. 
� Explain the relationships between α and β. 
� Identify the procedure of hypothesis testing. 

Hypothesis 

A hypothesis is an assertion about the parameters (θ ) of one or more populations under 
study. There are two kinds of hypotheses: 

1. Null hypothesis ( )0 0:H θ θ=  

States the presumed condition of θ  (based on experience, theory, design specification, 
regulation or contractual obligation) that will be held unless there is a strong evidence 
against it. Note that 0H  should always specify an exact value of θ . E.g. 0 : 750XH μ =

hrs, where X  is the life length of an INFINITY light bulb. 

2. Alternatívna hypotéza ( 1H ):  

States the condition of θ  that would be concluded if 0H  is rejected. The following 

types of 1H  are defined: 

– two–sided 1 0:H θ θ≠ : Indicates no directionality of θ . E.g. 1 : 750XH μ ≠ hrs, 

– one–sided 1 0:H θ θ<  or 1 0:H θ θ> : Indicates the directionality of θ . E.g. lower–

side inequality 1 : 750XH μ < hrs or upper–side inequality 1 : 750XH μ > hrs. 

Test statistic 

A test statistic refers to a statistic used for statistical inference about θ . E.g. test statistic for 

inference on μ , where 2( , )X N μ σ∼  and 2σ  is known, is 
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2

1

/ ,
n

i
i

X X n N
n
σμ

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∼   or  (0,1)

/
XZ N

n
μ

σ
−

= ∼  

Test regions 

Two regions of a test statistic (see Figure 7.1) are established for testing 0H  against 1H : 

– Acceptance region ( K ): The region of a test statistic that will lead to failure to reject 
of 0H . 

– Rejection (critical) region (K): The region of a test statistic that will lead to rejection 
of 0H . 

The boundaries between the acceptance and rejection regions are called critical values. When 
we mark the critical values ( 1 2,k k ), then [ ]1 2,K k k=  and ( ) ( )1 2, ,K k k= −∞ ∪ ∞ . 

 

 

Figure 7.1  Acceptance and rejection regions for 0H  

Test errors 

The truth or falsity of a hypothesis can never be known with certainty unless the entire 
population is examined accurately and thoroughly. Therefore a hypothesis test based on a 
random sample may lead to one of the two types of wrong conclusions (see Table 7.1): 

1. Type I error: Reject 0H  when 0H  is true. 

2. Type II error: Fail to reject 0H  when 0H  is false. 

Table 7.1  Decision matrix of hypothesis testing 

 Fail to reject 0H  Reject 0H  

0H  is true Correct decision Type I error 

0H  is false Type II error Correct decision 

 
The probability of type I error (denoted as α ) and the probability of type II error 
(denoted as β ) are conditional probabilities as follows: 

0 0(type I error) (reject  is true)P P H Hα = =  

0 0(type II error) (fail to reject  is false)P P H Hβ = =  
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The type I probability α  is also called the level of significance of a test. The values of 
0,05α =  and 0,01α =  are the most used. 

Power of test 

The power of a statistical test indicates the probability of rejecting 0H  when 0H  is false and 

indicates the ability (sensitivity) of the test to detect evidence against 0H . 

0 0

0 0

power of test (reject  is false)

1 (fail to reject H is false) =
=1

P H H

P H
β

= =

= −

−

 

Test regions, hypotheses, α, β and power of test 

The test regions, hypotheses, α, β and power of a test are related to each other. The 

acceptance and rejection regions of a test statistic Θ̂  are determined based on α and the 
hypothesized value of θ (denoted as 0θ ) in 0H  (note that α  and 0θ  are specified by the 

analyst). If L and U denote the lower and upper limits of an acceptance region, respectively, 

and we are testing 0 0:H θ θ= , the acceptance region of Θ̂  is determined as follows: 

0 0 0 01 (fail to reject is true) = (fail to reject ) =P H H P Hα θ θ− = =  

0 1

0 1

0 1

ˆ( ), for two-sided
ˆ( ), for lower-sided

ˆ( ), for upper-sided

P L U H

P L H

P U H

Θ θ θ

Θ θ θ

Θ θ θ

⎧ ≤ ≤ =
⎪⎪= ≤ =⎨
⎪

≤ =⎪⎩

 

On the other hand, the β  and power of a test 1 β−  are determined based on the acceptance 

region of the test and the true value of θ  as follows: 

0 0 0 0(fail to reject is false) = (fail to reject ) =P H H P Hβ θ θ= ≠  

0 1

0 1

0 1

ˆ( ), for two-sided
ˆ( ), for lower-sided

ˆ( ), for upper-sided

P L U H

P L H

P U H

Θ θ θ

Θ θ θ

Θ θ θ

⎧ ≤ ≤ ≠
⎪⎪= ≤ ≠⎨
⎪

≤ ≠⎪⎩

 

and power of the test 1 β= − .  



Tests of Hypotheses for a Single Sample 

 

121 

Relationship between α and β 

Hypothetical distributions of
2( , / )X N nμ σ∼  for 0 0:H θ θ=

and 1 0:H θ θ≠  

 
 
 
 
 
 
For n fixed the folowing is valid: 
As the acceptance region widens, 
α  decreases but β  increases.  
 
 
 
 
 
For constant critical values the 
folowing is valid: 

As n increases, both α  and β

decrease. 
 
 
 
 
 
 
When 0 0:H θ θ=  is false: 

β  increases as the true value of θ
approaches to 1θ  and vice versa. 

Figure 7.2  Relationships between α  and β  
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Example 7.1 

Suppose that the life length of an INFINITY light bulb (X; unit: hour) is normally distributed 
with 2 240σ = . We wish to test 0: 750XH μ =  versus 1: 750XH μ ≠  with a random sample of 

size 30n =  light bulbs. 

Solution 

1. Acceptance and rejection regions 
Construct the acceptance and rejection regions of the test on μ  at 05,0=α  
The test statistic of μ  is the sample mean with the following sampling distribution: 

240,
30

X N μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  

The acceptance region l X u≤ ≤  for 0: 750XH μ =  versus 1: 750XH μ ≠  satisfies the 

following: 

01 1 0,05 0,95 (fail to reject 750)P Hα μ− = − = = =  

0,95 ( =750)P l X u μ= ≤ ≤ =  

=750
40 / 30 40 / 30 40 / 30

l X uP μ μ μ μ− − −⎛ ⎞
= ≤ ≤ =⎜ ⎟

⎝ ⎠
 

( )750 750
40 / 30 40 / 30
l uP Z P k Z kα α
− −⎛ ⎞= ≤ ≤ = − ≤ ≤ =⎜ ⎟

⎝ ⎠
 

( 1,96 1,96)P Z= − ≤ ≤  

Accordingly, the critical values are 

750 401,96 750 1,96 735,686
40 / 30 30
l l−

= − ⇒ = − × =  

750 401,96 750 1,96 764,314
40 / 30 30
u u−

= ⇒ = + × =  

Therefore 

acceptance region of 0H :  735,686 764,314x≤ ≤  

rejection region of 0H :  735,686x <    and   764,314x >  

2. β and power of test  
Assume that the true value of 730Xμ = hrs. Find the β and power of the test if the acceptance 

region is 735,686 764,314x≤ ≤ . 
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0 0(fail to reject is false) (735,686 764,314 730)P H H P Xβ μ= = ≤ ≤ = =  

735,686 764,314 =730
40 / 30 40 / 30 40 / 30

XP μ μ μ μ⎛ ⎞− − −
= ≤ ≤ =⎜ ⎟

⎝ ⎠
 

735,686 730 764,314 730 (0,77859 4,69864)
40 / 30 40 / 30

P Z P Z− −⎛ ⎞= ≤ ≤ = ≤ ≤ =⎜ ⎟
⎝ ⎠

 

( 4,70) ( 0,78) 1 0,7823 0,2177P Z P Z= ≤ − ≤ = − =  

Power of the test 1 0,7823β= − = . 

Hypothesis testing procedure 

1. We formulate the null hypothesis 0H  and alternative hypothesis 1H  (double-sided or 

one-sided). 

2. Determine the test statistic and its distribution. 

3. Calculate the value of the test statistic. 

4. Select the level of significance α . 

5. Determine a critical value(s) for the α . 

6. Make a conclusion, such as we reject or fail to reject 0H  at α . 

7.2 Tests on the mean of a normal distribution, variance known 

Learning goals 

� Test a hypothesis on μ  when 2σ  is known (z-test). 

� Calculate the P-value of a z-test. 
� Compare the α –value approach with the P-value approach in evaluating hypothesis test 

results. 
� Explain the relationship between confidence interval estimation and hypothesis testing. 
� Determine the sample size of a z-test for statistical inference on μ  by applying an 

appropriate sample size formula and operating charakteristic (OC) curve. 
� Explain the effect of the sample size n  on the statistical significance and power of the 

test. 
� Distinguish between statistical significance and practical significance. 
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Inference context 

Parameter:    μ  

Point estimator of μ :  X ~
2

( , )N
n
σμ ; 2σ  is known 

Test statistic of μ : 
/

XZ
n
μ

σ
−

= ~ (0,1)N  

Test procedure (z-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

:0H 0μμ =  :1H 0μμ ≠   for two–sided test 

0μ μ<   for lower–sided test 

0μ μ>   for upper–sided test 

Step 2: Determine a test statistic and its value. 

n
XZ

/
0

0 σ
μ−

= ,                  
n

x
z

/
0

0 σ
μ−

=  

Step 3: Determine a critical value(s) for α. 

αk  for two–sided test 

α2k  for one–sided test 

Step 4: Make a conclusion. Reject 0H  if 

0z kα>  for two–sided test 

 0 2z k α< −  for lower–sided test 

 0 2z k α>  for upper–sided test 

P-value in hypothesis testing 

The P-value is the smallest level of significance that would lead to rejection of the null 
hypothesis 0H  with the given data. 

The P-value of a test statistic 0z  can be computed by using the following formulas: 

0

0

0

2[1 (| |)] for two-sided test
1- (z ) for upper-sided test

(z ) for lower-sided test

z
P

Φ
Φ

Φ

−⎧
⎪= ⎨
⎪
⎩
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α verzus P-value approach 

Two approaches are available to use in reporting the result of a hypothesis test: 

1. α-value approach: States the test result at the value of α preselected. 

2. P-value approach: Specifies how far the test statistic is from the critical value(s). Once 
the P-value is known, the decision maker can draw a conclusion at any specified level 
of significance α as follows: 

• reject 0H  at α ,            if α≤P  

• fail to reject 0H  at α ,  otherwise 

Note that the P-value approach is more flexible and informative than the α-value approach. 

Formulas for confidence intervals (CI) 

For %)1(100 α−  confidence interval on μ , when 2σ  is known, the following formulas are 
applied: 

X k X k
n nα α
σ σμ− ≤ ≤ +   for two–sided CI 

2X k
nα
σ μ− ≤   for lower–sided CI 

2X k
nα
σμ ≤ +   for upper–sided CI 

Testing hypotheses using the confidence interval 

Null hypothesis :0H 0μμ =  is rejected on the level of significance α  if 

⎥
⎦

⎤
⎢
⎣

⎡
+−∉

n
kX

n
kX σσμ αα ,0   for two–sided test 

n
kX σμ α20 +>   for lower–sided test

 

n
kX σμ α20 −<   for upper–sided test 

For example, suppose that a 95 % CI on μ  is 779751 ≤≤ μ  and we are testing 750:0 =μH  

vs. 750:1 ≠μH  at 05,0=α . Since the CI of μ  does not include the hypothesized value 

750=μ , we will reject 0H  at 05,0=α . 
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Sample size formula 

Formulas are used to determine the sample size of a particular test for particular levels of β  

(or power of test = β−1 ), α  and δ ( 0μ μ= − , that is difference between the true value μ  

and its hypothesized value 0μ ). For a z-test on single sample, the following formulas are 

applied: 

2

22
2 )(

δ
σβα kk

n
+

=   for two−sided test 

2

22
22 )(

δ
σβα kk

n
+

=   for one−sided test 

Note that the sample size requirement icreases as α, β and δ decrease and σ  increases. 

Operating characteristic (OC) curve 

Operating characteristic (OC) curves for a z-test on μ  are provided in Appendix. The OC 

curves plot β  against d for various sample sizes n  and two levels of significance 0,01α =  

and 0,05α = , i.e. 

( , , )f n dβ α=  

Table 7.2 Operating characteristic charts for z-test − single sample 

Test α OC curve* OC parameter 

z-test 
Two−sided 

0,05 OC–a 

0d
μ μ δ
σ σ
−

= =  
0,01 OC–b 

One−sided 
0,05 OC–c 
0,01 OC–d 

*See in Appendix. 

Effect of sample size 

As the sample size n increases, both the statistical significance (inverse to P-value) and power 
( β−1 ) of the test increase. For example, Table 7.3 presents P-values and power of testing on 
μ  for the following conditions: 

– 
22~ ;X N

n
μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

   and   50,5x =  

– 0: 50H μ =  vs. 1: 50H μ ≠  
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– 0,05α =  and the true value of 50,5μ = . 

The P-value column indicates that, for the same value of 5,50=x : 

– 0H   is rejected at 05,0=α  when 100n =  because P α≤ , while  

– 0H  is not rejected at 05,0=α  when 50n ≤  because P α> . 

Table 7.3 The P-values and powers of testing on μ  for selected sample sizes 

Sample size (n) 1 - P P-value Power of test ( β−1 ) 

. 

. 

. 
↓ 

increasing 
sample size 

    10 . 
. 
↓ 

increasing 
statistical 

significance 

0,43 . 
. 
. 
↓ 

increasing 
power of test 

0,124 
    25 0,21 0,240 
    50 0,08 0,424 
  100 0,01 0,705 
  400 5,73×10-7 0,998 
1000 2,57×10-15     >0,999 

 

Statistical versus practical significance 

The statistical significance of a test does not necessarily indicate its practical significance. For 
example, when the sample size increases, then the power of the test increases. In this case, 
any small departure of μ  from the hypothesized value 0μ  will be detected (in other words, 

00 : μμ =H  will be rejected) for a large sample, even when the departure is of little practical 

significance. Therefore, the analyst should check if the statistical test result has also practical 
significance. 

Example 7.2 

For the light bulb life length data in Table 6.1, the following results have been obtained: 
30=n , 780=x , 22 40=σ . 

1. Hypothesis test on μ , 2σ  known; two–sided test 

Test 0: 765H μ =  hrs vs. 765:1 ≠μH  hrs at 05,0=α . 

Procedure: 
Step 1:  State 0H  and 1H . 

765:0 =μH       765:1 ≠μH  

Step 2:  Determine a test statistic and its value. 

0
0

780 765 2,05396
/ 40/ 30

xz
n
μ

σ
− −

= = =  
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Step 3:  Determine a critical value(s) for α. 

96,105,0 == kkα  

Step 4:  Make a conclusion. 
Since 0 0.052,05396 1,96z k= > = , 0H  reject at the level of significance 05,0=α . 

2. P-value approach  
Find the P-value for this two–sided z-test. 

02[1 (| |)] 2[1 (| 2,05396 |)] 2[1 0,98001] 0,03998P zΦ Φ= − = − = − =  

Conclusion: Since 0,03998 0,05P α= ≤ = , reject 0H  at 0,05α = . 

 
3. Relationship between CI and hypothesis test 
Test 765:0 =μH hrs vs. 765:1 ≠μH hrs at 05,0=α  based on the 95 % two–sided CI on μ . 

Conclusion: Since the 95 % two–sided CI on μ , 314,794686,765 ≤≤ μ , does not include 

the hypothesized value 765 hrs, reject 0H  at 05,0=α . 

 
4. Sample size determination 
Determine the sample size n  required for this two–sided z-test to detect the true mean as high 
as 785 hours with power of test 0,9. Apply an appropriate sample size formula and OC curve. 

a) Sample size formula 

Power of test 0 0(reject  is false) 1 0,9P H H β= = − =  ⇒ 1,0=β  ⇒ 2,02 =β  

0 785 765 20δ μ μ= − = − =  

429904,41
20

40)28,196,1(
20

40)()(
2

22

2

22
2,005,0

2

22
2 ≈=

+
=

+
=

+
=

kkkk
n

δ
σβα  

b) OC curve 
For two–sided z-test at 0,05α =  and for a single sample, we calculate the value of the 
parameter d : 

0 20
0,5

40
d

μ μ δ
σ σ
−

= = = =  

For 0,5d =  and 0,1β = , the OC–a curve displayed below (see also in Appendix) 
provides the required sample size 44n = , which is close to the value 42n =  calculated 
by using the sample size formula. 
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OC-a curve for the two–sided normal test with different values of n and 0,05α = . 

7.3 Tests on the mean of a normal distribution, variance unknown 

Learning goals 

� Test a hypothesis on μ  when 2σ  is known (t-test). 

� Determine the sample size of a t-test for statistical inference on μ  by using an 
appropriate operating charakteristic (OC) curve. 

Inference context 

Parameter:    μ  

Point estimator of μ :  X ~ ),(
2

n
N σμ ; 2σ  is unknown 

Test statistic of μ : ( 1)
/

XT t n
S n

μ−
= −∼  

Test procedure (t-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0:H 0μ μ=  1:H 0μ μ≠   for two–sided test 

0μ μ<   for lower–sided test 

0μ μ>   for upper–sided test 
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Step 2: Determine a test statistic and its value. 

0
0 /

XT
S n

μ−
= ,                     0

0 /
xt
s n

μ−
=  

Step 3: Determine a critical value(s) for α. 

( 1; )t n α−  for two–sided test 

( 1;2 )t n α−  for one–sided test 

Step 4: Make a conclusion. Reject 0H  if 

0 ( 1; )t t n α> −          for two–sided test 

 0 ( 1;2 )t t n α< − −      for lower–sided test 

 0 ( 1;2 )t t n α> −        for upper–sided test 

Formulas for confidence intervals (CI) 

For %)1(100 α−  confidence interval on μ , when 2σ  is unknown, the following formulas are 
applied: 

( 1,  ) ( 1,  )S SX t n X t n
n n

α μ α− − ≤ ≤ + −   for two–sided CI 

( 1,  2 ) SX t n
n

α μ− − ≤   for lower–sided CI 

( 1, 2 ) SX t n  
n

μ α≤ + −   for upper–sided CI 

Testing hypotheses using the confidence interval 

Null hypothesis :0H 0μμ =  is rejected on the level of significance α  if 

0 ( 1, ) ; ( 1, )S SX t n  X t n  
n n

μ α α⎡ ⎤∉ − − + −⎢ ⎥⎣ ⎦
  for two–sided test 

0 ( 1, 2 ) SX t n  
n

μ α> + −   for lower–sided test 

0 ( 1, 2 ) SX t n  
n

μ α< − −   for upper–sided test 
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Operating characteristic (OC) curve 

Operating characteristic (OC) curves for a t-test on μ  are provided in Appendix. The OC 

curves plot β  against d (for t-test) for various sample sizes n  and two levels of significance 

0,01α =  and 0,05α = , i.e. 

