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Preface 
 
 This book is intended to provide a short insight into the basic methods used in 
constructive geometry covering geometric topics frequently appearing in various 
technical engineering applications. The choice and extent of presented concepts were 
influenced by the original aim of the author to provide information on several 
possibilities of representation of geometric objects and on various methods used for 
solving problems of geometric background that engineers may come across, 
particularly in mechanical engineering.  
 In technical sciences, constructors and designers cannot do without projections of 
existing spatial objects, reconstructions of objects mapped in several views, or without 
sketches and modelling of equipment and mechanisms they design. The first chapter 
therefore brings basic information on projection methods. Monge method as the multi-
view orthographic mapping to several image planes and axonometric mappings are 
discussed as the most useful and utilised. The latest CAGD systems for geometric 
modelling and design are in most cases based on these two projection methods.  
 Conic sections are planar quadratic curves of a tremendous engineering 
application. Chapter 2 brings basic definitions, equations and properties of these curves 
in the Euclidean plane, while chapter 3 presents how these curves can be constructed as 
planar intersections on cylindrical or conical surfaces.  
 Chapter 4 deals with quadratic surfaces of revolution, a family of rotational 
surfaces with many interesting properties useful namely in mechanical engineering. 
Creative laws and equations of quadratic surfaces of revolution are presented, and 
planar intersections of these surfaces are constructed using properties of conic sections 
from Chapter 2. 
 Problems to be solved by readers are included in Chapter 5, and comprise all 
constructions and solutions studied in individual chapters. 
 It is my pleasure to express my gratitude and deep thanks to reviewers doc. 
RNDr. Dagmar Szarková, PhD., RNDr. Margita Vajsáblová, PhD. and Dr. Margareta 
V. Rebelos, PhD. for their valuable suggestions, inspiring comments and critical 
remarks, which contributed at a large greatly to the quality improvement of the 
presented material.  
 Creative approach to problem solving is the background of success in any 
human activity. Geometry is one of mathematical disciplines that is a unique 
composition of exact logical reasoning, creative imagination and pure abstraction. In 
addition to a good mathematical-physical-technical education constructor’s work 
requires also a good 3D imagination, logical thinking and creative ideas. Constructive 
geometry can contribute to the acquisition of these basic attributes of a successful 
engineer in a large scale. 
I wish you a lot of success and enjoyment in “discovering the geometry" of the world 
around us, in revealing and cultivating your own creative abilities. Readers are invited 
to address me concerning any questions that might arise. All comments and 
suggestions are welcome. 

Daniela Velichová 
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Symbols 
 

Points:   A, B, ..., X, Y 
Lines:   a, b, ..., k, l, ... 
Planes:   α, β ,..., γ, δ, π,... 

Coincidence:  A = B - points A, B coincide 
   a = b - lines a, b coincide 
   α = β - planes α, β coincide 

Difference:  A ≠ B - different points A, B  
   a ≠ b - different lines a, b  
   α ≠ β - different planes α, β  
Incidence:  A ∈ a - A is point on line a  
   A ∈ α - A is point in plane α 
   a ⊂ α - a is line in plane α 
Non-incidence:  A ∉ a - point A is not on line a 
   A ∉ α - point A is not in plane α 

   a ⊄ α - line a is not in plane α 
Parallel figures:  a || b  - lines, a || α - line and plane, α || β - planes 
Intersecting figures: a × b - lines, a × α - line and plane, α × β - planes 

Skew lines:  a \ b 
Perpendicularity: a ⊥ b - line a is perpendicular to line b 

   a ⊥ α - line a is perpendicular to plane α 

   α ⊥ β - plane α is perpendicular to plane β 

Equality:   a = AB - line a is determined by points A, B 
   AB - line segment with endpoins A, B 
   α = Ba - plane α determined by line a, point B ∉ a   
   α = (a || b)   - plane α determined by paralel lines a, b 
   α = (a × b)  - plane α determined by pierce lines a, b 

   α = ABC  - plane α determined by 3 different points  
       A, B, C that are not on one line 
  ΔABC   - triangle with vertices A, B, C 
   k(S, r)  - circle with centre S and radius r 
   G(S, r)  - sphere with centre S and radius r 
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Intersections: a ∩ b = P - point P is the pierce point of lines a, b 
  a ∩ α = P - point P is the pierce point of line a and plane α 
  α ∩ β = p - line p is the intersection line of planes α, β 
Distances: ⏐AB⏐ - distance of points A and B, line segment AB length 
   ⏐Aa⏐  - distance of point A from line a 
  ⏐Aα⏐  - distance of point A from plane α 
Angles:  α, β ,..., γ, δ, ϕ,... 
  ∠AVB  - angle with vertex V and arms VA, VB  
  ∠pq  - angle of lines p, q 

   ⏐∠AVB⏐ - size of angle AVB 
Other symbols: A1 , a1  - orthographic view of point A, line a in ground 
     plane π, top view 
  A2 , a2  - orthographic view of point A, line a in frontal 
     plane ν, front view 
  A3 , a3  - orthographic view of point A, line a in side 
     plane μ, side view 
  A0 , a0   - revolved point A, line a 
  pα  - trace of plane α in the ground image plane π 

nα  - trace of plane α in the frontal image plane ν 
mα   - trace of the plane α in the side image plane μ 
1s, 2s, 3s

 
   - slope lines in plane to the image planes  π, ν, μ 

  E2, E3 - Euclidean plane, Euclidean space 
{O, x, y} - Cartesian coordinate system of the plane E2 with    

centre O and perpendicular coordinate axes x, y 
{O, x, y, z} - Cartesian coordinate system of the space E3 with 

centre O and perpendicular coordinate axes x, y, z 
  e, E - ellipse, ellipsoid 
  p, P - parabola, paraboloid 
  h, H - hyperbola, hyperboloid 
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1  PROJECTION METHODS 
 
 
 
Projection of space to the plane is a special mapping of space points onto a chosen 
plane of projection called image plane or projection plane. In general, we can speak 
about two different types of projections, central projection and parallel projection. 
 
Central projection 
Let there be given an arbitrary plane π in the Euclidean space E3 called projection 
plane and a fixed point S called the centre of projection, while S is not a point on the 
plane π. Image of an arbitrary point A ≠ S in space E3 under the central projection given 
by S and π is the point AS ∈ π, which is the intersection point of the line sA = AS 
passing through points S and A and the projection plane π, AS = s

A ∩ π . Line sA is the 
projecting line of the point A, AS is the view of the point A under the central 
projection, Fig. 1.1. 
The distance d of the centre of projection S and the projection plane π is called the 
distance of the central projection, d = ⎜ S π ⎜. 
Centre of projection is the point in space E3 that has no image in π under the central 
projection. All points in the plane passing through the centre S and parallel to the 
image plane π have no views either, so this plane has no view under the central 
projection in space E3. Image plane π is invariant under the central projection, all 
points in π are mapped to the same points in π. 

 
Figure 1.1  Central projection. 
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Parallel projection 

Let there be given an arbitrary plane π in the space called projection plane and a fixed 
direction s called the direction of projection, while s is not parallel to the plane π. 
Image of an arbitrary point A in the space under the parallel projection given by s and 
π is the point As ∈ π, which is the intersection point of the line sA passing through the 
point A and parallel to the line s and the projection plane π, As = s

A  ∩ π . Line sA is the 
projecting line of the point A, As is the view of the point A under the parallel 
projection, Fig. 1.2. 
Image plane π  is set of all invariant points under the parallel projection of the space E3 
on the plane π  in direction s. 
 

 
Figure 1. 2  Parallel projection. 

 
 
1.1 BASICS OF PROJECTIONS 
 
Central and parallel projections are mappings of the Euclidean space E3 on the image 
plane π. All points in the image plane are invariant in both projections. All points on 
one projecting line are mapped to the same point in the image plane π, therefore simple 
central and parallel projections are not one-to-one (injective) mappings of the 
Euclidean space E3 on the image plane π. 
View US of a geometric figure U is a figure in the image plane, which can be 
constructed from the views of all points of the figure U, Fig. 1.3.  
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Figure 1.3  View of a geometric figure U. 

 
View of a line, which is not a projecting line, is a line (Fig. 1. 4). View of a projecting 
line is a point. Invariant intersection point of a line and the image plane is the trace of 
the line, point P.  

All projecting lines of points on one line form the line projecting plane χ. View of a 
line is the intersection line of the line projecting plane χ  and the image plane π. 

 
Figure 1. 4  Parallel view of a line. 
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View of a plane, which is not a projecting plane, is the entire image plane. View of 
a projecting plane is a line. Intersection line of a plane and the image plane is the trace 
of the plane, line pα. The trace of a plane is the set of traces of all lines in the 
respective plane.  

 
Figure 1. 5  Parallel view of a plane, principle and slope line. 

 
Any line located in the plane and parallel to the image plane is called principle line in 
the plane (it has no trace in the image plane). View of a principle line p in the plane is a 
line parallel to the plane trace (Fig. 1. 5).  
Any line in the plane perpendicular to the plane trace (and to all principle lines in the 
same direction) is called slope line in the plane. Acute angle ϕ, which the slope line s 
in the plane forms to the image plane π, is the angle of the plane to the image plane. 
We refer to this angle when we speak about the slope of the plane to the image 
plane.  
 
Properties of the parallel projection 
 
Theorem 1. View of the figure U, which is located in the plane parallel to the image 

plane, is the figure congruent to the figure U. 

Theorem 2. Parallelism is an invariant property of the parallel projection. Parallel lines 
that are not in the direction s of the projection are mapped to the parallel 
lines in views. Parallel planes have parallel plane traces and views of 
principle and slope lines. 

Theorem 3. Ratio of three points on one line is invariant, λ(ABC) = λ(A1 B1 C1). 
Centre of a figure is mapped to the centre of the respective figure view 
(Fig. 1.6). 
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Figure 1. 6  View of a line segment.                            Figure 1. 7  View of a right angle. 

 
Orthogonal projection is a parallel projection, while the projecting lines in the 
direction s are perpendicular to the image plane. 
In addition to properties 1 - 3 of the general parallel projection, special properties are 
valid for the orthogonal projection and orthographic views of geometric figures under 
this projection. 