( , , )f n dβ α=  

Table 7.4 Operating characteristic charts for t-test − single sample 

Test α OC° OC parameter 

t-test 
Two−sided 

0,05 OC–e 
*

0d
μ μ δ
σ σ
−

= =� �  
0,01 OC–f 

One−sided 
0,05 OC–g 
0,01 OC–h 

∗ As a σ�  use sample standard deviation.  °See in Appendix. 
 

Example 7.3 

For the light bulb life length data in Table 6.1, the following results have been obtained: 
30n = , 780x = , 2 240,0164s = . 

1. Hypothesis test on μ , 2σ  unknown; two–sided test 

Test 765:0 =μH  hrs vs. 765:1 ≠μH  hrs at 05,0=α . 

Procedure: 
Step 1:  State 0H  and 1H . 

765:0 =μH       765:1 ≠μH  

Step 2:  Determine a test statistic and its value. 

0
0

780 765 2,05312
/ 40,0164 / 30

xt
s n

μ− −
= = =  

Step 3:  Determine a critical value(s) for α. 

( 1; ) (30 1;0,05) (29;0,05) 2,045t n t tα− = − = =  

Step 4:  Make a conclusion. 

Since 0 2,05312 (29;0,05) 2,045t t= > = , reject 0H  at the level of significance 

05,0=α . 
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2. Sample size determination 
Determine the sample size n  required for this two–sided t-test to detect the true mean as high 
as 785 hours with power of test 0,9.  Apply an appropriate OC curve. 

Power of test 0 0(reject  is false) 1 0,9P H H β= = − =  ⇒ 0,1β =  

0 785 765 20δ μ μ= − = − =  

For two–sided t-test at 05,0=α  and for a single sample, we calculate the value of the 
parameter d : 

0 20
0,499795

40,0164
d

s
μ μ δ
σ
−

= = = =  

For 0,5d =  and 0,1β = , the OC–e curve displayed below (see also in Appendix) provides 

the required sample size 45n = . 
 

 

OC−e curve for the two–sided normal test with different values of n and 0,05α = . 
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7.4 Hypothesis tests on the variance of a normal population 

Learning goals 

� Test a hypothesis on 2σ  ( 2χ -test). 

� Determine the sample size of a 2χ -test for statistical inference on 2σ  by using an 
appropriate operating charakteristic (OC) curve. 

Inference context 

Parameter:    2σ  

Point estimator of 2σ : 
1

)( 2

12

−

−
=
∑
=

n

XX
S

n

i
i

 

Test statistic of 2σ : 
2

2
2

( 1)n SΧ
σ
−

= ~ )1(2 −nχ  

Test procedure (χ2-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0 :H 2
0

2 σσ =  :1H 2
0

2 σσ ≠   for two–sided test 

2
0

2 σσ <   for lower–sided test 

2
0

2 σσ >   for upper–sided test 

Step 2: Determine a test statistic and its value. 
2

2
0 2

0

( 1)n SΧ
σ
−

=                
2

2
0 2

0

( 1)n sχ
σ
−

=  

Step 3: Determine a critical value(s) for α. 
2 ( 1;1 / 2)nχ α− −  and 2( 1; / 2)nχ α−  for two–sided test 
2 ( 1;1 )nχ α− −   for lower–sided test 
2 ( 1; )nχ α−   for upper–sided test 

Step 4: Make a conclusion. Reject 0H  if 

2 2
0 ( 1;1 / 2)nχ χ α< − −  or 2 2

0 ( 1; / 2)nχ χ α> −   for two–sided test 

2 2
0 ( 1;1 )nχ χ α< − −    for lower–sided test 



Tests of Hypotheses for a Single Sample 

 

134 

2 2
0 ( 1; )nχ χ α> −   for upper–sided test 

Formulas for confidence intervals (CI) 

For %)1(100 α−  confidence interval on 2σ  the following formulas are applied: 

2 2
2

2 2

( 1) ( 1)
( 1; / 2) ( 1;1 / 2)
n S n S
n n

σ
χ α χ α

− −
≤ ≤

− − −
  for two–sided CI 

2
2

2
( 1)

( 1; )
n S

n
σ

χ α
−

≤
−

   for lower–sided CI 

                        
2

2
2

( 1)
( 1;1 )
n S
n

σ
χ α

−
≤

− −
     for upper–sided CI 

Testing hypotheses using the confidence interval 

Null hypothesis :0H 2
0

2 σσ =  is rejected on the level of significance α  if 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
−
−

∉
)2/1;1(

)1(,
)2/;1(

)1(
2

2

2

2
2
0 αχαχ

σ
n

Sn
n

Sn  for two–sided test 

)1;1(
)1(

2

2
2
0 αχ

σ
−−

−
>

n
Sn

                                  for lower–sided test 

);1(
)1(

2

2
2
0 αχ

σ
−

−
<

n
Sn

                            for upper–sided test 

Operating characteristic (OC) curve 

Operating characteristic (OC) curves for a χ2-test on 2σ  are provided in Appendix. For the 
two–sided alternative hypothesis 2 2

1 0:H σ σ≠ , the OC–i and OC–j plot β  against an abscissa 

parameter 

0

σλ
σ

=  

for various sample sizes n , where σ  denotes the true value of the standard deviation, and two 
levels of significance 0,01α =  and 0,05α = . The OC–k and OC–l curves are for upper–

sided alternative 2 2
1 0:H σ σ> , while the OC–m and OC–n are for lower–sided alternative 

2 2
1 0:H σ σ< .  
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Table 7.5 Operating characteristic charts for χ2-test − single sample 

Test α OC curve* OC parameter 

χ2-test 

Two−sided 
0,05 
0,01 

OC–i 
OC–j 

0

σλ
σ

=  Upper–sided 
0,05 
0,01 

OC–k 
OC–l 

Lower–sided 
0,05 
0,01 

OC–m 
OC–n 

* See in Appendix. 

Example 7.4 

For the light bulb life length data in Table 6.1 and Example 6.3, the following results have 
been obtained: 

30n = , 2 240,0164s = ; 95 % two–sided CI on 2σ :  2 2 231,88 53,87σ≤ ≤ . 

1. Hypothesis test on 2σ ; two–sided test 
Test 2 2

0: 40H σ =  vs. 2 2
1: 40H σ ≠  at 05,0=α . 

Procedure: 
Step 1:  State 0H  and 1H . 

2 2
0: 40H σ =       2 2

1: 40H σ ≠  

Step 2:  Determine a test statistic and its value. 

2

2 2
2
0 2

0

( 1) (30 1) 40,0164 29,0238
40

n sχ
σ
− − ⋅

= = =  

Step 3:  Determine a critical value(s) for α. 
2 2( 1; / 2) (29;0,025) 45,7nχ α χ− = =  
2 2( 1;1/ / 2) (29;0,975) 16,0nχ α χ− = =  

Step 4:  Make a conclusion. 

Since 2
0 29,0238 (16,0;45,7)χ = ∈ , fail to reject 0H  at the level of significance 

0,05α = . 

2. Relationship between CI and hypothesis test 

Test 2 2
0: 40H σ =  vs. 2 2

1: 40H σ ≠  at 05,0=α  based on the 95 % two–sided CI on 2σ . 

Conclusion: Since the 95 % two–sided CI on 2σ , 2 2 231,88 53,87σ≤ ≤ , includes the 

hypothesized value 240 , fail to reject 0H  at 05,0=α . 
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3. Sample size determination 
Determine the sample size n  required for this two–sided χ2-test to detect the true standard 
deviation as high as 50 hours with power of test 0,8. Apply an appropriate OC curve. 

Power of test 0 0(reject  is false) 1 0,8P H H β= = − =  ⇒ 0,2β =  

For two–sided χ2-test at 05,0=α  and for a single sample, we calculate the value of the 

parameter λ : 

0

50 1,25
40

σλ
σ

= = =  

For 1,25λ =  and 0,2β = , the OC-i curve displayed below (see also in Appendix) provides 
the required sample size 75n = . 
 

 

OC−i curve for the two–sided χ2-test with different values of n and 0,05α = . 

7.5 Hypothesis tests on a population proportion 

Learning goals 

� Test a hypothesis on p  (z-test) for a large sample. 

� Determine the sample size for statistical inference on p  by using an appropriate sample 
size formula. 
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Inference context 

Parameter:   p  

Point estimator of p :  ˆ XP
n

= , where ( , )X B n p∼  

Test statistic of p :  
ˆ

(0,1)
(1 ) /
P pZ N

p p n
−

=
−

∼ ,  (1 ) 9np p− >  

Test procedure (z-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0:H 0p p=  1:H 0p p≠   for two–sided test 

0p p<   for lower–sided test 

0p p>   for upper–sided test 

Step 2: Determine a test statistic and its value. 

0
0

0 0

ˆ

(1 )
P pZ

p p
n

−
=

−
,                     0

0
0 0

ˆ
(1 )

p pz
p p

n

−
=

−
 

Step 3: Determine a critical value(s) for α. 

αk  for two–sided test 

α2k  for one–sided test 

Step 4: Make a conclusion. Reject 0H  if 

αkz >0  for two–sided test 

 α20 kz −<  for lower–sided test 

 α20 kz >  for upper–sided test 

Formulas for confidence intervals (CI) 

For %)1(100 α−  confidence interval on p the following formulas are applied: 

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆP P P PP k p P k
n nα α
− −

− ≤ ≤ +  for two–sided CI 

2

ˆ ˆ(1 )ˆ P PP k p
nα
−

− ≤    for lower–sided CI 
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2

ˆ ˆ(1 )ˆ P Pp P k
nα
−

≤ +    for upper–sided CI 

Testing hypotheses using the confidence interval 

Null hypothesis :0H 0p p=  is rejected on the level of significance α  if 

0

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ;P P P Pp P k P k
n nα α

⎡ ⎤− −⎢ ⎥∉ − +
⎢ ⎥⎣ ⎦

  for two–sided test 

0 2

ˆ ˆ(1 )ˆ P Pp P k
nα
−

> +     for lower–sided test 

0 2

ˆ ˆ(1 )ˆ P Pp P k
nα
−

< −     for upper–sided test 

Sample size formula 

For a hypothesis test on p , the following formulas are applied to determine the sample size: 

2

0 0 2

0

(1 ) (1 )k p p k p p
n

p p
α β

⎛ ⎞− + −
= ⎜ ⎟⎜ ⎟−⎝ ⎠

  for two−sided test 

2

2 0 0 2

0

(1 ) (1 )k p p k p p
n

p p
α β

⎛ ⎞− + −
= ⎜ ⎟⎜ ⎟−⎝ ⎠

  for one−sided test 

 

Example 7.5 

For the corroded bridge data in Example 6.4, the following results have been obtained: 

40n =  and 
28ˆ 0,7
40

xp
n

= = = . 

1. Hypothesis test on p ; two–sided test 

Test 0: 0,5H p =  vs. 1: 0,5H p ≠  at 0,05α = . 

Procedure: 
Step 1:  State 0H  and 1H . 

0: 0,5H p =       1: 0,5H p ≠  

Step 2:  Determine a test statistic and its value. 
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0
0

0 0

ˆ 0,7 0,5 2,5316
(1 ) 0,5 (1 0,5)

40

p pz
p p

n

− −
= = =

− × −
 

Step 3:  Determine a critical value(s) for α. 

0,05 1,96k kα = =  

Step 4: Make a conclusion. 

Since 0 0,052,5316 1,96z k= > = , reject 0H  at the level of significance 0,05α = . 

Sample size determination 

Determine the sample size n  required for this two–sided z-test to detect the true proportion p  
as high as 70 % with the power of test 0,9. Apply an appropriate sample size formula. 

p = 70 % = 0,7 

Power of test 0 0(reject  is false) 1 0,9P H H β= = − =  ⇒ 0,1β =  ⇒ 2 0,2β =  

2 2

0 0 2 0,05 0,2

0

(1 ) (1 ) 0,5 (1 0,5) 0,7 (1 0,7)
0,7 0,5

k p p k p p k k
n

p p
α β

⎛ ⎞ ⎛ ⎞− + − × − + × −
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

 

   
21,96 0,25 1,28 0,45826 61,3535 62

0,2
× + ×⎛ ⎞= = ≈⎜ ⎟

⎝ ⎠
 

7.6 Testing for goodness of fit 

Statistical tests, which test a hypothesis about the type of distribution are called goodness of 
fit tests. This section lists three different tests. 

7.6.1 Pearson 2χ -test 

Learning goals 

� Explain the term categorical variable. 
� Distinguish between nominal and ordinal variables. 
� Explain why the expected frequency of each class interval should be at least three in the 

goodness-of-fit test. 
� Conduct a goodness-of-fit test on a hypothesized distribution. 
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Categorical variable 

A categorical variable is used to represent a set of categories. Two types of categorical 
variables are defined depending on the significance of the order of the category listing. 

1. Nominal variable: The order of listing of categories is not meaningful.  

E.g. gender (male and female) or hand dominance (left-handed, right-handed and 
ambidextrous). 

2. Ordinal variable: The order of listing of categories is meaningful. 

E.g. education (less than 9 years, 9 – 12 years, more than 12 years), symptom severity 
(none, mild, moderate, severe). 

Inference context 

The underlying probability distribution of the population is unknown. Thus, we wish to test if 
a particular distribution fits the population. 

E.g. 0 0: ( )H X P λ∼   (Poisson – discrete distribution) 

 2
0 : ( , )H X N μ σ∼   (continuous distribution) 

Test statistic 

In these tests, the data from the random sample of size n  are classified in the class intervals. 
As a measure of the difference between observed and expected frequencies of class is taken 
the test statistic 

( )2
2 2

1

( 1)
r

i i

i i

n np
χ r s

np
Χ

=

−
= − −∑ ∼  

where  r  is number of class intervals, 

in  is observed frequency of i-th class interval, 

inp  is expected frequency of i-th class interval, 1 0(  is true)i i ip P t X t H−= < ≤  

s  is number of parameters of the hypothesized distribution that are estimated by 
sample statistic. 
 

Caution. Minimum expected frequency 
One point to be noted in the application of this test procedure concerns the magnitude of the 
expected frequencies. If these expected frequencies are too small, the test statistic 2

0Χ  will not 

reflect the departure of observed from expected, but only the small magnitude of the expected 
frequencies. There is no general agreement regarding the minimum value of expected 
frequencies, but values of 3, 4 and 5 are widely used as minimal. To avoid this undesirable 
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case, when an expected frequency is very small (say less then 3), the corresponding class 
interval should be combined with an adjacent class interval and the number of class intervals 
r  is reduced by one. 

Table 7.6 Goodness of fit test table 
Class 

intervals 
i  

Observed 
frequency 

in  

 
Probability 

ip  

Expected 
frequency 

inp  

 
 

i in np−  

 
2( )i i

i

n np
np
−

 

1      
2      
#      
r       

 
 

A Pearson chi-square goodness of fit test ( 2χ -test) is one of the most widely used tests, 
which allows you to test the type of continuous and discrete distributions. 

Test procedure ( 2χ -test) 

Step 1: State 0H  and 1H . 

0:H X  has a particular distribution  vs.  1:H X  has not a particular distribution  

Step 2: Determine a test statistic and its value. 
a) Estimate the parameter(s) of the hypothesized distribution if their values are 

not provided. 

b) Define class intervals and summarize observed frequencies in  accordingly. 

c) Estimate the probabilities ( ip ´s) of the class intervals. 

d) Calculate the expected frequencies ( inp ) of the class intervals. If an expected 

frequency of a class interval is too small (less than 3), combine it to an adjacent class 
interval. Then, repeat steps 2b) až 2d) 

e) Calculate the value of test statistic  
2

2
0

1

( )r
i i

i i

n np
np

Χ
=

−
=∑  

Step 3: Determine a critical value for α. 

2 ( 1, )r sχ α− −  
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Step 4: Make a conclusion. Reject 0H  if 

2 2
0 ( 1, )r sχ χ α> − −  

Caution. Upper–sided critical region 
Since the test statistic 2

0Χ  becomes smaller as the hypothesized distribution fits better, no 

lower limit is set as a critical value in the goodness of fit test. 

Example 7.6  (Goodness-of-fit test; discrete distribution) 

The number of e-mails per hour (X) coming to a certain firm´s e-mail account is assumed to 
follow a Poisson distribution. The following hourly e-mail arrival data are obtained during 
100 hours: 

No. e-mails/hour ( X ) 0 1 2 3 
      Frequency 60 28 7 5 

Conduct a goodness of fit test at 0,05α =  to confirm that the number of e-mails coming per 
hour is governed by Poisson distribution. 

Procedure 

Step 1: State 0H  and 1H . 

0 :  ( )H X Po λ∼     1 :H X ∼ ( )Po λ  

Step 2: Determine a test statistic and its value. 
a) Estimate the parameter of the hypothesized distribution. 

n 0 60 1 28 2 7 3 5ˆ ( ) 0,57
100

E Xλ × + × + × + ×
= = =  

The number of parameters estimated is 1s = . 

b) Define class intervals and summarize observed frequencies in  accordingly. 

c) Estimate the probabilities ( ˆ ip ) of the class intervals. 

0,57 0

1
(0,57)ˆ ( 0) 0,57
0!

ep P X
−

= = = =      
0,57 1

2
(0,57)ˆ ( 1) 0,32
1!

ep P X
−

= = = =  

0,57 2

3
(0,57)ˆ ( 2) 0,09
2!

ep P X
−

= = = =      
0,57 3

4
(0,57)ˆ ( 3) 0,02
3!

ep P X
−

= = = =  

d) Calculate the expected frequencies ( ˆ inp ) of the class intervals. If an expected frequency 

is too small (less than 3), adjust the class intervals. 
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e-mails 
intervals 

X  

Observed 
frequency 

in  

 
Probability 

ˆ ip  

Expected 
frequency 

ˆ inp  

 
 

ˆi in np−  

 
2ˆ( )

ˆ
i i

i

n np
np
−

0 60 0,57 57   
1 28 0,32 32   
2 7 0,09 9   

3 or more 5 0,02 2   
 

Since the expected frequency of the last class interval in the above table is less than 
three, combine the last two cells as follows: 

e-mails 
intervals 

X  

Observed 
frequency 

in  

 
Probability 

ˆ ip  

Expected 
frequency 

ˆ inp  

 
 

ˆi in np−  

 
2ˆ( )

ˆ
i i

i

n np
np
−

 

0 60 0,57 57 3 0,15789 
1 28 0,32 32 − 4 0,50000 

2 or more 12 0,11 11 1 0,09000 
 

e) Calculate the value of test statistic: 
23

2
0

1

ˆ( ) 0,7488
ˆ

i i

i i

n np
np

χ
=

−
= =∑ . 

Step 3: Determine a critical value for α. 
2 2 2( 1, ) (3 1 1;0,05) (1;0,05) 3,84r sχ α χ χ− − = − − = =  

Step 4: Make a conclusion. 

Since 2 2
0 0,7488 (1,0,05) 3,84χ χ= < = , fail to reject 0H  at 0,05α = .  

In other words, the number of e-mail arrivals per hour follows a Poisson distribution at the 
level of significance 0,05α = . 

Example 7.7  (Goodness-of-fit test; continuous distribution) 

The final scores X  of 40n =  students in a statistics class are summarized as follows: 

Final scores (X) 60x <  60 70x≤ <  70 80x≤ <  80 90x≤ <  90 x≤  
Frequence 3 2 9 12 14 

The mean and variance of the scores are 83 and 11,8742, respectively. Test if a normal 
distribution fits the test scores at 0,05α = . 
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Procedure: 

Step 1: State 0H  and 1H . 