Theorem 4. Let AB be a line segment on the line a, forming the angle ϕ to the image 
plane π. Length of the orthographic view A1B1 satisfies the following: 

 
| A1 B1 | = | AB | cos ϕ 

 

The length of the orthographic view of a line segment is therefore lesser 
then the length of the original line segment for values of angle 
ϕ ∈ (0°, 90° ) (Fig. 1. 6, | AB | > | A1 B1 |), for ϕ = 90° it is zero (A1 = B1), 
and it is equal to the length of the original line segment for ϕ = 0° 
(Fig. 1. 7, | A1 V1 | = | AV |). 

Theorem 5. The right angle is mapped as the right angle, if at least one arm of the 
angle is parallel to the image plane and none of the arms is perpendicular 
to the image plane (Fig. 1. 7).  

Slope line s in the plane α, which is not perpendicular to image plane, is mapped to the 
line s1 perpendicular to the plane trace pα (and views of all principle lines in the plane). 
Orthographic view k1 of the line k perpendicular to the plane α is perpendicular to the 
plane trace pα (and views of all principle lines in the plane) (Fig. 1.8). Therefore 
orthographic views of both, the slope line s in the plane α and the line k perpendicular 
to the plane α and intersecting the slope line s in α (their common point in Fig. 1. 8 is 
point K), coincide, and appear in one line s1 = k1. 
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Figure 1. 8  View of a slope line in a plane and line perpendicular to the plane. 

 
The idea to map three-dimensional objects to the plane originated in practical needs of 
human activities and is very important in many fields. For the technician, it is not 
enough just to map the object, but he also needs to find out some features of the 
mapped object right from the views, or to reconstruct it entirely and unambiguously as 
a three dimensional object. This problem can be solved using different types of 
projection methods suitable for expected tasks.  
The most frequently used types of projection methods are:  

altitudinal projection 
orthogonal projection to two orthogonal image planes - Monge method 
orthogonal and oblique axonometric method 
central projection and linear perspective 
stereoscopic projection (with two centres). 

The choice of the proper projection method depends on the utilisation of the created 
views. In art, architecture and civil engineering, the commonly used methods are linear 
perspective, Monge method, axonometry, or altitudinal projection. In machine 
engineering, Monge and axonometric methods are used mostly. Creative work of 
engineers as constructors of new machines, equipments and machine parts, but also the 
work of designers and technicians who design and construct these new objects on the 
basis of technical documentation, is unthinkable without a good knowledge of 
projection methods. New methods in constructions and computer aided design even 
stressed the importance and accuracy of spatial abilities and reconstruction capabilities 
of 3D objects designed and visualized by projecting in some of the projection methods, 
and plot on the computer screen, or using any other computer graphics device (plotter, 
drawing machine). 
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1.2  MONGE METHOD 
 
Let us consider three dimensional Euclidean space E3 with Cartesian coordinate system 
{O, x, y, z}. Monge method is a composition of two orthographic mappings of the 
space E3 on two perpendicular image planes, ground plane π = xy, and frontal plane 
ν = xz, see in (Fig. 1. 9). 
 

 
Figure 1. 9  Monge method. 

 
Any point A in the space E3 can have attached a pair of related views (A1, A2), where A1 
is the orthographic view of point A in the ground plane π called the top (plan, ground) 
view of the point A, whereas A2 is the orthographic view of point A in the frontal plane 
ν called the front view of the point A. 
Additional orthographic views can be attached onto the additional image planes, if 
necessary, for views of more complex and difficult objects.  
Choosing new image planes perpendicular to the ground plane and frontal plane, the 
third and fourth views can be determined, in the right or the left side (profile) plane. 
The fifth image plane is parallel to the ground plane and provides the view from the 
bottom (Fig. 1. 10). 
In the multi-view orthographic method, views of the point A = [xA, yA, zA] are 
determined by the following Cartesian coordinates in the respective image planes:  

A1 = [xA, yA] - groung view,     A2 = [xA, zA] - front view  

A3 = [yA, zA] - left side view,    A4 = [yA + d, zA] - right side view  

A5 = [xA, yA + d] - bottom view  

for the distance d ≠ 0 of the two side image planes, or the ground image plane and also 
the fifth image plane.  
 



 16

Distribution of separate views on a technical drawing according to the European norms 
is given in Fig. 1. 10 on the right, whereas mapped objects are usually located in the 
coordinate trihedron Ox+y+z+.  
 

 
Figure 1. 10  European norm for multi-view projections. 

 
In the American normalisation, mapped figures are located into the coordinate 
trihedron Ox-y+z- and distribution of the views on a technical drawing is in illustrated 
the Fig. 1. 11 on the right. 

 
Figure 1. 11  American norm for multi-view projections. 

 
Basic image planes, ground plane π and frontal plane ν, can be placed into one plane 
by revolving one of them to the other one about the common line in the coordinate axis 
x. In this way, we get the views‘ relative positions in a one-plane sheet of drawing 
paper, pairs of point A related views (A1, A2), while A1A2 ⊥ x1, x1 = x2 (line x is located 
in both image planes, ground plane π and frontal plane ν, therefore its orthographic 
views to these planes coincide). View of the coordinate axis x is denoted as the 
reference line x1, 2. Top view and front view of a point are related in the direction 
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perpendicular to the reference line (Fig. 1. 9). Top view A1 of the point A is determined 
by point Cartesian coordinates xA and yA, while front view A2 is determined by 
coordinates xA and zA.  
Perpendicular image planes π and ν divide the space into four quadrants. Coordinates 
of points located in the separate quadrants satisfy the following inequalities:  
 

I. yA > 0, zA > 0, II. yB < 0, zB > 0, III. yC < 0, zC < 0, IV. yD > 0, zD < 0. 
 

Related views of the points A, B, C, D are presented in Fig. 1. 13. 

 
Figure 1. 13  Related views of points A, B, C, D in different quadrants. 

 
Front view of the ground plane and top view of the frontal plane are in the reference 
line x1, 2. Any point in the ground plane, P ∈ π, has got the front view on the reference 
line x1, 2  (| P π | = 0), and any point in the frontal plane, N ∈ ν, has also got the top 
view on the reference line x1,2 (| N ν | = 0) (Fig. 1.14). 
 

 
Figure 1. 14  Related views of points P and N  from image planes. 
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1.3  AXONOMETRIC METHOD 
 
Axonometry is a parallel projection onto one image plane - axonometric image plane 
ρ, which does not coincide with any of the coordinate planes π, ν, μ. Space figures can 
be mapped onto the axonometric image plane together with their orthographic views to 
the coordinate planes, and the entire coordinate trihedron Ox+y+z+. The direction of 
projection s can be perpendicular to the axonometric image plane ρ, and then we refer 
to orthogonal axonometry.  
Axonometric image plane ρ intersects all coordinate planes and axes, Fig. 1. 15. 
 

ρ ∩ π = XY, ρ ∩ ν =XZ, ρ ∩ μ = YZ 
 
Triangle XYZ, with vertices in the intersection points of the coordinate axis x, y, z and 
axonometric image plane ρ, is the axonometric triangle, known also as Pelz triangle, 
as it was discovered by Czech geometer Karel Pelz.  
 

 
Figure 1. 15  Axonometric projection method.         Figure 1. 16  Axonometric triangles. 

 
Orthographic views of the coordinate axis x, y, z in the axonometric image plane ρ are 
lines xA, yA, zA in the altitudes of the axonometric triangle XYZ. Orthographic view of 
the origin O in ρ is the orthocentre of the triangle XYZ. 
Figure Oaxayaza is denoted the axonometric axial cross. Axonometric image plane ρ 
can be translated in the direction s, while the size of the axonometric triangle XYZ will 
change. This occurs with respect to the different distance of the plane ρ and the origin 
O, nevertheless, the view of the axonometric axial cross will remain unchanged, as 
illustrated in the Fig. 1. 16. All Pelz triangles are similar to each other, they are scaled 
by a ratio in the homothety transformation with the centre in the origin O, and they 
determine the same axonometric projection. The axonometric triangle XYZ is a triangle 
with all acute angles, in the case of the orthogonal axonometry.  
Point A in the space can be mapped orthogonally to the top view A1 in the ground 
plane. Orthographic view Aa - axonometric view of the point A in the axonometric 
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image plane ρ, and the orthographic view A1a - axonometric top view of the top view 
A1 in ρ, form a pair of axonometric views of the point A related in direction of the axis 
z view, which is perpendicular to the side XY of the axonometric triangle.  
If the drawing paper coincides with the axonometric image plane, the indication of the 
axonometric views can be omitted, and therefore the index "a" will not be used in all of 
the following figures (Fig. 1. 17, on the left). 
 

 
Figure 1. 17  Axonometric projection method. 

 
Point A is unambiguously determined by a pair of its axonometric views (A, A1). 
Similarly, any point A in the space can be determined by an ordered pair of 
axonometric views (A, A2), which are axonometric view and axonometric front view, 
or alternatively by (A, A3), axonometric view and axonometric side view. 
Axonometric top view and axonometric view of the ground plane coincide (z = 0 for all 
points), axonometric front view of the ground plane is in the view of the axis x, and 
axonometric side view in the view of the axis y (Fig. 1. 18). All points in the ground 
plane have coincidental axonometric views and axonometric top views, as P = P1. 
Similarly, for all points in the frontal plane N = N2, axonometric ground view of the 
frontal plane is in the view of the axis x, and axonometric side view in the view of the 
axis z. Axonometric top view of the side plane is in the view of the axis y, axonometric 
front view in the view of the axis z, and M = M3 for all points in the side image plane. 
Visibility in axonometry is applied with respect to the trihedron Ox+y+z+, and is related 
to the axonometric view of the mapped figure. Naturally, those parts of projected 
objects are visible, which are located in the larger distances from the origin O of the 
coordinate system. Axonometric view is the view to the part of the space E3 included 
in the orthogonal coordinate trihedron Ox+y+z+, as mapped objects are usually located 
in this position with respect to the European norms for technical drawings. Views from 
other directions can also be obtained, and we speak about special views from the 
bottom, or from the top, while the coordinate axes are no more mapped to form the 
axonometric axial cross.  
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Figure 1. 18  Axonometric views of points in coordinate planes. 

 
Coordinate axes x, y, z form specific angles to the axonometric image plane ρ . 
If all these 3 angles are different, then the length of the views of unit line segments jx, jy 
and jz on coordinate axes are different, axonometric triangle XYZ is a scalene triangle 
and axonometric projection is a general axonometry - trimetry (Fig. 1. 19a).  
If two of the coordinate axes are at the same angles to the axonometric image plane ρ, 
the unit line segments on these axes are projected equally, the axonometric triangle is 
an isosceles triangle with two equal sides and the axonometry is called a dimetry 
(Fig. 1. 19b).  
If all coordinate axes x, y, z are at the same angles to the axonometric image plane ρ, 
views of the unit line segments are equal on all axes, the axonometric triangle is an 
equilateral triangle and the axonometry is called an isometry (Fig. 1.19c). 
 