2
0 :  (83;11,874 )H X N∼            1 :   H X ∼ 2(83;11,874 )N  

Step 2: Determine a test statistic and its value. 
a) Estimate the parameter of the hypothesized distribution. 

Since μ  and 2σ  are known, skip this step and the number of parameters estimated is 
0s = . 

b) Define class intervals and summarize observed frequencies in  accordingly. 

c) Estimate the probabilities ( ˆ ip ) of the class intervals. 

1
60 83ˆ ( 60) ( 1,937) 1 (1,937) 0,0263725
11,874

ip P X P Z P Z Φ−⎛ ⎞= < = ≤ = < − = − =⎜ ⎟
⎝ ⎠

 

2
60 83 70 83ˆ (60 70)
11,874 11,874

( 1,937 1,0948) ( 1,0948) ( 1,937) 0,1104295

p P X P Z

P Z Φ Φ

− −⎛ ⎞= ≤ < = ≤ ≤ =⎜ ⎟
⎝ ⎠

= − ≤ < − = − − − =
 

3ˆ (70 80) ( 1,0948 0,25265) 0,263465p P X P Z= ≤ < = − ≤ < − =  

4ˆ (80 90) ( 0,25265 0,589523) 0,321979p P X P Z= ≤ < = − ≤ < =  

5ˆ (90 ) (0,589523 ) 0,277754p P X P Z= ≤ = ≤ =  

d) Calculate the expected frequencies ( ˆ inp ) of the class intervals. If an expected frequency 

is too small (less than 3), adjust the class intervals. 

X  Observed frequency in  Probability ˆ ip  Expected frequency ˆ inp  

60x <  3 0,0263725 1 

60 70x≤ <  2 0,1104295 4 

70 80x≤ <  9 0,2634650 11 

80 90x≤ <  12 0,321979 13 

90 x≤  14 0,277754 11 

 

Since the expected frequency of the first class interval in the previous table is less than 
three, combine the first two class intervals as follows: 
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X  Observed frequency in  Probability ˆ ip  Expected frequency ˆ inp  

70x <  5 0,136802 5 
70 80x≤ <  9 0,2634650 11 
80 90x≤ <  12 0,321979 13 

90 x≤  14 0,277754 11 

e) Calculate the value of test statistic 
24

2
0

1

ˆ( ) 1,2586
ˆ

i i

i i

n np
np

χ
=

−
= =∑  

X  Observed frequency in  
Expected 

frequency ˆ inp  
ˆi in np−  

2ˆ( )
ˆ

i i

i

n np
np
−

 

70x <  5 5 0 0 
70 80x≤ <  9 11 2−  0,3636 
80 90x≤ <  12 13 1−  0,0769 

90 x≤  14 11 3 0,8181 

 

Step 3: Determine a critical value for α. 
2 2 2( 1, ) (4 0 1;0,05) (3;0,05) 7,81r sχ α χ χ− − = − − = =  

Step 4: Make a conclusion. 

Since 2 2
0 1,2586 (3;0,05) 7,81χ χ= < = , fail to reject 0H  at the level of significance 

0,05α = . 

7.6.2 Shapiro-Wilk normality test  

The Shapiro-Wilk test can be used for a random sample of sizes 2 2000n≤ ≤  and for 
individual measured values (not for grouped data like in Pearson 2χ -test). 

Let nxxx  ..., , , 21  are realizations of the random sample nXXX  ..., , , 21 . When we 

arrange observations by size in ascending order we get )()2()1( nxxx ≤≤≤ " , what are 

realizations of an ordered random sample (1) (2) ( ), , , nX X X… . 

Procedure for testing hypotheses 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

2
0 :    ( ,  )H X N μ σ∼   versus  1 :   H X ∼ 2( ,  )N μ σ , where 2,μ σ  are unknown 
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Step 2: Determine a test statistic. 

( ) ( )

2

1
1

2

1

( )( )

( )

m

i n i i
i

n

i
i

a n X X
W

X X

− +
=

=

⎛ ⎞−⎜ ⎟
⎝ ⎠=

−

∑

∑
 

where 
– ( )ia n  are coefficients listed in the table (see Annex); 

– 
1

1 n

i
i

X X
n =

= ∑ ; 

– 
         for  even

2
-1       for  odd
2

n n
m

n n

⎧
⎪⎪= ⎨
⎪
⎪⎩

. 

Step 3: Determine a critical value for α. 
( )αW n  is a value listed in the table for given n  and 0,01α =  or 0,05α =  (see Annex). 

Step 4: Make a conclusion. Reject 0H  if 

( )αW W n≤  

Note. In the case of large sample size it is possible to determine the critical values ( )αW n  by 

using statistical software such as using Statgraphics Centurion XV. 

7.7 Contingency table tests  

Learning goals 

� Describe a contingency table. 
� Conduct a contingency table test for independence/homogeneity of categorical 

variables. 

Contingency table r c×  

Let us have a two-dimensional random vector T( , )X Y=Z  of categorical variables. The X  

may take values 1,2, ,r…  and Y  values 1,2, ,c…  ( 1r > , 1c > ). Denote:  

( , )ijp P X i Y j= = = ,   .
1

( )
c

i ij
j

p P X i p
=

= = =∑ ,   .
1

( )
r

j ij
i

p P Y j p
=

= = =∑ . 
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Suppose that 0ijp >  for all twosome ( , )i j . 

Let the n  elements of a sample from a population may be classified according to two 

different criteria. When denote ijn  the number of those cases in which X i=  and Y j= , the 

results can be written in the form of so-called contingency table: 

Table 7.7 An r c×  Contingency table 

X  
Y  

1 2 "  c  
1 11n  12n  "  1cn  

2 21n  21n  "  11n  

"  "  "  "  "  
r  1rn  2rn  "  rcn  

Inference context 

We wish to test the association between two categorical variables X  and Y  by using an r c×
contingency table for independence or homogeneity as follows: 

– Independence: To examine if X  and Y  are independent, a representative sample is 
selected from a single population and then each element in the sample is classified into 
one of r  categories in X  and one of c  categories in Y .  
E.g. classifying a sample of residents in Rohožník in terms of sex X  and occupation Y . 

– Homogeneity: To examine if r  populations iX , 1,2, , r…  are homogeneous in terms of 

Y , representative samples are selected from the r  populations and then the elements of 
each sample are classified into c  categories in Y . 
E.g. classifying five samples of residents from different counties X  in terms of 
occupation Y . 

 
Recall that for two indepenent events A and B  is valid:  

( ) ( )P A B P A= , ( ) ( )P B A P B=  and ( ) ( ) ( )P A B P A P B∩ = . 

Likewise, the relationship of two categorical variables is considered independent or 
homogeneous if  

1. .( ) ( )i i iP X x Y P X x p= = = = , 

2. .( ) ( )j j jP Y y X P Y y p= = = = , 

3. . .( , ) ( ) ( )i j ij i j i jP X x Y y p P X x P Y y p p= = = = = = = , 



Tests of Hypotheses for a Single Sample 

 

148 

where: ( )iP X x Y=  and ( )jP Y y X=  are conditional probabilities, 

( )iP X x=  and ( )jP Y y=  are marginal probabilities, and  

( , )i jP X x Y y= =  is the joint probability of X  and Y . 

Test statistic 

( )2

2 2

1 1

( )
c r

ij ij

j i ij

n np
χ

np
Χ ν

= =

−
= ∑∑ ∼ , ( 1)( 1)r cν = − −  

where 

ijn  is observed frequency of cell ij , 

. . . .
. .( ) i j i j

ij i j

n n n n
np n p p n

n n n
× ×

= × = =
×

 is expected frequancy of cell ij . 

Table 7.8 Independence/Homogeneity Test table  

X  
Y  

Totals 
1 2 "  c  

1 11n  
11np  

12n  
12np "  1cn

1cnp  1.n  

2 21n  
21np  

21n  
21np "  2 cn

2cnp  2.n  

"  "  " " "  "

r  1rn  
1rnp  

2rn  
2rnp "  rcn

rcnp  .rn  

Totals .1n  .2n "  .cn  n  
 

Caution. Minimum expected frequency 
Like the minimum expected frequency for the goodness of fit test (see Section 7.6.1), if an 

expected frequency is too small (say less then 3), 2Χ  can be improperly large for a small 
departure of the observed frequency from the expected one. Thus, any category whose 
expected frequency is small (less then 3) should be combined with an adjacent category. 

Test procedure ( 2χ -test) 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

1. Testing for idependence 

0:H X  and Y  are independent 

1:H X  and Y  are not independent 
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2. Testing for homogeneity. 

0:H  iX  (1,2, , r… ) are homogenous in terms of Y  

1:H  iX  (1,2, , r… ) are not homogenous in terms of Y  

Step 2: Determine a test statistic and its value. 

( )2

2 2
0

1 1

(( 1)( 1))
c r

ij ij

j i ij

n np
χ r c

np
Χ

= =

−
= − −∑∑ ∼ , where . .i j

ij

n n
np

n
=  

Step 3: Determine a critical value for α. 

2 (( 1)( 1), )r cχ α− −  

Step 4: Make a conclusion. Reject 0H  if 

2 2
0 (( 1)( 1), )r cχ χ α> − −  

Caution. Upper-sided critical region 

Since the test statistic 2
0Χ  becomes small as the null hypothesis of independence or 

homogeneity is true, no lower limit is set as a critical value in the independence or 
homogeneity test. 
 
Example 7.8  (Contigency table test; Independence) 
Grades in ergonomics X  and grades in statistics Y  of a hundred students are summarized as 
follows: 

Ergonomics grade X  Statistics grade Y  
A B Others 

A 12 5 4 
B 10 19 17 

Others 4 8 21 

Test if grades in ergonomics X  and grades in statistics Y  are independent at 0,05α = . 

Procedure: 

Step 1: State 0H  and 1H . 

0H  Grades in ergonomics X  and grades in statistics Y  are independent 

1H  Grades in ergonomics X  and grades in statistics Y  are not independent 

Step 2: Determine a test statistic and its value. 
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( )2
3 3

2
0

1 1

ij ij

j i ij

n np
np

χ
= =

−
= =∑∑  

2 2 2 2 2(12 5,46) (5 6,72) (4 8,82) (10 11,96) (21 13,86)...
5,46 6,72 8,82 11,96 13,86
− − − − −

= + + + + + =  

19,4958 19,5= ≈  

 
Ergonomics grade 

X  
Statistics grade Y  

Totals 
A B Others 

A 
12 

5,46 
5 

6,72
4 

8,82 
21 

B 
10 

11,96 
19 

14,72
17 

19,32 
46 

Others 
4 

8,58 
8 

10,56
21 

13,86 
33 

Totals 26 32 42 100 

 

Step 3: Determine a critical value for α. 
2 2 2(( 1)( 1), ) ((3 1)(3 1),0,05) (4;0,05) 9,49r cχ α χ χ− − = − − = =  

Step 4: Make a conclusion. 

Since 2 2
0 19,5 (4;0,05) 9,49χ χ= > = , reject 0H  at 0,05α = . 

It is concluded that grades in ergonomics X  and grades in statistics Y  are not independent at 
0,05α = . 

Example 7.9 

A random sample of 300 adults with different hand sized X  evaluates two mouse designs Y . 
The evaluation results are summarized as follows: 

Hand size X  
Mouse designs Y  

Conventional New 
Small 35 65 

Medium 20 80 
Large 30 70 
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Test if users in different hand size groups X  have homogeneous opinions on the mouse 
designs at 0,05α = . 

Procedure: 

Step 1: State 0H  and 1H . 

0:H  Users in different hand-size groups are homogeneous in terms of opinions on 

the mouse designs. 

1:H  Users in different hand-size groups are not homogeneous in terms of opinions on 

the mouse designs. 

Step 2: Determine a test statistic and its value. 

Hand size X  
Mouse designs Y  

Totals Conventional New 

Small 35 
28,3

65 
71,7

100 

Medium 20 
28,3

80 
71,7

100 

Large 30 
28,3

70 
71,7

100 

Totals 85 215 300 
 

( )2
2 3

2
0

1 1

5,74981 5,75ij ij

j i ij

n np
np

χ
= =

−
= = ≈∑∑  

Step 3: Detarmine a critical value for α. 
2 2 2(( 1)( 1), ) ((3 1)(2 1); 0, 05) (2; 0, 05) 5, 99r cχ α χ χ− − = − − = =  

Step 4: Make a conclusion. 

Since 2 2
0 5,7 (2;0,05) 5,99χ χ= < = , fail to reject 0H  at 0,05α = . 

It is concluded that users in different hand size groups do not have significantly different 
opinions on the mouse designs at 0,05α = . 
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8 STATISTICAL INFERENCE FOR TWO SAMPLES 

8.1 Inference for a difference in means of two normal distributions, 
variances known 

Learning goals 

� Test a hypothesis on 1 2μ μ−  when 2
1σ  and 2

2σ  are known (z-test). 
� Determine the sample size of a z-test for statistical inference on  by using an ap-

propriate sample size formula and operating characteristic (OC) curve. 
� Establish a %)1(100 α−  confidence interval (CI) on  when  and  are 

known. 
� Determine the sample size of a z-test to satisfy a preselected level of error E  in estimat-

ing . 

Inference context 

• Parameter of interest:  1 2μ μ−  

• Point estimator of 1 2μ μ− : 1 2X X− ~
2 2
1 2

1 2
1 2

( , )N
n n
σ σμ μ− + , where 

1X ~
2
1

1
1

( , )N
n
σμ  and 2X ~

2
2

2
2

( , )N
n
σμ ; 

2
1σ  and 2

2σ  are known; 

1X  and 2X  are independent. 

• Test statistic of 1 2μ μ− : 1 2 1 2
2 2
1 2

1 2

( ) ( )X XZ

n n

μ μ

σ σ

− − −
=

+

~ (0,1)N  

Sampling distribution of 1 2X X−  

The sampling distribution of 1 2X X−  is 
2 2
1 2

1 2 1 2
1 2

( , )X X N
n n
σ σμ μ− − +∼  

1 2μ μ−

1 2μ μ− 2
1σ

2
2σ

1 2μ μ−
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where  1X ~
2
1

1
1

( , )N
n
σμ , 

1

2
11 12 1 1 1, , , . . . ( , )nX X X i i d N μ σ… ∼ ; 

2X ~
2
2

2
2

( , )N
n
σμ , 

2

2
21 22 2 2 2, , , . . . ( , )nX X X i i d N μ σ… ∼ ; 

1X  and 2X  are independent. 

Derivation of relationship 
2 2
1 2

1 2 1 2
1 2

( , )X X N
n n
σ σμ μ− − +∼  

Since 1X  and 2X  are independent and normal with means and variances 1( )E X , 2( )E X , 
2

1 1 1( ) /D X nσ=  and 2
2 2 2( ) /D X nσ= , respectively,  is normal with mean and vari-

ance 

1 2 1 2 1 2( ) ( ) ( )E X X E X E X μ μ− = − = −  
2 2
1 2

1 2 1 2
1 2

( ) ( ) ( )D X X D X D X
n n
σ σ

− = + = +  

Test procedure (z-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

:0H 021 δμμ =−  :1H 021 δμμ ≠−   for two–sided test 

021 δμμ <−   for lower–sided test 

021 δμμ >−   for upper–sided test 

Step 2: Determine a test statistic and its value. 

2

2
2

1

2
1

021
0

)(

nn

XX
Z

σσ

δ

+

−−
= ,               

2

2
2

1

2
1

021
0

)(

nn

xx
z

σσ

δ

+

−−
=  

Step 3: Determine a critical value(s) for α  

αk  for two–sided test 

α2k  for one–sided test 

Step 4: Make a conclusion. Reject 0H  if 

αkz >0  for two–sided test 

α20 kz −<  for lower–sided test 

α20 kz >  for upper–sided test 

21 XX −
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Sample size formula 

It is possible to obtain formulas for calculating the sample sizes directly. Suppose that the null 
hypothesis 0 1 2 0:H μ μ δ− =  is false and that the true difference in means is 1 2μ μ δ− = , 

where 0δ δ> . One may find formulas for the sample size required to obtain a specific value 

of the type II error probability β  for a given difference in means δ  and level of significance 

α . 
For the two-sided alternative hypothesis with significance level , the sample size 

1 2n n n= =  required to detect a true difference in means of δ  with power of the test at least 

1 β−  is 
2 2 2

2 1 2
2

0

( ) ( )
( )

k k
n α β σ σ

δ δ
+ +

=
−

 

 
For the one-sided alternative hypothesis with significance level , the sample size 

1 2n n n= =  required to detect a true difference in means of δ ( 0δ≠ ) with power of the test at 

least 1 β−  is  

2 2 2
2 2 1 2

2
0

( ) ( )
( )

k k
n α β σ σ

δ δ
+ +

=
−

 

Operating characteristic (OC) curve 

Operating characteristic (OC) curves for a z-test on 1 2μ μ−  are provided in Appendix. The 

OC curves plot β  against d for various sample sizes n ( )1 2n n= =  and two levels of signifi-

cance 0,01α =  and 0,05α = , i.e. 

( , , )f n dβ α=  

Table 8.1 Operating characteristic charts for z-test – two samples 

Test α OC curve* OC parameter 

z-test 
Two−sided 

0,05 OC–a 
0

2 2
1 2

d
δ δ

σ σ

−
=

+
 0,01 OC–b 

One−sided 
0,05 OC–c 
0,01 OC–d 

*See in Appendix. 
 
 

α

α
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Confidence interval formula 

A 100(1 )α− % CI on 1 2μ μ− , when 2
1σ  and 2

2σ  are known, is 

( ) ( )
2 2 2 2
1 1 1 1

1 2 1 2 1 2
1 1 1 1

X X k X X k
n n n nα α
σ σ σ σμ μ− − + ≤ − ≤ − + +   for two–sided CI 

( )
2 2
1 1

1 2 2 1 2
1 1

X X k
n nα
σ σ μ μ− − + ≤ −   for lower–sided CI 

( )
2 2
1 1

1 2 1 2 2
1 1

X X k
n nα
σ σμ μ− ≤ − + +   for upper–sided CI 

Derivation of formula for two-sided CI 

By using the test statistic 1 2 1 2
2 2
1 2

1 2

( ) ( ) (0,1)X XZ N

n n

μ μ
σ σ

− − −
=

+

∼ , we get 

( ) 1P k Z kα α α− ≤ ≤ = −  

1 2 1 2
2 2
1 1 2 2

( ) ( ) 1
/ /

X XP k k
n n

α α
μ μ α

σ σ

⎛ ⎞− − −
⎜ ⎟− ≤ ≤ = −
⎜ ⎟+⎝ ⎠

 

( ) ( )
2 2 2 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

1P X X k X X k
n n n nα α
σ σ σ σμ μ α

⎛ ⎞
− − + ≤ − ≤ − + + = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

Therefore, 

( )
2 2
1 2

1 2
1 2

L X X k
n nα
σ σ

= − − +      and     ( )
2 2
1 2

1 2
1 2

U X X k
n nα
σ σ

= − + +  

Testing hypotheses using the confidence interval 

Null hypothesis  is rejected on the level of significance  if 

( ) ( )
2 2 2 2
1 2 1 2

0 1 2 1 2
1 2 1 2

,X X k X X k
n n n nα α
σ σ σ σδ

⎡ ⎤
∉ − − + − + +⎢ ⎥
⎢ ⎥⎣ ⎦

  for two–sided test 

( )
2 2
1 2

0 1 2 2
1 2

X X k
n nα
σ σδ > − + +   for lower–sided test 

:0H 021 δμμ =− α
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( )
2 2
1 2

0 1 2 2
1 2

X X k
n nα
σ σδ < − − +   for upper–sided test 

Sample size formula for predefined error 

When determining the  IS for 1 2μ μ−  which shall not exceed a predefined error 

E , the sample size is determined by the formula 
2

2 2
1 2( )kn

E
α σ σ⎛ ⎞= × +⎜ ⎟

⎝ ⎠
, where  

Example 8.1 

The life lengths of INFINITY ( 1X ; unit: hour) and FOREVER ( 2X ; unit: hour) light bulbs 

are under study. Suppose that 1X  and 2X  are normally distributed with 2 2
1 40σ =  and 

2 2
2 30σ = , respectively. The random samples of INFINITY and FOREVER light bulbs are 

shown below: 

i 
Life lengths 

i 
Life lengths 

i 
Life lengths 

1X  2X  1X  2X  1X  2X  

1 727 789 11 831 755 21 725 837 
2 755 835 12 742 813 22 735 798 
3 714 765 13 784 828 23 770 837 
4 840 796 14 807 771 24 792 841 
5 772 797 15 820 829 25 765 766 
6 750 776 16 812 756 26 749  
7 814 769 17 804 787 27 829 
8 820 836 18 754 788 28 821 
9 753 847 19 715 794 29 816 
10 796 769 20 845 822 30 743 

The two random samples are summarized as follows: 

Brand of light bulb Sample size Value of sample mean Variance 
INFINITY ( 1X ) 1 30n =  1 780x = hrs 2 2

1 40σ =  

FOREVER ( 2X ) 2 25n =  2 800,04x = hrs 2 2
2 30σ =  

 

1. Hypothesis Test on 1 2μ μ− , 2
1σ  and 2

2σ  are known; two-sided test 

%)1(100 α−

1 2n n n= =
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Test if the mean life length of an INFINITY light bulb is different from that of a FOREVER 
light bulb at 05,0=α . 

Step 1:  State 0H  and 1H  

0 1 2: 0H μ μ− =      1 1 2: 0H μ μ− ≠  

Step 2:  Determine a test statistic and its value. 

1 2 0
0 2 2 2 2

1 2

1 2

( ) (780 800,04) 0 2,12
40 30
30 25

x xz

n n

δ

σ σ

− − − −
= = = −

++

 

Step 3:  Determine a critical value(s) for α . 

96,105,0 == kkα  

Step 4:  Make a conclusion. 

Since 0 0.052,12 1,96z k= > = , reject 0H  at 0,05α = . 

2. Sample size determination for predefined power of test 
Determine the sample size n ( )1 2n n= =  required for this two-sided z-test to detect the true 

difference in mean life length as high as 20 hours with 0,8 of power. Apply an appropriate 
sample size formula and OC curve. 
a) Sample size formula 

True difference: 1 2 20δ μ μ= − =  

Hypothetical difference: 0 1 2 0δ μ μ= − =  

Power of test 0 0(reject  is false) 1 0,8P H H β= = − =  ⇒ 0,2β =  ⇒ 2 0,4β =  

2 2 2 2 2 2 2 2 2
2 1 2 0,05 0,4

2 2 2
0

( ) ( ) ( ) (40 30 ) (1,96 0,84) (40 30 ) 50
( ) (20 0) (20 0)

k k k k
n α β σ σ

δ δ
+ + + + + × +

= = == ≈
− − −

 

b) OC curve 
For two–sided z-test at 0,05α =  and for two samples, we calculate the value of the pa-
rameter d : 

0

2 2 2 2
1 2

20 0
0,4

40 30
d

δ δ

σ σ

− −
= = =

+ +
 

For 0,4d =  and 0,2β = , the OC–a curve displayed below (see also in Appendix) pro-
vides the required sample size 50n =  which is the same value as calculated by using 
the sample size formula. 
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OC-a curves for the two–sided normal test with different values of n and 0,05α = . 

3. Two-sided confidence interval 
Construct a 95 % two-sided confidence interval on the mean difference in life length. Based 
on this 95 % two-sided CI on 21 μμ − , test  vs.  at 0,05α = . 

1 2( ) 0,95 1 0,05  P l uμ μ α α≤ − ≤ = = − ⇒ =  

95 % two-sided CI on : 

( ) ( )
2 2 2 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

x x k x x k
n n n nα α
σ σ σ σμ μ− − + ≤ − ≤ − + +  

( ) ( )
2 2 2 2

0,05 1 2 0,05
40 30 40 30780 800,04 780 800,04
30 25 30 25

k kμ μ− − + ≤ − ≤ − + +  

2 2 2 2

1 2
40 30 40 3020,04 1,96 20,04 1,96
30 25 30 25

μ μ− − × + ≤ − ≤ − + × +  

1 238,56 1,51μ μ− ≤ − ≤ −  

Since this 95 % two-sided CI on 21 μμ −  does not include the hypothesized value of 0 0δ = , 

reject 0H  at 0,05α = . 
 

4. Sample size determination for predefined error 
Find the sample size n ( )1 2n n= =  to construct a two-sided confidence interval on 1 2μ μ−  

within 20 hours of error at 0,05α = . 

0 1 2: 0H μ μ− = 1 1 2: 0H μ μ− ≠

21 μμ −
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2 2
1 40σ = , 2 2

2 30σ = , 1 0,95α− =  ⇒  0,05α = , 20E =  

22 2
0,052 2 2 2

1 2
1,96( ) (40 30 ) 2500 24,01 25

20 20
kkn

E
α σ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞= × + = × + = × = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

8.2 Inference for a difference in means of two normal distributions, 
variances unknown 

Learning goals 

� Test a hypothesis on 1 2μ μ−  when 2
1σ  and 2

2σ  are unknown (t-test). 

� Determine the sample size of a t-testu for statistical inference on 1 2μ μ−  by using an 

appropriate operating characteristic (OC) curve. 
� Establish a %)1(100 α−  confidence interval (CI) on 1 2μ μ−  when 2

1σ  and 2
2σ  are un-

known. 

Inference context 

• Parameter of interest: 1 2μ μ−  

• Point estimator of 1 2μ μ− : 
2 2
1 2

1 2 1 2
1 2

( , )X X N
n n
σ σμ μ− − +∼ , where 

1X ~
2
1

1
1

( , )N
n
σμ , 2X ~

2
2

2
2

( , )N
n
σμ ; 

2
1σ  and 2

2σ  are unknown; 

1X  and 2X  are independent. 

• Test statistic of 1 2μ μ− :  Different test statistics of 1 2μ μ−  are used depending on the 

equality of 2
1σ  and 2

2σ  as follows: 

Case 1: Equal variances ( 22
2

2
1 σσσ == ) 

1 2 1 2

1 2

( ) ( ) ( )
1 1

p

X XT t
S

n n

μ μ ν− − −
=

+
∼ , 1 2 2n nν = + −  

where 
2 2

2 1 1 2 2

1 2

( 1) ( 1)
2p

n S n SS
n n

− + −
=

+ −
 (pooled estimator of 2σ ) 
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Case 2: Unequal variances ( 2 2
1 2σ σ≠ ) 

1 2 1 2
2 2
1 2

1 2

( ) ( ) ( )X XT t
S S
n n

μ μ ν− − −
=

+

∼ ,   
2 2 2
1 1 2 2

2 2 2 2
1 1 2 2

1 2

( / / ) 2
( / ) ( / )

1 1

S n S n
S n S n
n n

ν +
= −

+
+ +

 

Note. The equality of two variances ( 2 2
1 2σ σ=  or 

2
1
2
2

1σ
σ

= ) can be checked by using an F-test. 

Test procedure (t-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

:0H 021 δμμ =−  :1H 021 δμμ ≠−   for two–sided test 

021 δμμ <−   for lower–sided test 

021 δμμ >−   for upper–sided test 

Step 2: Determine a test statistic and its value. 

Case 1: Equal variances ( 22
2

2
1 σσσ == ) 

1 2 0
0

1 2

( ) ( )
1 1

p

X XT t
S

n n

δ ν− −
=

+
∼ , 221 −+= nnν ;   1 2 0

0

1 2

( ) ( )
1 1

p

x xt t
s

n n

δ ν− −
=

+
∼ ,  

where  
2

)1()1(

21

2
22

2
112

−+
−+−

=
nn

SnSn
S p     (estimator of 2σ ) and  

2 2
2 1 1 2 2

1 2

( 1) ( 1)
2p

n s n ss
n n

− + −
=

+ −
    (estimate of 2σ ) 

Case 2: Unequal variances ( 2 2
1 2σ σ≠ ) 

, 
2 2 2
1 1 2 2

2 2 2 2
1 1 2 2

1 2

( / / ) 2
( / ) ( / )

1 1

S n S n
S n S n
n n

ν +
= −

+
+ +

;  1 2 0
0 2 2

1 2

1 2

( ) ( )x xt t
s s
n n

δ ν− −
=

+

∼  

Step 3: Determine a critical value(s) for α . 

);( ανt    for two–sided test 

)2;( ανt  for one–sided test 

 
Step 4: Make a conclusion. Reject 0H  if 

1 2 0
0 2 2

1 2

1 2

( ) ( )X XT t
S S
n n

δ ν− −
=

+

∼
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);(0 ανtt >      for two–sided test 

)2;(0 ανtt −<   for lower–sided test 

)2;(0 ανtt >      for upper–sided test 

Operating characteristic (OC) curve 

Table 8.2 displays a list of OC charts and a formula of the OC parameter d  for a t-test on 

1 2μ μ−  where 22
2

2
1 σσσ ==  and 1 2n n n= = . Note that OC curves are unavailable for a t-

test when 2 2
1 2σ σ≠  because the corresponding t-distribution is unknown. In this case, we pro-

ceed as follows. By using the Table 8.2, the appropriate OC chart for a particular t-test is cho-
sen. The sample size n∗  obtained from an OC curve is used to determine the size n 1 2( )n n= =  

as follows: 

1
2

nn
∗ +

= , where  is from an OC curve 

Table 8.2 Operating characteristic charts for t-test – two samples 

Test α OC* OC parameter 

t-test 
Two−sided 

0,05 
0,01 

OC–e 
OC–f 

0

2
d

δ δ
σ
−

=
°

�  
One−sided 

0,05 
0,01 

OC–g 
OC–h 

°For σ� , use Ps  (pooled estimate of common standard deviation) or subjective estimate. 
* See in Appendix. 

Confidence interval formula 

A 100(1 )α− % CI on 1 2μ μ−  when 2
1σ  and 2

2σ  are unknown depends on the equality of 2
1σ  

and 2
2σ  as follows: 

Case 1: Equal variances ( 22
2

2
1 σσσ == ) 

( ) ( )1 2 1 2 1 2
1 2 1 2

1 1 1 1( ; ) ( ; )p pX X t S X X t S
n n n n

ν α μ μ ν α− − + ≤ − ≤ − + +  for two-sided CI 

( )1 2 1 2
1 2

1 1( ;2 ) pX X t S
n n

ν α μ μ− − + ≤ −   for lower–sided CI 

( )1 2 1 2
1 2

1 1( ;2 ) pX X t S
n n

μ μ ν α− ≤ − + +   for upper–sided CI 

n∗
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Case 2: Unequal variances ( 2 2
1 2σ σ≠ ) 

( ) ( )
2 2 2 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

( ; ) ( ; )S S S SX X t X X t
n n n n

ν α μ μ ν α− − + ≤ − ≤ − + +  for two-sided CI 

( )
2 2
1 2

1 2 1 2
1 2

( ; 2 ) S SX X t
n n

ν α μ μ− − + ≤ −   for lower–sided CI 

( )
2 2
1 2

1 2 1 2
1 2

( ; ) S SX X t
n n

μ μ ν α− ≤ − + +   for upper–sided CI 

Testing hypotheses using the confidence interval 

Null hypothesis :0H 021 δμμ =−  is rejected on the level of significance α  if 

Case 1: Equal variances ( 22
2

2
1 σσσ == ) 

( ) ( )0 1 2 1 2
1 2 1 2

1 1 1 1( ; ) , ( ; )p pX X t S X X t S
n n n n

δ ν α ν α
⎡ ⎤

∉ − − + − + +⎢ ⎥
⎣ ⎦

  for two-sided test 

( )0 1 2
1 2

1 1( ;2 ) pX X t S
n n

δ ν α> − + +   for lower–sided test 

( )0 1 2
1 2

1 1( ;2 ) pX X t S
n n

δ ν α< − − +   for upper–sided test 

Case 2: Unequal variances ( 2 2
1 2σ σ≠ ) 

( ) ( )
2 2 2 2
1 2 1 2

0 1 2 1 2
1 2 1 2

( ; ) , ( ; )S S S SX X t X X t
n n n n

δ ν α ν α
⎡ ⎤

∉ − − + − + +⎢ ⎥
⎢ ⎥⎣ ⎦

 for two–sided test 

( )
2 2
1 2

0 1 2
1 2

( ;2 ) S SX X t
n n

δ ν α> − + +  for lower–sided test 

( )
2 2
1 2

0 1 2
1 2

( ;2 ) S SX X t
n n

δ ν α< − − +  for upper–sided test 

CI and hypothesis test for a large sample 

If the sample sizes are large ( 1 30n ≥  and 2 30n ≥ ), the z-based CI formulas and test proce-

dure in Section 8.1 can be applied to inference on 1 2μ μ−  regardless of whether the underly-

ing populations are normal or non-normal according to the central limit theorem (described in 
Section 5.3. 
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Example 8.2 

For the light bulb life length data in Example 8.1, the following results have been obtained: 

Brand of light bulb Sample size Value of sample mean Variance 
INFINITY ( 1X ) 1 30n =  1 780x = hrs 2 2

1 40,0164s =  

FOREVER ( 2X ) 2 25n =  2 800,04x = hrs 2 2
2 30,0048s =  

Case 1: Equal variances ( 22
2

2
1 σσσ == ) 

1. Hypothesis Test on 1 2μ μ− , 2
1σ  and 2

2σ  are unknown and equal; two-sided test 

Assuming 2 2
1 2σ σ= , test if the mean life length of an INFINITY light bulb is different from 

that of a FOREVER light bulb at 0,05α = . 

Step 1:  State 0H  and 1H  

0 1 2: 0H μ μ− =      1 1 2: 0H μ μ− ≠  

Step 2:  Determine a test statistic and its value. 

( ) ( )1 2 0
0

1 2

780 800,04 0
2,065

1 1 1 135,83
30 25p

x x
t

s
n n

δ− − − −
= = = −

+ +
 

( ) ( )2 2 2 2
1 1 2 22

1 2

1 1 (30 1) 40,0164 (25 1) 30,00482 1283,87
2 30 25 2p

n s n s
s

n n
− + − − × + − ×

= − = =
+ − + −

 

⇒ 35,83ps =  

Step 3:  Determine a critical value(s) for α . 

( , ) (53,0,05) 2,006t tν α = =     ,  1 2 2 30 25 2 53n nν = + − = + − =  

Step 4:  Make a conclusion. 

Since 0 2,065 (53;0,05) 2,006t t= > = , reject 0H  at 0,05α = . 

2. Sample size determination ( 2 2
1 2σ σ= ) 

Assuming 2 2
1 2σ σ= , determine the sample size n ( )1 2n n= =  required for this two-sided t-test 

to detect the true difference in mean life length as high as 20 hours with 0,8 of power. Apply 
an appropriate OC curve. 

True difference: 1 2 20δ μ μ= − =  

Hypothetical difference: 0 1 2 0δ μ μ= − =  
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For a two–sided t-test at 0,05α =  and for two samples, we calculate the value of the parame-
ter d : 

0 0 20 0
0,28

2 2 2 35,83P

d
s

δ δ δ δ
σ
− − −

= = = ≈
×�  

where 
2 2

2 1 1 2 2

1 2

( 1) ( 1)
2p

n s n ss
n n

− + −
= =

+ −
 

2 2
2(30 1) 40,0164 (25 1) 30,0048 1283,0 35,83

30 25 2
− × + − ×

= = =
+ −

 

For 0,28d =  and 0,2β = , the OC–e curve (see in Appendix) provides the required sample 

size 100n = . 
 

3. Confidence interval on 1 2μ μ− , 2
1σ  and 2

2σ  unknown but equal; two-sided CI 

Assuming , construct a 95 % two-sided confidence interval on the difference in mean 

life length 1 2μ μ− . 

1 2( ) 0,95 1 0,05P l uμ μ α α≤ − ≤ = = − ⇒ =  

1 2 2 30 25 2 53n nν = + − = + − = ;   2 235,83Ps =  

95% two-sided CI on 1 2μ μ− : 

( ) ( )1 2 1 2 1 2
1 2 1 2

1 1 1 1( ; ) ( ; )p px x t s x x t s
n n n n

ν α μ μ ν α− − + ≤ − ≤ − + +  

( ) ( )1 2
1 1 1 1780 800,04 (53;0,05) 35,83 780 800,04 (53;0,05) 35,83
30 25 30 25

t tμ μ− − × + ≤ − ≤ − + × +

1 220,04 2,065 9,703 20,04 2,065 9,703μ μ− − × ≤ − ≤ − + ×  

1 239,502 0,577995μ μ− ≤ − ≤ −  

1 239,5 0,600μ μ− ≤ − ≤ −  

Note that this t-based CI ( 1 239,5 0,600μ μ− ≤ − ≤ − ) is wider than the corresponding z-based 

CI ( 1 238,56 1,51μ μ− ≤ − ≤ − ) in Example 8.1. 

Case 2: Unequal variances ( 2 2
1 2σ σ≠ ) 

1. Hypothesis Test on 1 2μ μ− , 2
1σ  and 2

2σ  are unknown and unequal; two-sided test 

2 2
1 2σ σ=
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Assuming 2 2
1 2σ σ≠ , test if the mean life length of an INFINITY light bulb is different from 

that of a FOREVER light bulb at 0,05α = . 
Step 1:  State 0H  and 1H  

0 1 2: 0H μ μ− =      1 1 2: 0H μ μ− ≠  

Step 2:  Determine a test statistic and its value. 

( ) ( )1 2 0
0 2 2 2 2

1 2

1 2

780 800,04 0
2,12

40,0164 30,0084
30 25

x x
t

s s
n n

δ− − − −
= = = −

++

 

2 2 2 2 2 2
1 1 2 2

2 2 2 2 2 2 2 2
1 1 2 2

1 2

( / / ) (40,0164 / 30 30,0048 / 25)2 2 56,3552 57
( / ) ( / ) (40,0164 / 30) (30,0048 / 25)

30 1 25 11 1

ν + +
= − = − = ≈

++
+ ++ +

S n S n
S n S n
n n

 

Step 3:  Determine a critical value(s) for α . 