 
Figure 1. 19  Axonometric triangles for different angles of coordinate axes. 
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Let the general axonometric projection be given by the image plane ρ and direction of 
projection s, s ⊄ ρ . Numbers p, q, r determining the ratios of the length of views jx, jy, 
jz of unit line segments j on the coordinate axes  
 

j
jr

j
j

q
j
jp zyx === ,,  

 

are scaling coefficients (showing the ratio of shortening or lengthening on 
axonometric views of separate coordinate axis). 
The scaling coefficients satisfy the following equation:  

 
p2 + q2 + r2 = 2 + cotg2ϕ, ϕ = ∠ sρ  

 
where ϕ is the angle that direction of projection s forms to the image plane ρ . 
In the orthogonal axonometry (s ⊄ ρ, ϕ = 90°), the equation is in the form 
 

p2 + q2 + r2 = 2. 
 
On technical drawings, where ground views, or side views and profiles of the mapped 
figures are the most important ones, different oblique axonometric projections are 
widely used. 
 
Military perspective is a projection method suitable for technical drawings in urban 
architecture, in design of dwelling s and suburbs. Construction of views of complex 
objects with complicated ground views and difficult to survey structures is relatively 
easy. Views of coordinate axes x and y are perpendicular, and the scaling coefficients 
satisfy the ratio  
 

p : q : r = 1 : 1 : 1, it means jx = jy = jz = k.j,  k > 0 (Fig. 1. 20a). 
 
Cavalieri perspective is an oblique projection with the image plane parallel to the 
frontal plane or the side plane. It was widely used in the 16th and 17th century, for 
constructions of maps (called vedutas) of important towns and settlements. Views of 
coordinate axes x and z, or y and z are perpendicular, and  
 

p : q : r = 1 : 1 : 1, jx = jy = jz = k.j,  k > 0 (Fig. 1. 20b). 
 

Both above projections were used for military purposes, the practical advantage of easy 
constructions overruled the readability of the pictures and realism of mappings, in both 
methods angle ϕ = 45°. 
 
Oblique projection is a slightly more realistic mapping used mostly on technical 
drawings in mechanical engineering. Views of coordinate axes x and z, or y and z are 
perpendicular, and ratio of scale coefficients is  
 

1 : q : 1, or p : 1 : 1 (while q, or p is from the interval (0, 1)).  
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In so called technical projection, the oriented angle of the coordinate axis y to the view 
of the coordinate axis x equals to 135°, and jy = 1 : 2, (Fig. 1. 20c). 
 

 
Figure 1. 20 Views of unit line segments on axonometric axes. 

 
Eckhardt intersection method  
Axonometric view of the figure can be constructed easily from two given orthographic 
views, ground view and front view (Fig 1. 21).  
By revolving ground plane π  about the line XY to the axonometric image plane, the 
revolved coordinate system {1O0, 1x0, 1y0} can be determined appearing in the true 
view. Revolved ground plane can be translated in the drawing sheet in the direction of 
the coordinate axis z, out of the axonometric triangle XYZ, to make the drawing 
readable, to {1O, 1x, 1y}, and the position of the ground view of the point A can be 
determined by the coordinates xA , yA.  
Similarly, the frontal plane ν can be revolved about the line XZ to the axonometric 
image plane, and the revolved coordinate system {2O0, 2x0, 2z0} appearing in the true 
view can be determined. Revolved frontal plane can be translated in the direction of the 
coordinate axis y out of the triangle XYZ to the new position {2O, 2x, 2z}. Using true 
values of coordinates xA and zA the front view of the point A can be determined.  
Axonometric view of the point A can be constructed from the positioned true ground 
view and front view respectively, using lines in direction of the two used translations. 
Therefore, axonometric view of the point A is the intersection point of the line passing 
through the point 1A and parallel to the coordinate axis z, and the line passing through 
the point 2A and parallel to the coordinate axis y.  
 
The presented Eckhardt intersection method is widely used for constructions of 
realistic views of different objects determined by the two orthographic views. In the 
skew axonometric projection, the position of orthographic views of figures and the 
direction of translations O1O, O2O can be determined arbitrarily, with respect to the 
realism of the achieved skew axonometric view.  
In Fig. 1. 22, the skew axonometric view of a machine part determined by the object 
front view and its side view is presented. Position of the views and the directions of 
translations are chosen with respect to the realistic view of a cube. 
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Figure 1. 21  Eckhardt intersection method for orthogonal axonometry. 

 
Figure 1. 22  Eckhardt intersection method for skew axonometry constructed  from front view 

and side view of the object. 
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2 CONIC SECTIONS 
 
 
 

Conic sections (or conics, for short) are planar curves with special properties. 
In the 3-dimensional geometric space conic sections form a group of curves that might 
be determined as different forms of conical surface planar intersections, i.e. 
intersections of conical surface by planes in special superpositions to the surface and 
its generating lines. 
These graceful curves were well-known to ancient Greek geometers, who recognized 
their great practical importance and discovered many of their interesting geometric 
properties.  
Analytic geometry and calculus enhanced further study of conic sections and 
introduced many relations between their synthetic geometric representations and 
analytic representations in the form of equations determining Cartesian coordinates of 
points on conic sections and their relations. 
 