( ; ) (57;0,05) 2,00t tν α = =  

Step 4:  Make a conclusion. 

Since 0 2,12 (57;0,05) 2,00t t= > = , reject 0H  at 0,05.α =  

2. Sample size determination ( 2 2
1 2σ σ≠ ) 

Assuming 2 2
1 2σ σ= , determine the sample size n 1 2( )n n= =  required for this two-sided t-test 

to detect the true difference in mean life length as high as 20 hours with 0,8 of power. Apply 
an appropriate OC curve. 

True difference: 1 2 20δ μ μ= − =  

Hypothetical difference: 0 1 2 0δ μ μ= − =  

For two–sided t-test at 0,05α =  and for two samples, we calculate the value of the parameter 
: 

0 0 20 0
0, 28

2 2 2 35,8P

d
s

δ δ δ δ
σ
− − −

= = = ≈
×�  

where 
2 2 2 2

2 21 1 2 2

1 2

( 1) ( 1) (30 1) 40,0164 (25 1) 30,0048 1283,0 35,8
2 30 25 2p

n s n ss
n n

− + − − × + − ×
= = = =

+ − + −
 

For 0,28d =  and 0,2β = , the OC–e curve (see in Appendix) provides the value of 100n∗ =  
as displayed below. 
 

d
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OC−e curves for the two–sided t-test with different values of n and 0,05α = . 

Thus the required sample size n is 

1 100 1 50,5 51
2 2

nn
∗ + +

= = = ≈  

3. Confidence interval on 1 2μ μ− , 2
1σ  and 2

2σ  unknown and unequal; two-sided CI 

Assuming 2 2
1 2σ σ≠ , construct a 95 % two-sided confidence interval on the difference in mean 

life length 1 2μ μ− . Based on this 95% two-sided CI on 1 2μ μ− , test 0 1 2: 0H μ μ− =  vs. 

1 1 2: 0H μ μ− ≠  at 0,05α = . 

1 2( ) 0,95 1 0,05P l uμ μ α α≤ − ≤ = = − ⇒ =  

2 2 2
1 1 2 2

2 2 2 2
1 1 2 2

1 2

( / / ) 2 57
( / ) ( / )

1 1

S n S n
S n S n
n n

ν +
= − ≈

+
+ +  
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95 % two–sided CI on 1 2μ μ− : 

( ) ( )
2 2 2 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

( ; ) ( ; )s s s sx x t x x t
n n n n

ν α μ μ ν α− − + ≤ − ≤ − + +  

( ) ( )
2 2 2 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

(57;0,05) (57;0,05)s s s sx x t x x t
n n n n

μ μ− − + ≤ − ≤ − + +  

( ) ( )
2 2 2 2

1 2
40,0164 30,0048 40,0164 30,0048780 800,04 2,00 780 800,04 2,00

30 25 30 25
μ μ− − + ≤ − ≤ − + +  

1 220,04 2,00 18,9091 20,04 2,00 18,9091μ μ− − × ≤ − ≤ − + ×  

1 239,0079 1,07207μ μ− ≤ − ≤ −  

1 239,0 1,1μ μ− ≤ − ≤ −  

Since this 95 % two–sided CI on 1 2μ μ−  when 2
1σ  and 2

2σ  are unknown and unequal does 

not include the hypothesized value zero ( 0 0δ = ), reject 0H  at 0,05α = . 

 

8.3 Paired t-test 

Learning goals 

� Explain a paired experiment and its purpose. 

� Test a hypothesis on Dμ  for paired observations when 2
Dσ  is unknown (paired t-test). 

� Establish a 100(1 )%α−  confidence interval (CI) on Dμ  paired observations when 2
Dσ  

is unknown. 

Paired experiment 

A paired experiment collects a pair of observations ( 1X  and 2X ) for each specimen (experi-

mental unit) and analyzes their differences (instead of the original data). This paired experi-
ment is used when heterogeneity exists between specimens and this heterogeneity can signif-
icantly affect 1X  and 2X ; in other words, 1X  and 2X  are not independent. 
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Inference context 

• Parameter of interest: Dμ  

• Point estimator of Dμ :  
2

1 2 ( ; )D
DD X X N

n
σμ= − ∼ , Dμ  unknown; 

1X  and 2X  are not independent. 

• Test statistic of Dμ : ( 1)
/

D

D

DT t n
S n

μ−
= −∼  

Test procedure (paired t-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0Dμ δ=  0Dμ δ≠   for two–sided test 

0Dμ δ<   for lower–sided test 

0Dμ δ>   for upper–sided test 

Step 2: Determine a test statistic and its value. 

0
0 ( 1)

/D

DT t n
S n

δ−
= −∼ ;     0

0 /D

dt
s n

δ−
=   

Step 3: Determine a critical value(s) for α . 
( 1; )t n α−    for two–sided test 

( 1; 2 )t n α−  for one–sided test 

Step 4: Make a conclusion. Reject  if 

0 ( 1; )t t n α> −  for two–sided test 

 0 ( 1;2 )t t n α< − −  for lower–sided test 

 0 ( 1;2 )t t n α> −  for upper–sided test 

Confidence interval formula 

A %)1(100 α−  CI on Dμ , when 2
Dσ  is unknown, is 

( 1; ) ( 1; )D D
D

S SD t n D t n
n n

α μ α− − ≤ ≤ + −   for two–sided CI 

( 1; 2 ) D
D

SD t n
n

α μ− − ≤   for lower–sided CI 

( 1; 2 ) D
D

SD t n
n

μ α≤ + −   for upper–sided CI 

:0H :1H

0H
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CI and hypothesis test for large sample 

If the sample size is large ( 30n ≥ ), the z-based CI formulas and test procedure in Section 7.2 
can be applied to inference on Dμ  according to the central limit theorem. 

Example 8.3 

The weights (unit: kg) before and after a diet program for 30 participants are measured below.  

i 
Before 

1( )X  
After

2( )X  i 
Before 

1( )X  
After

2( )X  i 
Before 

1( )X  
After 

2( )X  

1 72,575 69,400 11 71,668 63,503 21 77,111 69,853 
2 78,018 72,575 12 92,986 88,904 22 98,883 96,616 
3 69,853 61,689 13 74,389 71,668 23 66,678 60,781 
4 95,254 89,811 14 102,058 93,894 24 78,471 71,668 
5 78,471 75,296 15 84,368 82,554 25 88,451 84,822 
6 65,771 61,689 16 70,307 67,585 26 99,790 94,801 
7 89,811 82,554 17 83,461 79,832 27 97,522 93,440 
8 74,843 72,575 18 78,471 70,760 28 93,440 91,172 
9 81,647 80,739 19 81,193 75,750 29 74,843 70,760 
10 78,018 77,564 20 76,204 68,946 30 77,111 69,853 

The summary of the weight data is as follows: 
Sample size 

(no. participants) 
Sample mean 
(weight loss) 

Sample variance 

30n =  4,687d =  2 5,297.Ds =  

where "Before After"d = − . 

1. Hypothesis test on Dμ , 2
Dσ  unknown; two-sided test 

Test if there is a significant effect of the diet program on weight loss. Use 0,05α = . 
Step 1:  State 0H  and 1H . 

0: 0DH μ =       1: 0DH μ ≠  

Step 2:  Determine a test statistic and its value. 

0
0

4,687 0 11,15436
/ 2,3015/ 30D

dt
s n

δ− −
= = =  

Step 3:  Determine a critical value(s) for α . 
( 1; ) (30 1; 0,05) (29; 0,05) 2,045t n t tα− = − = =  
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Step 4:  Make a conclusion. 

Since 0 11,15436 (29;0,05) 2,045t t= > = , reject 0H  at 05,0=α . 

2. Confidence interval on Dμ ,  unknown; two-sided CI 

Construct a 95% two-sided confidence interval on the mean weight loss Dμ  due to diet pro-

gram. Based on this 95% two-sided CI on Dμ , test 0: 0DH μ =  vs. 1: 0DH μ ≠   at 05,0=α . 

( ) 0,95 1 0,05DP l uμ α α≤ ≤ = = − ⇒ =  ;  291301 =−=−n  

95 % two-sided CI on Dμ : 

( 1; ) ( 1; )D D
D

s sd t n d t n
n n

α μ α− − ≤ ≤ + −  

2,3015 2,30154,687 (29;0,05) 4,687 (29;0,05)
30 30Dt tμ− ≤ ≤ +  

4,687 2,045 0,4202 4,687 2,045 0,4202Dμ− × ≤ ≤ + ×  

2,968382 6,405618Dμ≤ ≤  
2,968 6,406Dμ≤ ≤  

Since this 95 % two-sided CI on Dμ  does not include the hypothesized value zero ( 0 0δ = ), 

reject 0H  at 05,0=α . 

8.4 Inference on the variances of two normal populations 

Learning goals 

� Test a hypothesis on the ratio of two variances 2 2
1 2/σ σ  (F-test). 

� Determine the sample size of an F-test for statistical inference on 2 2
1 2/σ σ  by using an 

appropriate operating charakteristic (OC) curve. 

� Establish a 100(1 )%α− confidence interval (CI) for 2 2
1 2/σ σ . 

Inference context 

• Parameter of interest:  
2
1
2
2

σ
σ

 

• Point estimator of 
2
1
2
2

σ
σ

: 
2
1
2
2

S
S

, where 

2
Dσ
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1
2

1 1
2 1
1

1

( )

1

n

i
i

X X
S

n
=

−
=

−

∑
 and 

2
2

2 2
2 1
2

2

( )

1

n

i
i

X X
S

n
=

−
=

−

∑
;  

1X ~ 2
1 1( , )N μ σ  and 2X ~ 2

2 2( , )N μ σ ;  

1X  and 2X  are independent. 

• Test statistic of 
2
1
2
2

σ
σ

: 
2 2
1 1

0 2 2
2 2

/
/

SF
S

σ
σ

= ~ 1 2( 1, 1)F n n− −  

Test procedure (F-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

22
1,01

2 2
2 2,0

σσ
σ σ

=  
22
1,01

2 2
2 2,0

σσ
σ σ

≠   for two–sided test 

22
1,01

2 2
2 2,0

σσ
σ σ

<   for lower–sided test 

22
1,01

2 2
2 2,0

σσ
σ σ

>   for upper–sided test, 

Step 2: Determine a test statistic and its value. 

2 2 22
1 1,0 2,01

0 1 22 2 2 2
2 2,0 2 1,0

/
( 1; 1)

/
S SF F n n
S S

σ σ
σ σ

= = − −∼ ;     
2 2 22
1 1,0 2,01

0 2 2 2 2
2 2,0 2 1,0

/
/

s sf
s s

σ σ
σ σ

= =  

Step 3: Determine a critical value(s) for α . 

)2/1,1,1( 21 α−−− nnf  a )2/,1,1( 21 α−− nnf    for two–sided test 

1 2( 1, 1,1 )f n n α− − −  
2 1

1
( 1, 1, )f n n α

⎛ ⎞
=⎜ ⎟− −⎝ ⎠

       for lower–sided test 

1 2( 1, 1, )f n n α− −                                                   for upper–sided test, 

Step 4: Make a conclusion. Reject 0H  if 

0 1 2( 1, 1,1 / 2)f f n n α< − − −  or 0 1 2( 1, 1, / 2)f f n n α> − −    for two–sided test 

0 1 2( 1, 1,1 )f f n n α< − − −                                                for lower–sided test 

0 1 2( 1, 1, )f f n n α> − −                                                     for upper–sided test 

 

:0H :1H
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Operating characteristic (OC) curve 

Table 8. displays a list of OC charts and a formula of the OC parameter λ  for an F-test on 
2 2
1 2σ σ  where 1 2n n n= = . By using the Table 8., the appropriate OC chart for a particular F-

test is chosen. 

Table 8.3 Operating charakteristic for F-test (two random samples) 

Test α OC curve OC parameter 

F-test 
Two-sided 

0,05 
0,01 

OC–o 
OC–p 1

2

σλ
σ

=  
One-sided 

0,05 
0,01 

OC–q 
OC–r 

Confidence interval formula 

A %)1(100 α−  CI on 2
2

2
1

σ
σ

 is as follows: 

two–sided CI 

)2/1,1,1(
1

)2/,1,1(
1

21
2
2

2
1

2
2

2
1

21
2
2

2
1

ασ
σ

α −−−
≤≤

−− nnfS
S

nnfS
S

 

or 
2 2 2
1 1 1

2 1 2 12 2 2
2 2 2

( 1, 1,1 / 2) ( 1, 1, / 2)S Sf n n f n n
S S

σα α
σ

− − − ≤ ≤ − −  

lower–sided CI 
2 2
1 1
2 2
2 1 2 2

1
( 1, 1, )

S
S f n n

σ
α σ

≤
− −

 or 
2 2
1 1

2 12 2
2 2

( 1, 1,1 )S f n n
S

σα
σ

− − − ≤  

upper–sided CI 
2 2
1 1
2 2
2 2 1 2

1
( 1, 1,1 )

S
S f n n

σ
σ α

≤
− − −

 or  
2 2
1 1

2 12 2
2 2

( 1, 1, )S f n n
S

σ α
σ

≤ − −  

 

Derivation of formula for two-sided CI on 2 2
1 2/σ σ  

By using the test statistic 
2 2
2 2

0 2 12 2
1 1

/ ( 1, 1)
/

SF F n n
S

σ
σ

= − −∼ , we get 

( )1 2 0 1 2( 1, 1;1 / 2) ( 1, 1; / 2) 1P f n n F f n nα α α− − − ≤ ≤ − − = −  
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2 2
2 2

1 2 1 22 2
1 1

/( 1, 1;1 / 2) ( 1, 1; / 2) 1
/

SP f n n f n n
S

σα α α
σ

⎛ ⎞
− − − ≤ ≤ − − = −⎜ ⎟

⎝ ⎠
 

2 2 2
1 1 1

1 2 1 22 2 2
2 2 2

( 1, 1;1 / 2) ( 1, 1; / 2) 1S SP f n n f n n
S S

σα α α
σ

⎛ ⎞
− − − ≤ ≤ − − = −⎜ ⎟

⎝ ⎠
 

or 
2 2 2
1 1 1
2 2 2
2 1 2 2 2 1 2

1 1 1
( 1, 1; / 2) ( 1, 1;1 / 2)

S SP
S f n n S f n n

σ α
α σ α

⎛ ⎞
≤ ≤ = −⎜ ⎟− − − − −⎝ ⎠

 

Therefore, 
2 2
1 1

2 12 2
2 2 1 2

1( 1, 1;1 )
( 1, 1; )

S SL f n n
S S f n n

α
α

= − − − =
− −

 

2 2
1 1

2 12 2
2 2 1 2

1( 1, 1; )
( 1, 1;1 )

S SU f n n
S S f n n

α
α

= − − =
− − −

 

Example 8.4 

For the light bulb life length data in Example 8.1, the following results have been obtained: 

Brand of light bulb Sample size Value of sample mean Variance 
INFINITY ( 1X ) 1 30n =  1 780x = hrs 2 2

1 40,0164s =  

FOREVER ( 2X ) 2 25n =  2 800x = hrs 2 2
2 30,0048s =  

 

1. Hypothesis test on 2 2
1 2/σ σ ; two-sided test 

Test 2 2
0 1 2: 1H σ σ =  vs. 2 2

1 1 2: 1H σ σ ≠  at 0,05α = . 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0:H
2
1
2
2

1σ
σ

=  1:H
2
1
2
2

1σ
σ

≠  

Step 2: Determine a test statistic and its value. 
22 2
2,01

0 2 2 2
2 1,0

40,0164 1 1,77867
30,0048

sf
s

σ
σ

= × = × =  

Step 3: Determine a critical value(s) for α . 

1 2
1( 1, 1,1 / 2) (29,24,0,975) 0,46

(24,29,0,025)
f n n f

f
α− − − = = =  

1 2( 1, 1, / 2) (29,24,0,025) 2,22f n n fα− − = =  
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Step 4: Make a conclusion. 

Since 0 1,78 (29,24,0,975) 0,46f f= > =  and 0 1,78 (29,24,0,025) 2,22f f= < = , fail 

to reject  at 0,05α = . 

2. Sample size determination 
Determine the sample size n 1 2( )n n= =  required for this two-sided F-test to detect the ratio of 

1σ  to 2σ  as high as 1,5 with 0,8 of power. Apply an appropriate OC curve. 

To design a two-sided F-test at 0,05α = , OC−o chart is applicable with the parameter 

1

2

1,5σλ
σ

= =  

By using 1,5λ =  and 0,2β =  (because power 1 0,8β= − = ), the sample size required is de-

termined 1 2( ) 50n n n= = =  as displayed below. 

 

OC−o curves for the two–sided F-test with different values of n and 0,05α = . 

3. Confidence interval on 2 2
1 2/σ σ ; two-sided CI 

Construct a 95% two-sided confidence interval on 2 2
1 2/σ σ . Based on this 95% CI on 2 2

1 2/σ σ  

test 2 2
0 1 2: / 1H σ σ =  vs. 2 2

1 1 2: / 1H σ σ ≠  at 05,0=α . 

0H
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2
1
2
2

( ) 0,95 1 0,05P l uσ α α
σ

≤ ≤ = = − ⇒ =  

95 % two-sided CI on 2 2
1 2/σ σ : 

)2/1,1,1(
1

)2/,1,1(
1

21
2
2

2
1

2
2

2
1

21
2
2

2
1

ασ
σ

α −−−
≤≤

−− nnfS
S

nnfS
S

 

22 2
1

2 2 2
2

40,0164 1 40,0164 1
30,0048 (29;24;0,025) 30,0048 (29;24;0,975)f f

σ
σ

≤ ≤  

22 2
1

2 2 2
2

40,0164 1 40,0164 1
30,0048 2,22 30,0048 0,46

σ
σ

≤ ≤  

2
1
2
2

0,801201 3,86663σ
σ

≤ ≤  

2
1
2
2

0,801 3,867σ
σ

≤ ≤  

Since this 95% two-sided CI on 2 2
1 2/σ σ  include the hypothesized value unity (

2
1,0
2
2,0

1
σ
σ

= ), fail 

to reject 0H  at 05,0=α . 

8.5 Inference on two population proportions 

Learning goals 

� Test a hypothesis on 1 2p p−  (z-test). 

� Determine the sample size of a z-test for statistical inference on 1 2p p−  by using an ap-

propriate sample size formula. 
� Establish a %)1(100 α−  confidence interval (CI) on 1 2p p− . 

Inference context 

Parameter of interest: 1 2p p−  

Point estimator of 1 2p p− : 1 1 2 2
1 2 1 2

1 2

(1 ) (1 )ˆ ˆ , p p p pP P N p p
n n

⎛ ⎞− −
− − +⎜ ⎟

⎝ ⎠
∼ , where 

1 1 1( , )X B n p∼ ,  2 2 2( , )X B n p∼ ; 
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1 1 1(1 ) 9n p p− >  and 2 2 2(1 ) 9n p p− > ; 

1X  and 2X  are independent; 

1 1 1
1 1

1 1

(1 )ˆ ,X p pP N p
n n

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∼   and  2 2 2

2 2
2 2

(1 )ˆ ,X p pP N p
n n

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∼ . 