 
2.1  ELLIPSE 
 
Ellipses are curves that are of a great practical importance in many fields ranging from 
art through physical and various technical applications to astronomy.  
Any circular object viewed in general angle forms an ellipse, all orbiting satellites, 
natural or artificial, move in on elliptic paths. Oval elliptic forms are the most 
commonly used decorative patterns in architecture, and flashlight illuminates areas 
with mostly elliptic boundaries and shadows. 
 

 
Figure 2. 1  Definition of ellipse in Euclidean plane. 
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Definition 1. An ellipse is a set of all points in the Euclidean plane such that the sum 
of the distances from any point M to two fixed points 1F and 2F is 
constant. Here 1F and 2F are called the focal points, or the foci of the 
ellipse.  

Midpoint S of the line segment 1F 2F is called the centre of the ellipse, Fig. 2. 1.  
The distance between the centre S and either focus 1F or focus 2F is called the linear 
eccentricity of the ellipse and it is denoted by e. Notice that the ellipse is symmetric 
about the line through the foci 1F and 2F.  
Let A and B be the points where the line through points 1F and 2F intersects the ellipse. 
Centre S bisects the line segment AB. The ellipse is symmetric also with respect to the 
line through S and perpendicular to the line AB. Let C and D be the points where this 
perpendicular intersects the ellipse. The four points A, B, C, D are called the vertices 
of the ellipse, here A, B are major vertices and C, D are minor vertices. The line 
AB = 1o is called the major axis, and the line CD = 2o the minor axis of the ellipse.  
Let a denote the length of the line segment SA = SB, and b the length of the line 
segment SC = SD. The number a is called the semi-major axis and the number b the 
semi-minor axis of the ellipse. Hence 
 

|1F C | + |2F C | = 2a and |1F D | + |2F D | = 2a, 
 
the distance between minor vertex C or D and either focus 1F or 2F equals to a. 
Applying the Pythagorean Theorem to the right angled triangle CS2F we find that 
 

a2 = b2 + e2, 
 

which is the geometric equation of the ellipse. 
 

 
Figure 2. 2  Focal lines and chord of ellipse. 
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Lines passing through an arbitrary point T of the ellipse and either focus 1F or 2F, 
1f = 1FT, 2f = 2FT, are called focal lines. Line segments 1FT and 2FT located on the 
focal lines in the point T indicate the distances of the ellipse point T to the foci, the sum 
of which is constant and according to the ellipse definition equals 2a.  
 

⎜1F T ⎜+ ⎜2F T ⎜ = 2a 
 
Focal lines in the point T form two angles with the common vertex in their common 
point T on the ellipse. These are: 

1. interior angle in which the centre of the ellipse is located,  

2. exterior angle in which the major vertices A and B are located, 

as illustrated in Fig. 2. 2. 
Any line segment MN determined by endpoints M, N on the ellipse is called the chord 
of the ellipse. A focal chord is passing through a focus perpendicularly to the major 
axis of the ellipse.  
If the ellipse is placed in Euclidean plane E2 with defined Cartesian coordinate system 
{O, x, y} so that the centre S is located in the origin O, and the two fixed points, foci 
1F = [−e, 0] and 2F = [e, 0], both lie on negative and positive portions of the coordinate 
axis x respectively, then the analytic equation of the ellipse can be written as 

12
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, 

 
where a is the semi-major axis, b is the semi-minor axis, and a2 = b2 + e2. 
 

 
Figure 2. 3  Ellipse in Cartesian plane. 
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Let P = [xP, yP] be a point on the ellipse, see Fig. 2. 3. Then the equation holds 
 

|1F P| + |2F P| = 2a, 
 
from which follows 
 

( ) ( ) ayexyex PPPP 22222 =+−+++ . 
 
Squaring the above equation and after some manipulations we have 
 

( ) 222
PPP yexaaex +−−=− . 

 
Squaring the last equation we obtain 
 

( ) ( ) 22222222
PP yaxeaeaa +−=− . 

 
Since a2 = b2 + e2, then a2 − e2 = b2, and the equation above can be rewritten as 
 

222222
PP yaxbba += . 

 
Dividing both sides of the above equation by a2b2, we receive 
 

2

2

2

2

1
b
y

a
x PP += , 

 
which is the presented equation of the ellipse. 

Conversely, it can be shown that if the equation 12

2

2

2

=+
b
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a
x

 holds, then the point 

P = [x, y] is located on the ellipse with the foci at 1F = [−e, 0], 2F = [e, 0] and 
 

|1F P| + |2F P| = 2a. 
 

Note: If a and b are positive constants, a > b, the above Cartesian equation is called the 
standard form for the equation of an ellipse with centre at the origin O and with 
horizontal major axis 1o in coordinate axis x. The standard equation of an ellipse with 
the same centre at the origin O but with vertical major axis in coordinate axis y as in 
Fig. 2. 4, is  
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, a > b . 
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Figure 2. 4  Ellipse with vertical major axis. 