Test statistic of 1 2p p− :  The test statistic of 1 2p p−  depends on the equality of 1p  and 2p  

as follows: 
Case 1: Unequal proportions ( 1 2p p≠ ) 

1 2 1 2

1 1 2 2

1 2

ˆ ˆ( ) ( ) (0,1)
(1 ) (1 )

P P p pZ N
p p p p

n n

− − −
=

− −
+

∼  

Case 2: Equal proportions ( 1 2p p p= = ) 

1 2 1 2 1 2

1 1 2 2

1 2 1 2

ˆ ˆ ˆ ˆ( ) ( )
(1 ) (1 ) 1 1(1 )

P P p p P PZ
p p p p

p pn n n n

− − − −
= =

− − ⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

 

1 2

1 2

ˆ ˆ
(0,1)

1 1ˆ ˆ(1 )

P PZ N

P P
n n

−
=

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

∼ , where 1 2

1 2

ˆ X XP
n n
+

=
+

  (estimator of p ) 

Test procedure (z-test): 

Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

0 :H 1 2 0p p δ− =  1:H 1 2 0p p δ− ≠   for two–sided test 

1 2 0p p δ− <   for lower–sided test 

1 2 0p p δ− >   for upper–sided test 

Step 2: Determine a test statistic and its value. 
Case 1: Unequal proportions ( 1 2p p≠ ) 

1 2 0 1 2 0
0

1 1 2 2 1 1 2 2

1 2 1 2

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ(1 ) (1 ) (1 ) (1 )

P P P PZ
p p p p P P P P

n n n n

δ δ− − − −
= =

− − − −+ +
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Case 2: Equal proportions ( 1 2p p p= = ) 

1 2
0

1 2

ˆ ˆ

1 1ˆ ˆ(1 )

P PZ

P P
n n

−
=

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

,  1 2

1 2

ˆ X XP
n n
+

=
+

 

Step 3: Determine a critical value(s) for α . 

αk    for two–sided test 

α2k   for one–sided test 

Step 4: Make a conclusion. Reject 0H  if 

αkz >0  for two–sided test 

α20 kz −<  for lower–sided test 

α20 kz >  for upper–sided test 

Sample size formula 

For a hypothesis test on 1 2p p− , the following formulas are applied to determine: 

2

1 2 1 2 2 1 1 2 2

1 2

( )( ) / 2k p p q q k p q p q
n

p p
α β

⎛ ⎞+ + + +
= ⎜ ⎟⎜ ⎟−⎝ ⎠

  for two–sided test 

2

2 1 2 1 2 2 1 1 2 2

1 2

( )( ) / 2k p p q q k p q p q
n

p p
α β

⎛ ⎞+ + + +
= ⎜ ⎟⎜ ⎟−⎝ ⎠

  for one–sided test 

where 1 2n n n= = , 1 11q p= −  and 2 21q p= − . 

Confidence interval formula 

Like the test statistic on 1 2p p− , a 100(1 )α− % CI on 1 2p p−  depends on the equality of 1p  

and 2p  as follows: 

Case 1: Unequal proportions ( 1 2p p≠ ) 

1 1 2 2
1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) P P P PP P k
n nα
− −

− − + ≤  

1 1 2 2
1 2 1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) P P P Pp p P P k
n nα
− −

≤ − ≤ − + +   for two–sided CI 
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1 1 2 2
1 2 2 1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) P P P PP P k p p
n nα
− −

− − + ≤ −   for lower–sided CI 

1 1 2 2
1 2 1 2 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) P P P Pp p P P k
n nα
− −

− ≤ − + +   for upper–sided CI 

Case 2: Equal proportions ( 1 2p p p= = ) 

1 2
1 2

1 1ˆ ˆ ˆ ˆ( ) (1 )P P k P P
n nα

⎛ ⎞
− − − + ≤⎜ ⎟

⎝ ⎠
 

1 2 1 2
1 2

1 1ˆ ˆ ˆ ˆ( ) (1 )p p P P k P P
n nα

⎛ ⎞
≤ − ≤ − + − +⎜ ⎟

⎝ ⎠
  for two–sided CI 

1 2 2 1 2
1 2

1 1ˆ ˆ ˆ ˆ( ) (1 )P P k P P p p
n nα

⎛ ⎞
− − − + ≤ −⎜ ⎟

⎝ ⎠
 for lower–sided CI 

1 2 1 2 2
1 2

1 1ˆ ˆ ˆ ˆ( ) (1 )p p P P k P P
n nα

⎛ ⎞
− ≤ − + − +⎜ ⎟

⎝ ⎠
 for upper–sided CI 

Example 8.5 

Random samples of bridges are tested for metal corrosion in the A and B counties, resulting 
in the following: 

County 
Sample size 
(no. bridges) 

X  
(no. corroded bridges)  

Sample proportion 
( ˆ /i i ip x n= ) 

A 1 40n =  1 28x =  1ˆ 0,7p =  

B 2 30n =  2 15x =  2ˆ 0,5p =  

 

1. Hypothesis test on 1 2p p− ; 1 2p p≠ ; unequal proportions; upper-sided test 

Assuming 1 2p p≠  test if the proportion of corroded bridges of the A county exceeds that of 

the B county by at least 0,1. Use 0,05α = . 

Since  

1 1ˆ 40 0,7 28n p = × = , 1 1ˆ(1 ) 40 0,3 12n p− = × =   

2 2ˆ 30 0,5 15n p = × = , 2 2ˆ(1 ) 30 0,5 15n p− = × =   

are greater than nine, the sampling distributions of 1̂P  and 2̂P  are approximately normal. 
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Step 1: State the null hypothesis 0H  and alternative hypothesis 1H . 

:0H 1 2 0,1p p− =   1:H 1 2 0,1p p− >  

Step 2: Determine a test statistic and its value. 

1 2 0
0

1 1 2 2

1 2

ˆ ˆ( ) (0,7 0,5) 0,1 0,86
ˆ ˆ ˆ ˆ(1 ) (1 ) 0,7 (1 0,7) 0,5 (1 0,5)

40 30

p pz
p p p p

n n

δ− − − −
= = =

− − × − × −++
 

Step 3: Determine a critical value(s) for α  

2 0,1 1,645k kα = =  

Step 4:  Make a conclusion. 

Since 0 0,10,86 1,645z k= < = , fail to reject 0H  at 0,05α = . 

2. Sample size determination 
Suppose that 1 0, 7p =  and 2 0,5p = . Determine the sample size n ( 1 2n n= = ) required for 

this two-sided z-test to detect the difference of the two proportions with power of 0,9. 

Power of test 0 0(reject  is false) 1 0,9P H H β= = − =  ⇒ 0,1β =  

11 1 0 7 0 31q p , ,= − = − =  a 21 1 0 5 0 52q p , ,= − = − =  

2

2 1 2 1 2 2 1 1 2 2

1 2

( )( ) / 2k p p q q k p q p q
n

p p
α β

⎛ ⎞+ + + +
= =⎜ ⎟⎜ ⎟−⎝ ⎠

 

2

0,1 0,2(0,7 0,5)(0,3 0,5) / 2 0,7 0,3 0,5 0,5
0,7 0,5

k k⎛ ⎞+ + + × + ×
= =⎜ ⎟⎜ ⎟−⎝ ⎠

 

2
1,645 0,69 1, 28 0,68 101

0, 2
× + ×⎛ ⎞= ≈⎜ ⎟

⎝ ⎠
 

3. Confidence interval on 1 2p p− ; unequal proportions; upper-confidence bound 

Assuming 1 2p p≠ , construct a 95% upper-confidence bound on the difference of the two cor-

roded bridge proportions ( 1 2p p− ). 

95 % one-sided CI on 1 2p p− : 

1 1 2 2
1 2 1 2 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) p p p pp p p p k
n nα
− −

− ≤ − + +  
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1 2 0,1
2

0,7 (1 0,7) 0,5 (1 0,5)(0,7 0,5)
40

p p k
n

× − × −
− ≤ − + +  

1 2 0,2 1,645 0,117p p− ≤ + ×  

1 2 0,39p p− ≤  
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CUMULATIVE  DISTRIBUTION  FUNCTIONS 
STANDARD NORMAL DISTRIBUTION 

 

 

( )( ) ,F x Φ z=  where xz μ
σ
−=  

 
2

21( )
2

z t
z e dtΦ

π
−

−∞
= ∫  
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CRITICAL  VALUES  OF  NORMAL  DISTRIBUTION 
 

 

 

( )P X kα α> =  

 
 

α kα α kα α kα 
0,002 3,090 0,042 2,034 0,082 1,739 
0,004 2,878 0,044 2,014 0,084 1,728 
0,006 2,748 0,046 2,995 0,086 1,717 
0,008 2,652 0,048 1,977 0,088 1,706 
0,010 2,576 0,050 1,960 0,090 1,695 
0,012 2,512 0,052 1,943 0,092 1,685 
0,014 2,457 0,054 1,927 0,094 1,675 
0,016 2,409 0,056 1,911 0,096 1,665 
0,018 2,366 0,058 1,896 0,098 1655 
0,020 2,326 0,060 1,881 0,100 1,645 
0,022 2,290 0,062 1,866 0,110 1,598 
0,024 2,257 0,064 1,852 0,120 1,555 
0,026 2,226 0,066 1,838 0,130 1,514 
0,028 2,197 0,068 1,825 0,140 1,476 
0,030 2,170 0,070 1,812 0,150 1,440 
0,032 2,144 0,072 1,799 0,160 1,405 
0,034 2,120 0,074 1,787 0,170 1,372 
0,036 2,097 0,076 1,774 0,180 1,341 
0,038 2,075 0,078 1,762 0,190 1,311 
0,040 2,054 0,080 1,751 0,200 1,282 
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CRITICAL  VALUES  OF  t – DISTRIBUTION 

 

( )( , )P T t ν α α> =  

ν α = 0,20 α = 0,10 α = 0,05 α = 0,02 α = 0,01 
 1 3,080 6,314 12,706 31,821 63,657 
 2 1,886 2,920  4,303  6,965  6,925 
 3 1,638 2,353  3,182  4,541  5,841 
 4 1,533 2,132  2,776  3,747  4,604 
 5 1,476 2,015  2,571  3,365  4,032 
 6 1,440 1,943  2,447  3,143  3,707 
 7 1,415 1,895  2,365  2,998  3,499 
 8 1,397 1,860  2,306  2,896  3,355 
 9 1,383 1,833  2,262  2,821  3,250 
10 1,372 1,812  2,228  2,764  3,169 
11 1,363 1,796  2,201  2,718  3,106 
12 1,356 1,782  2,179  2,681  3,055 
13 1,350 1,771  2,160  2,650  3,012 
14 1,345 1,761  2,145  2,624  2,977 
15 1,341 1,753  2,131  2,602  2,947 
16 1,337 1,746  2,120  2,583  2,921 
17 1,333 1,740  2,110  2,567  2,898 
18 1,330 1,734  2,101  2,552  2,878 
19 1,328 1,729  2,093  2,539  2,861 
20 1,325 1,725  2,086  2,528  2,845 
21 1,323 1,721  2,080  2,518  2,831 
22 1,321 1,717  2,074  2,508  2,819 
23 1,319 1,714  2,069  2,500  2,807 
24 1,318 1,711  2,064  2,492  2,797 
25 1,316 1,708  2,060  2,485  2,787 
26 1,315 1,706  2,056  2,479  2,779 
27 1,314 1,703  2,052  2,473  2,771 
28 1,313 1,701  2,048  2,467  2,763 
29 1,311 1,699  2,045  2,462  2,756 
30 1,310 1,697  2,042  2,457  2,750 
40 1,303 1,684  2,021  2,426  2,704 
60 1,296 1,671  2,000  2,390  2,660 

120 1,289 1,658  1,980  2,358  2,617 
∞ 1,282 1,645  1,960  2,326  2,576 
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CRITICAL  VALUES  OF  χ2 – DISTRIBUTION 

 
 

( )2 2 ( , )P X χ ν α α> =  

    α 
 ν 

0,995 0,990 0,975 0,950 0,900 0,100 0,050 0,025 0,010 0,005 

1   0,0002  0,0010  0,0039  0,0158  2,71  3,84  5,02  6,63  7,88 
2  0,0100  0,0201  0,0506  0,1030  0,2110  4,61  5,99  7,38  9,21 10,60 
3  0,0717  0,1150  0,2160  0,3250  0,5840  6,25  7,82  9,35 11,30 12,80 
4  0,2070  0,2970  0,4840  0,7110  1,0600  7,78  9,49 11,10 13,30 14,90 
5  0,4120  0,5540  0,8310  1,1500  1,6100  9,24 11,10 12,80 15,10 16,70 
6  0,6760  0,8720  1,2400  1,6400  2,2000 10,60 12,60 14,40 16,80 18,50 
7  0,9890  1,2400  1,6900  2,1700  2,8300 12,00 14,10 16,00 18,50 20,30 
8  1,3400  1,6500  2,1800  2,7300  3,4900 13,40 15,50 17,50 20,10 22,00 
9  1,7300  2,0900  2,7000  3,3300  4,1700 14,70 16,90 19,00 21,70 23,60 
10  2,1600  2,5600  3,2500  3,9400  4,8700 16,00 18,30 20,50 23,20 25,20 
11  2,6000  3,0500  3,8200  4,5700  5,5800 17,30 19,70 21,90 24,70 26,80 
12  3,0700  3,5700  4,4000  5,2300  6,3000 18,50 21,00 23,30 26,20 28,30 
13  3,5700  4,1100  5,0100  5,8900  7,0400 19,80 22,40 24,70 27,70 29,80 
14  4,0700  4,6600  5,6300  6,5700  7,7900 21,10 23,70 26,10 29,10 31,30 
15  4,6000  5,2300  6,2600  7,2600  8,5500 22,30 25,00 27,50 30,60 32,80 
16  5,1400  5,8100  6,9100  7,9600  9,3100 23,50 26,30 28,80 32,00 34,30 
17  5,7000  6,4100  7,6500  8,6700 10,1000 24,80 27,60 30,20 33,40 35,70 
18  6,2600  7,0100  8,2300  9,3900 10,9000 26,00 28,90 31,50 34,80 37,20 
19  6,8400  7,6300  8,9100 10,1000 11,7000 27,20 30,10 32,90 36,20 38,60 
20  7,4300  8,2600  9,5900 10,9000 12,4000 28,40 31,40 34,20 37,60 40,00 
21  8,0300  8,9000 10,3000 11,6000 13,2000 29,60 32,70 35,50 38,90 41,40 
22  8,6400  9,5400 11,0000 12,3000 14,0000 30,80 33,90 36,80 40,30 42,80 
23  9,2600 10,2000 11,7000 13,1000 14,8000 32,00 35,20 38,10 41,60 44,20 
24  9,8900 10,9000 12,4000 13,8000 15,7000 33,20 36,40 39,40 43,00 45,60 
25 10,5000 11,5000 13,1000 14,6000 16,5000 34,40 37,70 40,60 44,30 46,90 
26 11,2000 12,2000 13,8000 15,4000 17,3000 35,50 38,90 41,90 45,60 48,30 
27 11,8000 12,9000 14,6000 16,2000 18,1000 36,70 40,10 43,20 47,00 49,60 
28 12,5000 13,6000 15,3000 16,9000 18,9000 37,90 41,30 44,50 48,30 51,00 
29 13,1000 14,3000 16,0000 17,7000 19,8000 39,10 42,60 45,70 49,60 52,30 
30 13,8000 15,0000 16,8000 18,5000 20,6000 40,30 43,80 47,00 50,90 53,70 
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CRITICAL  VALUES  OF  F – DISTRIBUTION 
 

 

( )1 2( , , )P F f ν ν α α> =  

α = 0,01 

     ν1 

  ν2 
4 5 6 7 8 9 10 11 12 

4 15,977020 15,52186 15,206860 14,975760 14,798890 14,65913 14,545900 14,452280 14,373590
5 11,391930 10,96702 10,672250 10,455510 10,289310 10,15776 10,051020   9,962648   9,888275
6   9,148301   8,745895   8,466125   8,259995   8,101651 7,976121   7,874119   7,789570   7,718333
7   7,846645   7,460435   7,191405   6,992833   6,840049 6,718752   6,620063   6,538166   6,469091
8   7,006077   6,631825   6,370681   6,177624   6,028870 5,910619   5,814294   5,734275   5,666719
9   6,422085   6,056941   5,801770   5,612865   5,467123 5,351129   5,256542   5,177890   5,111431
10   5,994339   5,636326   5,385811  5,200121   5,056693 4,942421   4,849147   4,771518   4,705870
11   5,668300   5,316009   5,069210  4,886072   4,744468 4,631540   4,539282   4,462436   4,397401
12   5,411951   5,064343   4,820574  4,639502   4,499365 4,387510   4,296054   4,219820   4,155258
13   5,205330   4,861621   4,620363  4,440997   4,302062 4,191078   4,100267   4,024518   3,960326
14   5,035378   4,694964   4,455820  4,277882   4,139946 4,029680   3,939396   3,864039   3,800141
15   4,893210   4,555614   4,318273  4,141546   4,004453 3,894788   3,804940   3,729902   3,666240
16   4,772578   4,437420   4,201634  4,025947   3,889572 3,780415   3,690931   3,616157   3,552687
17   4,668968   4,335939   4,101505  3,926719   3,790964 3,682242   3,593066   3,518512   3,455198
18   4,579036   4,247882   4,014637  3,840639   3,705422 3,597074   3,508162   3,433793   3,370608
19   4,500258   4,170767   3,938573  3,765269   3,630525 3,522503   3,433817   3,359605   3,296527
20   4,430690   4,102685   3,871427  3,698740   3,564412 3,456676   3,368186   3,294108   3,231120
21   4,368815   4,042144   3,811725  3,639590   3,505632 3,398147   3,309830   3,235867   3,172953
22   4,313429   3,987963   3,758301  3,586660   3,453034 3,345773   3,257606   3,183742   3,120891
23   4,263567   3,939195   3,710218  3,539024   3,405695 3,298634   3,210599   3,136822   3,074025
24   4,218445   3,895070   3,666717  3,495928   3,362867 3,255985   3,168069   3,094367   3,031615
25   4,177420   3,854957   3,627174  3,456754   3,323937 3,217217   3,129406   3,055771   2,993056
26   4,139960   3,818336   3,591075  3,420993   3,288399 3,181824   3,094108   3,020530   2,957848
27   4,105622   3,784770   3,557991  3,388219   3,255827 3,149385   3,061754   2,988228   2,925573
28   4,074032   3,753895   3,527559  3,358073   3,225868 3,119547   3,031992   2,958512   2,895881
29   4,044873   3,725399   3,499475  3,330252   3,198219 3,092009   3,004524   2,931084   2,868472
30   4,017877   3,699019   3,473477  3,304499  3,172624 3,066516   2,979094   2,905690   2,843095



Appendix 
 

188 

α = 0,01 

      ν1 

  ν2 
4 5 6 7 8 9 10 11 12 

31 3,992811 3,674528 3,449341 3,280591 3,148863 3,042849 2,955484 2,882112 2,819532
32 3,969477 3,651731 3,426876 3,258338 3,126746 3,020818 2,933506 2,860163 2,797595
33 3,947701 3,630458 3,405914 3,237573 3,106108 3,000261 2,912997 2,839680 2,777122
34 3,927333 3,610562 3,386309 3,218154 3,086807 2,981033 2,893814 2,820521 2,757971
35 3,908241 3,591914 3,367935 3,199952 3,068716 2,963012 2,875833 2,802561 2,740018
36 3,890308 3,574399 3,350677 3,182858 3,051726 2,946086 2,858945 2,785692 2,723155
37 3,873433 3,557918 3,334440 3,166774 3,035738 2,930159 2,843053 2,769817 2,707284
38 3,857524 3,542383 3,319133 3,151612 3,020668 2,915145 2,828072 2,754851 2,692322
39 3,842502 3,527713 3,304681 3,137296 3,006438 2,900968 2,813925 2,740719 2,678192
40 3,828294 3,513840 3,291012 3,123757 2,992981 2,887560 2,800545 2,727352 2,664827
41 3,814835 3,500699 3,278067 3,110934 2,980234 2,874861 2,787871 2,714690 2,652167
42 3,802069 3,488235 3,265787 3,098771 2,968144 2,862814 2,775850 2,702679 2,640156
43 3,789942 3,476396 3,254125 3,087218 2,956661 2,851373 2,764431 2,691269 2,628747
44 3,778409 3,465137 3,243033 3,076232 2,945740 2,840491 2,753570 2,680418 2,617896
45 3,767427 3,454416 3,232472 3,065771 2,935341 2,830129 2,743229 2,670084 2,607562
46 3,756957 3,444196 3,222404 3,055798 2,925427 2,820251 2,733369 2,660232 2,597709
47 3,746964 3,434442 3,212796 3,046281 2,915966 2,810823 2,723960 2,650829 2,588305
48 3,737417 3,425123 3,203617 3,037188 2,906927 2,801816 2,714969 2,641845 2,579319
49 3,728286 3,416211 3,194838 3,028492 2,898283 2,793202 2,706371 2,633253 2,570725
50 3,719545 3,407680 3,186434 3,020168 2,890008 2,784956 2,698139 2,625026 2,562497
55 3,680897 3,369962 3,149283 2,983369 2,853424 2,748497 2,661744 2,588651 2,526110
60 3,649047 3,338884 3,118674 2,953049 2,823280 2,718454 2,631751 2,558670 2,496116
65 3,622349 3,312836 3,093020 2,927638 2,798015 2,693272 2,606607 2,533535 2,470966
70 3,599647 3,290689 3,071209 2,906032 2,776533 2,671859 2,585226 2,512158 2,449575
75 3,580106 3,271628 3,052437 2,887437 2,758044 2,653429 2,566821 2,493756 2,431158
80 3,563110 3,255049 3,036111 2,871265 2,741964 2,637398 2,550812 2,477747 2,415136
85 3,548191 3,240499 3,021782 2,857072 2,727851 2,623328 2,536759 2,463695 2,401070
90 3,534992 3,227626 3,009106 2,844515 2,715364 2,610879 2,524326 2,451260 2,388623
95 3,523230 3,216156 2,997811 2,833327 2,704238 2,599787 2,513246 2,440179 2,377530
100 3,512684 3,205872 2,987684 2,823295 2,694263 2,589841 2,503311 2,430242 2,367582
105 3,503174 3,196599 2,978553 2,814250 2,685268 2,580872 2,494352 2,421281 2,358610
110 3,494555 3,188194 2,970278 2,806052 2,677115 2,572743 2,486232 2,413158 2,350478
115 3,486707 3,180542 2,962743 2,798588 2,669692 2,565341 2,478838 2,405762 2,343072
120 3,479531 3,173545 2,955854 2,791764 2,662906 2,558574 2,472077 2,398999 2,336300
125 3,472945 3,167124 2,949531 2,785500 2,656676 2,552362 2,465871 2,392791 2,330083
129 3,468053 3,162354 2,944835 2,780848 2,652050 2,547748 2,461261 2,388179 2,325465

 



Appendix 
 

189 

α = 0,01 

         ν1 

  ν2 
15 20 24 30 40 50 60 80 100 

4 14,19820 14,01961 13,92906 13,83766 13,74538 13,68958 13,65220 13,60526 13,57699
5 9,722219 9,552646 9,466471 9,379329 9,291189 9,237811 9,202015 9,157029 9,129907
6 7,558994 7,395832 7,312721 7,228533 7,143222 7,091475 7,056737 7,013037 6,986667
7 6,314331 6,155438 6,074319 5,992010 5,908449 5,857682 5,823566 5,780605 5,754657
8 5,515125 5,359095 5,279264 5,198130 5,115610 5,065398 5,031618 4,989038 4,963296
9 4,962078 4,807995 4,728998 4,648582 4,566649 4,516715 4,483087 4,440656 4,414980
10 4,558140 4,405395 4,326929 4,246933 4,165287 4,115452 4,081855 4,039422 4,013719
11 4,250867 4,099046 4,020910 3,941132 3,859573 3,809716 3,776071 3,733533 3,707744
12 4,009619 3,858433 3,780485 3,700789 3,619181 3,569222 3,535473 3,492763 3,466845
13 3,815365 3,664609 3,586753 3,507042 3,425293 3,375176 3,341287 3,298357 3,272282
14 3,655697 3,505222 3,427387 3,347596 3,265641 3,215328 3,181274 3,138094 3,111842
15 3,522194 3,371892 3,294029 3,214110 3,131906 3,081371 3,047135 3,003683 2,977242
16 3,408947 3,258737 3,180811 3,100733 3,018248 2,967476 2,933046 2,889308 2,862669
17 3,311694 3,161518 3,083502 3,003241 2,920458 2,869437 2,834806 2,790774 2,763932
18 3,227286 3,077097 2,998974 2,918516 2,835420 2,784144 2,749309 2,704978 2,677930
19 3,153343 3,003109 2,924866 2,844201 2,760786 2,709251 2,674211 2,629578 2,602323
20 3,088041 2,937735 2,859363 2,778485 2,694749 2,642954 2,607708 2,562774 2,535313
21 3,029951 2,879556 2,801050 2,719955 2,635896 2,583844 2,548393 2,503160 2,475492
22 2,977946 2,827447 2,748802 2,667490 2,583111 2,530803 2,495149 2,449619 2,421747
23 2,931118 2,780504 2,701720 2,620191 2,535496 2,482935 2,447081 2,401258 2,373184
24 2,888732 2,737997 2,659072 2,577329 2,492321 2,439512 2,403461 2,357349 2,329076
25 2,850186 2,699325 2,620260 2,538305 2,452990 2,399937 2,363691 2,317296 2,288826
26 2,814982 2,663991 2,584787 2,502624 2,417007 2,363715 2,327279 2,280604 2,251941
27 2,782703 2,631580 2,552239 2,469872 2,383960 2,330434 2,293812 2,246863 2,218009
28 2,753000 2,601744 2,522268 2,439701 2,353501 2,299745 2,262941 2,215723 2,186682
29 2,725577 2,574188 2,494579 2,411817 2,325335 2,271355 2,234372 2,186890 2,157666
30 2,700180 2,548659 2,468921 2,385967 2,299211 2,245012 2,207854 2,160114 2,130710
31 2,676594 2,524942 2,445077 2,361937 2,274913 2,220500 2,183171 2,135178 2,105597
32 2,654632 2,502850 2,422861 2,339539 2,252253 2,197632 2,160136 2,111895 2,082141
33 2,634132 2,482222 2,402111 2,318613 2,231072 2,176247 2,138588 2,090105 2,060180
34 2,614952 2,462916 2,382687 2,299016 2,211227 2,156203 2,118384 2,069664 2,039573
35 2,596969 2,444810 2,364466 2,280626 2,192595 2,137377 2,099403 2,050450 2,020195
36 2,580074 2,427794 2,347337 2,263334 2,175068 2,119661 2,081534 2,032354 2,001938
37 2,564172 2,411773 2,331207 2,247044 2,158548 2,102957 2,064681 2,015278 1,984705
38 2,549177 2,396662 2,315989 2,231671 2,142952 2,087180 2,048759 1,999138 1,968411
39 2,535014 2,382385 2,301608 2,217140 2,128202 2,072255 2,033692 1,983858 1,952979
40 2,521616 2,368876 2,287998 2,203382 2,114232 2,058113 2,019411 1,969368 1,938341



Appendix 
 

190 

α = 0,01 

         ν1 

  ν2 
15 20 24 30 40 50 60 80 100 

41 2,508922 2,356074 2,275097 2,190338 2,100981 2,044695 2,005857 1,955609 1,924436
42 2,496878 2,343924 2,262851 2,177953 2,088394 2,031944 1,992974 1,942526 1,911210
43 2,485436 2,332378 2,251211 2,166177 2,076423 2,019813 1,980713 1,930069 1,898612
44 2,474552 2,321392 2,240134 2,154968 2,065022 2,008257 1,969029 1,918193 1,886599
45 2,464185 2,310926 2,229580 2,144285 2,054151 1,997234 1,957883 1,906859 1,875129
46 2,454300 2,300945 2,219512 2,134091 2,043775 1,986709 1,947237 1,896028 1,864166
47 2,444863 2,291414 2,209897 2,124354 2,033860 1,976649 1,937058 1,885669 1,853677
48 2,435846 2,282305 2,200705 2,115043 2,024376 1,967023 1,927316 1,875749 1,843630
49 2,427220 2,273589 2,191910 2,106132 2,015295 1,957803 1,917982 1,866242 1,833997
50 2,418961 2,265243 2,183485 2,097593 2,006592 1,948964 1,909032 1,857122 1,824753
55 2,382427 2,2283000 2,146180 2,059761 1,967989 1,909727 1,869272 1,816559 1,783606
60 2,352297 2,197806 2,115364 2,028479 1,936018 1,877187 1,836259 1,782816 1,749328
65 2,327023 2,172206 2,089479 2,002175 1,909099 1,849753 1,808397 1,754286 1,720305
70 2,305517 2,150410 2,067425 1,979748 1,886115 1,826304 1,784557 1,729835 1,695398
75 2,286997 2,131626 2,048411 1,960396 1,866260 1,806024 1,763920 1,708635 1,673777
80 2,270879 2,115271 2,031847 1,943526 1,848932 1,788309 1,745877 1,690072 1,654822
85 2,256726 2,100901 2,017288 1,928688 1,833677 1,772697 1,729964 1,673677 1,638062
90 2,244198 2,088176 2,004390 1,915536 1,820141 1,758834 1,715821 1,659088 1,623133
95 2,233031 2,076829 1,992884 1,903797 1,808050 1,746440 1,703168 1,646019 1,609745
100 2,223015 2,066646 1,982556 1,893254 1,797181 1,735292 1,691780 1,634242 1,597669
105 2,213979 2,057458 1,973234 1,883733 1,787360 1,725210 1,681474 1,623572 1,586719
110 2,205788 2,049125 1,964777 1,875093 1,778440 1,716047 1,672102 1,613860 1,576742
115 2,198327 2,041533 1,957070 1,867216 1,770302 1,707684 1,663542 1,604980 1,567613
120 2,191504 2,034588 1,950018 1,860005 1,762849 1,700018 1,655693 1,596830 1,559227
125 2,185240 2,028210 1,943540 1,853380 1,755996 1,692967 1,648469 1,589322 1,551495
129 2,180586 2,023471 1,938726 1,848454 1,750899 1,687720 1,643091 1,583728 1,545731



Appendix 
 

191 

 

α = 0,05 

         ν1 

  ν2 
4 5 6 7 8 9 10 11 12 

4 6,388233 6,256057 6,163132 6,094211 6,041044 5,998779 5,964371 5,935813 5,911729
5 5,192168 5,050329 4,950288 4,875872 4,818320 4,772466 4,735063 4,703967 4,677704
6 4,533677 4,387374 4,283866 4,206658 4,146804 4,099016 4,059963 4,027442 3,999935
7 4,120312 3,971523 3,865969 3,787044 3,725725 3,676675 3,636523 3,603037 3,574676
8 3,837853 3,687499 3,580580 3,500464 3,438101 3,388130 3,347163 3,312951 3,283939
9 3,633089 3,481659 3,373754 3,292746 3,229583 3,178893 3,137280 3,102485 3,072947
10 3,478050 3,325835 3,217175 3,135465 3,071658 3,020383 2,978237 2,942957 2,912977
11 3,356690 3,203874 3,094613 3,012330 2,947990 2,896223 2,853625 2,817930 2,787569
12 3,259167 3,105875 2,996120 2,913358 2,848565 2,796375 2,753387 2,717331 2,686637
13 3,179117 3,025438 2,915269 2,832098 2,766913 2,714356 2,671024 2,634650 2,603661
14 3,112250 2,958249 2,847726 2,764199 2,698672 2,645791 2,602155 2,565497 2,534243
15 3,055568 2,901295 2,790465 2,706627 2,640797 2,587626 2,543719 2,506806 2,475313
16 3,006917 2,852409 2,741311 2,657197 2,591096 2,537667 2,493513 2,456369 2,424660
17 2,964708 2,809996 2,698660 2,614299 2,547955 2,494291 2,449916 2,412561 2,380654
18 2,927744 2,772853 2,661305 2,576722 2,510158 2,456281 2,411702 2,374156 2,342067
19 2,895107 2,740058 2,628318 2,543534 2,476770 2,422699 2,377934 2,340210 2,307954
20 2,866081 2,710890 2,598978 2,514011 2,447064 2,392814 2,347878 2,309991 2,277581
21 2,840100 2,684781 2,572712 2,487578 2,420462 2,366048 2,320953 2,282916 2,250362
22 2,816708 2,661274 2,549061 2,463774 2,396503 2,341937 2,296696 2,258518 2,225831
23 2,795539 2,639999 2,527655 2,442226 2,374812 2,320105 2,274728 2,236419 2,203607
24 2,776289 2,620654 2,508189 2,422629 2,355081 2,300244 2,254739 2,216309 2,183380
25 2,758710 2,602987 2,490410 2,404728 2,337057 2,282097 2,236474 2,197929 2,164891
26 2,742594 2,586790 2,474109 2,388314 2,320527 2,265453 2,219718 2,181067 2,147926
27 2,727765 2,571886 2,459108 2,373208 2,305313 2,250131 2,204292 2,165540 2,132303
28 2,714076 2,558127 2,445259 2,359260 2,291264 2,235982 2,190044 2,151197 2,117869
29 2,701399 2,545386 2,432434 2,346342 2,278251 2,222874 2,176844 2,137908 2,104493
30 2,689628 2,533555 2,420523 2,334344 2,266163 2,210697 2,164580 2,125559 2,092063
31 2,678667 2,522538 2,409432 2,323171 2,254906 2,199355 2,153156 2,114054 2,080482
32 2,668437 2,512255 2,399080 2,312741 2,244396 2,188766 2,142488 2,103311 2,069665
33 2,658867 2,502635 2,389394 2,302982 2,234562 2,178856 2,132504 2,093254 2,059539
34 2,649894 2,493616 2,380313 2,293832 2,225340 2,169562 2,123140 2,083822 2,050040
35 2,641465 2,485143 2,371781 2,285235 2,216675 2,160829 2,114300 2,074956 2,041111
36 2,633532 2,477169 2,363751 2,277143 2,208518 2,152607 2,106054 2,066608 2,032703
37 2,626052 2,469650 2,356179 2,269512 2,200826 2,144853 2,098239 2,058734 2,024771
38 2,618988 2,462548 2,349027 2,262304 2,193559 2,137528 2,090856 2,051294 2,017276
39 2,612306 2,455831 2,342262 2,255485 2,186685 2,130597 2,083869 2,044253 2,010183
40 2,605975 2,449466 2,335852 2,249024 2,180107 2,124029 2,077248 2,037580 2,003459



Appendix 
 

192 

α = 0,05 

         ν1 

  ν2 
4 5 6 7 8 9 10 11 12 

41 2,599969 2,443429 2,329771 2,242894 2,173989 2,117797 2,070965 2,031247 1,997078
42 2,594263 2,437693 2,323994 2,237070 2,168117 2,111875 2,064994 2,025229 1,991013
43 2,588836 2,432236 2,318498 2,231530 2,162530 2,106241 2,059313 2,019502 1,985242
44 2,583667 2,427040 2,313264 2,226253 2,157208 2,100873 2,053901 2,014046 1,979743
45 2,578739 2,422085 2,308273 2,221221 2,152133 2,095755 2,048739 2,008842 1,974498
46 2,574035 2,417356 2,303509 2,216417 2,147288 2,090868 2,043811 2,003873 1,969490
47 2,569540 2,412837 2,298956 2,211827 2,142658 2,086198 2,039101 1,999124 1,964702
48 2,565241 2,408514 2,294601 2,207436 2,138229 2,081730 2,034595 1,994580 1,960121
49 2,561124 2,404375 2,290432 2,203232 2,133988 2,077452 2,030279 1,990228 1,955734
50 2,557179 2,400409 2,286436 2,199202 2,129923 2,073351 2,026143 1,986056 1,951528
55 2,539689 2,382823 2,268717 2,181333 2,111894 2,055161 2,007792 1,967547 1,932863
60 2,525215 2,368270 2,254053 2,166541 2,096968 2,040098 1,992592 1,952212 1,917396
65 2,513040 2,356028 2,241716 2,154095 2,084407 2,027419 1,979796 1,939300 1,904370
70 2,502656 2,345586 2,231192 2,143478 2,073690 2,016601 1,968875 1,928278 1,893248
75 2,493696 2,336576 2,222110 2,134314 2,064439 2,00726 1,959445 1,918759 1,883642
80 2,485885 2,328721 2,214193 2,126324 2,056373 1,999115 1,95122 1,910456 1,875262
85 2,479015 2,321812 2,207229 2,119296 2,049276 1,991949 1,943984 1,903149 1,867886
90 2,472927 2,315689 2,201056 2,113067 2,042986 1,985595 1,937567 1,896669 1,861344
95 2,467494 2,310225 2,195548 2,107506 2,037370 1,979923 1,931838 1,890884 1,855503
100 2,462615 2,305318 2,190601 2,102513 2,032328 1,974829 1,926692 1,885687 1,850255
105 2,458210 2,300888 2,186134 2,098005 2,027774 1,970229 1,922045 1,880993 1,845515
110 2,454213 2,296868 2,182082 2,093913 2,023641 1,966054 1,917827 1,876732 1,841212
115 2,450571 2,293205 2,178387 2,090184 2,019874 1,962247 1,913982 1,872847 1,837288
120 2,447237 2,289851 2,175006 2,086770 2,016426 1,958763 1,910461 1,869290 1,833695
125 2,444174 2,286771 2,171900 2,083634 2,013257 1,955562 1,907226 1,866022 1,830394
129 2,441897 2,284481 2,169591 2,081303 2,010902 1,953182 1,904821 1,863592 1,827939
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α = 0,05 