 

 
Figure 2. 5  Ellipses with shifted centres. 
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Let the ellipse with centre S at the origin, semi-major axis a, semi-minor axis b, a > b, 
and axes in the coordinate axes x and y be shifted so that the centre is at the point 
S = [m, n]. The equation of the ellipse shifted into a new position will have one of the 
following standard forms 
 

( ) ( ) 12

2

2

2

=
−

+
−

b
ny

a
mx ,  

( ) ( ) 12
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=
−
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−

a
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b
mx

 

 
for the horizontal major axis, and vertical major axis respectively, Figure 2. 5. 

Parametric equations of an elliptic arc with centre in the origin of the coordinate 
system O corresponding to the central angle π2,0∈ϕ , with axes in the coordinate 
axis x and y and semi-axes a and b (Fig. 2. 6) are in the following vector form  
 

( ) ( ) ( )( ) ( ) 1,0,sin,cos, ∈ϕϕ== uubuauyuxur , 
 
while vector equation of the ellipse with the shifted centre in the point S = [m, n] is 
 

( ) ( ) ( )( ) ( ) 1,0,sin,cos, ∈ϕ+ϕ+== uubnuamuyuxur . 
 

 
Fig. 2. 6  Vector form of the parametric equations of an ellipse. 

 
To draw an ellipse, we can find 4 circles that approximate ellipse in its four vertices, 
which are called hyper-osculating circles. These circles are symmetric in pairs with 
respect to the axes of the ellipse, and have equal radii. The 2 circles in the major 
vertices are symmetric according to the minor axis, and the other 2 circles in the minor 
vertices are symmetric with respect to the major axis. The following construction of 
their centres and radii is illustrated in Fig. 2. 7. 
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Construction 1. 

1. Through points C and B construct lines parallel to the axes of ellipse – lines AB 
and CD. 

2. Find intersection point K and construct a perpendicular line k to the line CB 
through the point K. 

3. Find intersection points of line k and axes of ellipse, point SB on the axis AB 
and point SC on the axis CD. 

4. Find point SA symmetric to SB on axis AB with respect to the centre S, and 
point SD symmetric to SC on axis CD with respect to the centre S. 

5. Construct 4 circles with centres SA , SB , SC ,  SD  and passing through vertices of 
ellipse A, B, C, D, respectively. 

Any line in a general position can: 

1. be tangent to the ellipse in one point, 

2. intersect the ellipse in two different points, 

3. have no common points with the ellipse. 

All three possible positions of an ellipse and a line are illustrated in Fig. 2. 8. 
 

 
Figure 2. 7  Hyper-osculating circles in vertices of ellipse. 
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Tangent line (or tangent, for short) to the ellipse contains no interior points of the 
ellipse and it has one single common point with the ellipse called tangent point.  
 

 
Figure 2. 8  Line and ellipse: t is tangent in the point T, p intersects ellipse in points P and Q, 

and r does not intersect the ellipse. 
 

Definition 2. Line t is tangent to the ellipse in the point T iff it is the axis of the 
exterior angle formed by the focal lines in the tangent point T. 

 

 
Figure 2. 9  Tangent to the ellipse. 
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Theorem 1. All intersection points of tangents to the ellipse and their perpendiculars 
through the ellipse foci 1F and 2F are located on one circle with a centre 
in the centre of the ellipse and radius equal to the ellipse semi-major 
axis. Circle v(S, a) is denoted the auxiliary circle.  

Theorem 2. All points symmetric to one focus of the ellipse with respect to all 
tangents to the ellipse are located on one circle with a centre in the other 
focus and radius equal to the doubled semi-major axis of the ellipse. 
Circle 1g (2F, 2a) is denoted the control circle and it is related to the 
focus 1F, circle 2g(1F, 2a) is related to the focus 2F.  

Theorem 3. There exist two different tangent lines to the ellipse that are passing 
through an arbitrary exterior point of the ellipse, or that are parallel to an 
arbitrary direction. 

Corollary 1. Tangent points of two tangent lines to the ellipse that are parallel to each 
other form a line segment with endpoints on the ellipse and midpoint in 
the centre of the ellipse. 

Illustration of auxiliary circle v(S, a) that is circumscribing the ellipse is presented in 
Fig. 2. 10, where two points 1P and 2P are constructed on perpendiculars passing 
through both foci 1F,  2F to the tangent line t in point T on the ellipse. The control 
circle 1g (2F, 2a) related to the focus 1F of the ellipse is illustrated in Fig. 2. 11. 
 

 
Figure 2. 10  Auxiliary circle. 
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Figure 2. 11   Control circle. 

 
A line that is not tangent to the ellipse and has at least one common point with the 
ellipse intersects the ellipse in one more point. 
Lines passing through the centre of the ellipse, and intersecting ellipse in two points, 
are called diameters.  
Distance of the two intersection points of an ellipse and its diameter varies in interval 
〈2b, 2a〉, where a and b are the semi-axes of the ellipse.  

Definition 3. Any two diameters of an ellipse are called related or conjugate 
diameters, if they satisfy the following property: Tangent lines to the 
ellipse in the endpoints of one of the diameters are parallel to the other 
diameter. 

Corollary 2. Tangent lines at the endpoints of a pair of related diameters of an ellipse 
form a tangent parallelogram subscribed to the ellipse.  