         ν1 

  ν2 
15 20 24 30 40 50 60 80 100 

4 5,857805 5,802542 5,774389 5,745877 5,716998 5,699492 5,687744 5,672973 5,664064
5 4,618759 4,558131 4,527153 4,495712 4,463793 4,444406 4,431380 4,414982 4,405081
6 3,938058 3,874189 3,841457 3,808164 3,774286 3,753668 3,739797 3,722314 3,711745
7 3,510740 3,444525 3,410494 3,375808 3,340430 3,318856 3,304323 3,285983 3,274885
8 3,218406 3,150324 3,115240 3,079406 3,042778 3,020398 3,005303 2,986230 2,974674
9 3,006102 2,936455 2,900474 2,863652 2,825933 2,802843 2,787249 2,767522 2,755557
10 2,845017 2,774016 2,737248 2,699551 2,660855 2,637124 2,621077 2,600753 2,588412
11 2,718640 2,646445 2,608974 2,570489 2,530905 2,506587 2,490123 2,469246 2,456555
12 2,616851 2,543588 2,505482 2,466279 2,425880 2,401018 2,384166 2,362772 2,349753
13 2,533110 2,458882 2,420196 2,380334 2,339180 2,313811 2,296596 2,274716 2,261387
14 2,463003 2,387896 2,348678 2,308207 2,266350 2,240507 2,222950 2,200611 2,186988
15 2,403447 2,327535 2,287826 2,246789 2,204276 2,177985 2,160105 2,137331 2,123428
16 2,352223 2,275570 2,235405 2,193841 2,150711 2,123999 2,105813 2,082625 2,068455
17 2,307693 2,230354 2,189766 2,147708 2,103998 2,076888 2,058411 2,034828 2,020401
18 2,268622 2,190648 2,149665 2,107143 2,062885 2,035397 2,016643 1,992682 1,978010
19 2,234063 2,155497 2,114143 2,071186 2,026410 1,998561 1,979544 1,955221 1,940314
20 2,203274 2,124155 2,082454 2,039086 1,993819 1,965628 1,946358 1,921689 1,906554
21 2,175670 2,096033 2,054004 2,010248 1,964515 1,935997 1,916486 1,891483 1,876131
22 2,150778 2,070656 2,028319 1,984195 1,938018 1,909188 1,889445 1,864123 1,848559
23 2,128217 2,047638 2,005009 1,960537 1,913938 1,884809 1,864844 1,839213 1,823446
24 2,107673 2,026664 1,983760 1,938957 1,891955 1,862539 1,842360 1,816432 1,800468
25 2,088887 2,007471 1,964306 1,919188 1,871801 1,842111 1,821727 1,795512 1,779357
26 2,071642 1,989842 1,946428 1,901010 1,853255 1,823301 1,802719 1,776228 1,759888
27 2,055755 1,973590 1,929940 1,884236 1,836129 1,805922 1,785149 1,75839 1,741871
28 2,041071 1,958561 1,914686 1,868709 1,820263 1,789813 1,768857 1,741838 1,725146
29 2,027458 1,944620 1,900531 1,854293 1,805523 1,774838 1,753704 1,726435 1,709574
30 2,014804 1,931653 1,887360 1,840872 1,791790 1,760879 1,739574 1,712062 1,695037
31 2,003009 1,919561 1,875073 1,828345 1,778964 1,747835 1,726363 1,698616 1,681432
32 1,991990 1,908258 1,863582 1,816625 1,766956 1,735616 1,713984 1,686009 1,668670
33 1,981671 1,897669 1,852814 1,805636 1,755689 1,724147 1,702359 1,674162 1,656673
34 1,971988 1,887727 1,842701 1,795311 1,745097 1,713358 1,691420 1,663007 1,645371
35 1,962884 1,878375 1,833184 1,785591 1,735119 1,703190 1,681106 1,652484 1,634706
36 1,954308 1,869562 1,824213 1,776424 1,725703 1,693590 1,671365 1,642539 1,624621
37 1,946216 1,861242 1,815742 1,767764 1,716803 1,684511 1,662149 1,633125 1,615072
38 1,938568 1,853375 1,807729 1,759569 1,708376 1,675911 1,653416 1,624200 1,606014
39 1,931327 1,845925 1,800138 1,751803 1,700385 1,667753 1,645128 1,615724 1,597409
40 1,924463 1,838859 1,792937 1,744432 1,692797 1,660003 1,637252 1,607666 1,589224
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α = 0,05 
         ν1 

  ν2 
15 20 24 30 40 50 60 80 100 

41 1,917946 1,832149 1,786096 1,737427 1,685582 1,652631 1,629757 1,599993 1,581428
42 1,911751 1,825767 1,779588 1,730762 1,678713 1,645608 1,622615 1,592678 1,573993
43 1,905855 1,819691 1,773391 1,724411 1,672165 1,638912 1,615803 1,585696 1,566893
44 1,900236 1,813898 1,767481 1,718354 1,665916 1,632518 1,609296 1,579024 1,560106
45 1,894875 1,808370 1,761839 1,712569 1,659945 1,626407 1,603075 1,572642 1,553612
46 1,889755 1,803089 1,756448 1,707039 1,654235 1,620560 1,597122 1,566531 1,547390
47 1,884859 1,798038 1,751291 1,701748 1,648769 1,614961 1,591417 1,560673 1,541425
48 1,880175 1,793202 1,746353 1,696679 1,643530 1,609593 1,585947 1,555053 1,535699
49 1,875687 1,788569 1,741620 1,691820 1,638505 1,604442 1,580697 1,549656 1,530199
50 1,871384 1,784125 1,737080 1,687157 1,633682 1,599495 1,575654 1,544469 1,524911
55 1,852280 1,764379 1,716893 1,666408 1,612191 1,577435 1,553142 1,521285 1,501251
60 1,836437 1,747984 1,700117 1,649141 1,594273 1,559011 1,534314 1,501853 1,481386
65 1,823086 1,734152 1,685951 1,634544 1,579098 1,543385 1,518326 1,485316 1,464455
70 1,811681 1,722325 1,673829 1,622040 1,566078 1,52996 1,504572 1,471064 1,449840
75 1,801825 1,712096 1,663338 1,611207 1,554782 1,518297 1,492612 1,458647 1,437090
80 1,793222 1,703160 1,654168 1,601730 1,544887 1,508069 1,482111 1,447728 1,425862
85 1,785647 1,695287 1,646084 1,593369 1,536147 1,499025 1,472817 1,438048 1,415896
90 1,778927 1,688298 1,638904 1,585937 1,528369 1,490968 1,464531 1,429404 1,406986
95 1,772924 1,682051 1,632483 1,579288 1,521402 1,483745 1,457096 1,421637 1,398970
100 1,767530 1,676434 1,626708 1,573302 1,515125 1,477231 1,450386 1,414618 1,391720
105 1,762656 1,671357 1,621485 1,567886 1,509441 1,471327 1,444299 1,408244 1,385127
110 1,758230 1,666744 1,616739 1,562962 1,504268 1,465951 1,438753 1,402428 1,379106
115 1,754193 1,662536 1,612407 1,558465 1,499540 1,461034 1,433676 1,397099 1,373585
120 1,750497 1,658680 1,608437 1,554343 1,495202 1,456519 1,429013 1,392198 1,368503
125 1,747099 1,655135 1,604786 1,550549 1,491208 1,452360 1,424714 1,387676 1,363808
129 1,744573 1,652498 1,602069 1,547725 1,488234 1,449260 1,421509 1,384301 1,360303
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Values of k for two-sided statistical tolerance interval 
1 α−  0,90 0,95 0,99 

p 
n 0,90 0,95 0,99 0,90 0,95 0,99 0,90 0,95 0,99 

2 15,5124 18,2208 23,4235 31,0923 36,5192 46,7452 155,5690 182,7200 234,8769 

3 5,7881 6,8233 8,8186 8,3060 9,7888 12,6471 18,7825 22,1308 28,5857 

4 4,1571 4,9127 6,3722 5,3681 6,3411 8,2207 9,4162 11,1178 14,4054 

5 3,4993 4,1425 5,3868 4,2907 5,0769 6,5980 6,6550 7,8698 10,2201 

6 3,1406 3,7226 4,8498 3,7326 4,4222 5,7578 5,3832 6,3735 8,2916 

7 2,9128 3,4558 4,5085 3,3896 4,0196 5,2411 4,6576 5,5196 7,1907 

8 2,7542 3,2699 4,2707 3,1561 3,7456 4,8893 4,1887 4,9677 6,4790 

9 2,6368 3,1323 4,0945 2,9861 3,5459 4,6328 3,8602 4,5810 5,9802 

10 2,5460 3,0258 3,9580 2,8564 3,3935 4,4370 3,6167 4,2942 5,6102 

11 2,4734 2,9406 3,8488 2,7537 3,2728 4,2818 3,4286 4,0726 5,3242 

12 2,4140 2,8707 3,7591 2,6703 3,1747 4,1556 3,2786 3,8959 5,0960 

13 2,3643 2,8123 3,6840 2,6011 3,0932 4,0506 3,1561 3,7514 4,9093 

14 2,3220 2,7625 3,6201 2,5425 3,0242 3,9617 3,0538 3,6309 4,7535 

15 2,2855 2,7196 3,5649 2,4922 2,9650 3,8853 2,9672 3,5286 4,6212 

16 2,2537 2,6821 3,5166 2,4486 2,9135 3,8189 2,8926 3,4406 4,5074 

17 2,2257 2,6491 3,4741 2,4103 2,8684 3,7606 2,8278 3,3641 4,4084 

18 2,2008 2,6197 3,4362 2,3764 2,8283 3,7089 2,7708 3,2968 4,3212 

19 2,1785 2,5934 3,4122 2,3461 2,7926 3,6626 2,7203 3,2371 4,2439 

20 2,1584 2,5697 3,3716 2,3188 2,7604 3,6210 2,6752 3,1838 4,1748 

21 2,1401 2,5482 3,3437 2,2942 2,7313 3,5834 2,6347 3,1359 4,1126 

22 2,1235 2,5285 3,3183 2,2718 2,7048 3,5490 2,5979 3,0924 4,0563 

23 2,1083 2,5105 3,2951 2,2516 2,6806 3,5177 2,5645 3,0529 4,0050 

24 2,0943 2,4940 3,2736 2,2325 2,6583 3,4888 2,5340 3,0168 3,9580 

25 2,0813  2,4787 3,2538 2,2151 2,6378 3,4622 2,5060 2,9836 3,9149 

30 2,0289 2,4166 3,1734 2,1452 2,5549 3,3546 2,3940 2,8510 3,7425 

40 1,9611 2,4479 3,0688 2,0624 2,4484 3,2160 2,2529 2,6836 3,5144 

50 1,9184 2,3948 3,0027 1,9991 2,3816 3,1288 2,1660 2,5805 3,3898 

60 1,8885 2,2500 2,9564 1,9599 2,3351 3,0681 2,1063 2,5095 3,2970 

70 1,8662 2,2236 2,9218 1,9308 2,3005 3,0228 2,0623 2,4571 3,2284 

80 1,8489 2,2029 2,8947 1,9082 2,2736 2,9875 2,0282 2,4165 3,1753 

90 1,8348 2,1862 2,8729 1,8899 2,2519 2,9591 2,0009 2,3840 3,1327 

100 1,8232 2,1724 2,8548 1,8749 2,2339 2,9356 1,9784 2,3573 3,0976 
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Values of k for one-sided statistical tolerance interval 

1 α−  0,90 0,95 0,99 
p 

n 0,90 0,95 0,99 0,90 0,95 0,99 0,90 0,95 0,99 

2 10,2528 13,0898 18,5001 20,5815 25,2597 37,0936 103,0287 131,4263 185,6170 

3 4,2582 5,3115 7,3405 6,1553 7,6560 10,5528 13,9955 17,3702 23,8956 

4 3,1879 3,9566 5,4383 4,1620 5,1439 7,0424 7,3799 9,0835 12,3873 

5 2,7424 3,3999 4,6660 3,4067 4,2027 5,7411 5,3618 6,5784 8,9391 

6 2,4937 3,0919 4,2426 3,0063 3,7077 5,0620 4,4111 5,4056 7,3346 

7 2,3327 2,8938 3,9721 2,7555 3,3995 4,6418 3,8592 4,7279 6,4120 

8 2,2186 2,7543 3,7826 2,5820 3,1873 4,3539 3,4973 4,2853 5,8118 

9 2,1329 2,6500 3,6415 2,4538 3,0313 4,1431 3,2405 3,9723 5,3889 

10 2,0657 2,5684 3,5317 2,3547 2,9110 3,9812 3,0480 3,7384 5,0738 

11 2,0113 2,5027 3,4435 2,2754 2,8150 3,8524 2,8977 3,5562 4,8291 

12 1,9662 2,4483 3,3707 2,2102 2,7364 3,7471 2,7768 3,4100 4,6331 

13 1,9281 2,4025 3,3095 2,1555 2,6706 3,6592 2,6770 3,2896 4,4721 

14 1,8954 2,3632 3,2572 2,1088 2,6145 3,5846 2,5932 3,1886 4,3372 

15 1,8669 2,3290 3,2119 2,0684 2,5661 3,5202 2,5215 3,1024 4,2224 

16 1,8418 2,2990 3,1721 2,0330 2,5237 3,4640 2,4595 3,0279 4,1233 

17 1,8195  2,2725 3,1369 2,0018 2,4863 3,4145 2,4051 2,9628 4,0367 

18 1,7996 2,2487 3,1055 1,9738 2,4530 3,3704 2,3571 2,9052 3,9604 

19 1,7816 2,2273 3,0772 1,9487 2,4231 3,3309 2,3142 2,8539 3,8925 

20 1,7653 2,2078 3,0516 1,9260 2,3961 3,2952 2,2757 2,8079 3,8316 

21 1,7503 2,1901 3,0283 1,9054 2,3715 3,2628 2,2409 2,7663 3,7767 

22 1,7367 2,1739 3,0069 1,8865 2,3490 3,2332 2,2092 2,7286 3,7268 

23 1,7241 2,1590 2,9873 1,8691 2,3284 3,2061 2,1802 2,6941 3,6813 

24 1,7124 2,1452 2,9692 1,85300 2,3093 3,1811 2,1536 2,6624 3,6396 

25 1,70161 2,1323 2,9524 1,8382 2,2917 3,1580 2,1291 2,6332 3,6011 

30 6571 2,0799 2,8838 1,7774 2,2199 3,0640 2,0299 2,5155 3,4466 

40 1,5979 2,0103 2,7932 1,6972 2,1255 2,9410 1,9018 2,3642 3,2486 

50 1,5595 1,9653 2,7349 1,6456 2,0650 2,8625 1,8208 2,2689 3,1247 

60 1,5321 1,9333 2,6936 1,6090 2,0222 2,8071 1,7641 2,2024 3,0383 

70 1,5113 1,9091 2,6623 1,5813 1,9899 2,7654 1,7216 2,1527 2,9740 

80 1,4948 1,8899 2,6377 1,5594 1,9645 2,7327 1,6883 2,1138 2,9238 

90 1,4813 1,8743 2,6177 1,5416 1,9438 2,7061 1,6614 2,0824 2,8832 

100 1,4701 1,8613 2,6010 1,5268 1,9266 2,6840 1,6390 2,0563 2,8497 
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SHAPIRO – WILK TEST – coefficients ( )ia n  
 

n 
i 7 8 9 10 11 12 13 14 

1 0,6233 0,6052 0,5888 0,5739 0,5601 0,5475 0,5359 0,5251 
2 0,3031 0,3164 0,3244 0,3291 0,3315 0,3325 0,3325 0,3318 
3 0,1401 0,1743 0,1976 0,2141 0,2260 0,2347 0,2412 0,2460 
4 0 0,0561 0,0947 0,1224 0,1429 0,1586 0,1707 0,1802 
5 0 0 0 0,0399 0,0695 0,0922 0,1099 0,1240 
6 0 0 0 0 0 0,0303 0,0539 0,0727 
7 0 0 0 0 0 0 0 0,0240 

n 
i 15 16 17 18 19 20 21 22 

1 0,5150 0,5056 0,4968 0,4886 0,4808 0,4734 0,4643 0,4590 
2 0,3306 0,3290 0,3273 0,3253 0,3232 0,3211 0,3185 0,3156 
3 0,2495 0,2521 0,2540 0,2553 0,2565 0,2565 0,2578 0,2571 
4 0,1878 0,1939 0,1988 0,2027 0,2085 0,2085 0,2119 0,2131 
5 0,1353 0,1447 0,1524 0,1587 0,1686 0,1686 0,1736 0,1764 
6 0,0880 0,1005 0,1109 0,1197 0,1334 0,1334 0,1399 0, 1443 
7 0,0433 0,0593 0,0725 0,0837 0,1013 0,1013 0,1092 0,1150 
8 0 0,0196 0,0359 0,0496 0,0711 0,0711 0,0804 0,0878 
9 0 0 0 0,0163 0,1422 0,0422 0,0530 0,0618 

10 0 0 0 0 0 0,0140 0,0263 0,0368 
11 0 0 0 0 0 0 0 0,0122 

n 
i 23 24 25 26 27 28 29 30 

1 0,4542 0,4493 0,4450 0,4407 0,4366 0,4328 0,4291 0,4254 
2 0,3126 0,3098 0,3069 0,3043 0,3018 0,2992 0,2968 0,2944 
3 0,2563 0,2554 0,2543 0,2533 0,2522 0,2510 0,2499 0,2487 
4 0,2139 0,2145 0,2148 0,2151 0,2152 0,2151 0,2150 0,2148 
5 0,1787 0,1807 0,1822 0,1836 0,1848 0,1857 0,1864 0,1870 
6 0,1480 0,1512 0,1539 0,1563 0,1584 0,1601 0,1616 0,1630 
7 0,1201 0,1245 0,1283 0,1316 0,1346 0,1372 0,1395 0,1415 
8 0,0941 0,0997 0,1046 0,1089 0,1128 0,1162 0,1192 0,1219 
9 0,0696 0,0764 0,0823 0,0876 0,0923 0,0965 0,1002 0,1036 

10 0,0459 0,0539 0,0610 0,0672 0,0728 0,0778 0,0822 0,0862 
11 0,0228 0,0320 0,0403 0,0476 0,0540 0,0598 0,0650 0,0697 
12 0 0,0107 0,0200 0,0284 0,0358 0,0424 0,0483 0,0537 
13 0 0 0 0,0094 0,0178 0,0253 0,0320 0,0381 
14 0 0 0 0 0 0,0084 0,0159 0,0227 
15 0 0 0 0 0 0 0 0,0076 
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SHAPIRO – WILK TEST 

Percentiles ( )w nα  of  Shapiro – Wilk statistic W: ( ( ) ( ))P W n W nα α≤ =  

n 0,01α =  0,05α =  n 0,01α = 0,05α =  n 0,01α =  0,05α =  

7 0,730 0,803 15 0,835 0,881 23 0,881 0,914 
8 0,749 0,818 16 0,844 0,887 24 0,884 0,916 
9 0,764 0,826 17 0,851 0,892 25 0,888 0,918 
10 0,781 0,842 18 0,858 0,897 26 0,891 0,920 
11 0,792 0,850 19 0,863 0,901 27 0,894 0,923 
12 0,805 0,859 20 0,868 0,905 28 0,896 0,924 
13 0,814 0,866 21 0,873 0,908 29 0,898 0,926 
14 0,825 0,874 22 0,878 0,911 30 0,900 0,927 
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OPERATING CHARACTERISTIC CURVES 
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