In Fig. 2. 12 tangent lines p and q at ellipse points P and Q are parallel, while tangent 
points form diameter PQ, which is parallel to tangent lines t and r in the ellipse points 
T and R. These two tangent points form diameter TR of the ellipse that is parallel to the 
tangent lines p and q. Therefore diameters PQ and RT are conjugate diameters of the 
ellipse.  

Note: Semi-major and semi-minor axes form the only pair of related diameters of an 
ellipse such that the two diameters are perpendicular to each other, and consequently 
the subscribed tangent parallelogram is a rectangular oblong.  
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Figure 2. 12  Conjugate (related) diameters of ellipse. 

 
 
2.2  PARABOLA 
 
Parabolas are planar curves with a specific reflecting property.  
The light, sound, or electromagnetic radiation emanating from the focus of a parabolic 
reflector is always reflected parallel to the axis of the parabola. Thus, if an intense 
source of light such as a carbon arc or an incandescent filament is placed at the focus 
of a parabolic mirror, the light is reflected and projected in a parallel beam.  
The same principle is used in reverse in a reflecting telescope - parallel rays of light 
from a distant object are brought together at the focus of a parabolic mirror and in 
satellites. 
A ball thrown up at an angle travels along a parabolic arc, a main cable in a suspension 
forms an arc of a parabola, and the familiar "dish antennas" have parabolic cross 
sections.  

Definition 4. A parabola is a set of all points in the Euclidean plane such that the 
distance from M to a fixed point F is equal to the distance from M to a 
fixed line d. Here point F is called the focus of the parabola, and line d is 
called the directrix of the parabola.  

Fig. 2. 13 shows the fixed point F and the fixed line d and the point M of the parabola 
in the same distance from them. Here we have 
 

⎜MF ⎜ = ⎜M d ⎜. 
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Figure 2. 13  Definition of parabola in plane. 

 
The distance between the directrix d and focus F is called the parameter of 
parabola, and it is denoted by p = ⎜FQ ⎜. Midpoint V of the line segment FQ 
perpendicular to line d and passing through focus F is called the vertex of the parabola, 
see Fig. 2. 13. The distance of the vertex V to the directrix d is 
 

⎜VF ⎜ = ⎜V d ⎜ = ⎜VQ ⎜ = 
2
p . 

 
Notice that the parabola is symmetric about the line through focus F and perpendicular 
to directrix d, symmetric pairs of points M, M´ and N, N´ are shown in Fig. 2. 13. This 
axis of symmetry is called axis of parabola and denoted by o. Axis o intersects 
parabola in the vertex V of parabola.  
Lines passing through the arbitrary point M of the parabola and through the focus F or 
that are perpendicular to the directrix d (parallel to the axis o) are called focal lines in 
the point M, 1f = FM, M ∈ 2f  // o. Line segments FM and MQ located on the focal lines 
1f , 2f  in the point M indicate the distances of the parabola point M to the focus and 
directrix, and they are equal. Focal lines in the point M form two angles with common 
vertex in their common point M on the parabola, exterior angle is the one in which the 
vertex V of the parabola is located, as illustrated in Fig. 2. 14. 
Any line segment MN determined by endpoints M, N on the parabola is called the 
chord of the parabola. A focal chord is passing through a focus perpendicularly to the 
axis of the parabola.  
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Figure 2. 14  Focal lines and chord of a parabola. 

 

 
Figure 2. 15  Parabola in Cartesian plane. 
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If a parabola is placed in the Euclidean plane E2 with defined Cartesian coordinate 
system {O, x, y} so that the vertex V is located at the origin O, and the focus F lies on 

the positive portion of the coordinate axis y, in the point F = [0, 
2
p ], and the directrix 

is the line with equation y = −
2
p , then the analytic equation of the parabola can be 

derived in the form 
 

pyx 22 = , or 
p

xy
2

2

=  

 
where p > 0 is the parameter of parabola.  

Let P = [xP, yP] be any point of the parabola, and Q = [xP, −
2
p ] be a point at the foot of 

the perpendicular from P to the directrix d. Then the equation from the parabola 
definition holds,  ⎜PF ⎜ = ⎜P Q ⎜, from which follows 
 

22
2

22
⎟
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⎞
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Squaring the above equation we receive 
 

44

2
2

2
22 ppyyppyyx PPPPP ++=+−+  

 
and finally the presented equation of the parabola can be derived 
 

PP pyx 22 = , or 
p

xy P
P 2

2

= . 

 

Conversely, it can be shown that if the equation 
p

xy
2

2

=  holds for the coordinates of 

the point P = [xP, yP], then point P is located on the parabola with the focus at 

F = [0, 
2
p ] and directrix with equation y = −

2
p , and the equality |PF| = |Pd|  holds. 

Note: Obviously, modifications of the position of fixed elements provide Cartesian 
equations for the parabolas downward, modifications of argument provide parabolas 
opened to the right or to the left. We assume that vertex V of the parabola is at the 
origin and p > 0 for each situation. 
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The standard equation of the parabola with axis in the coordinate axis y, focus in the 

point F = [0, −
2
p ] and directrix in the line y = 

2
p  in Fig 2.16 is 

 

pyx 22 −= , or 
p

xy
2

2

−=  

 

 
Figure 2. 16  Parabola opened downwards. 

 
The standard equation of the parabola with the horizontal axis in the coordinate axis x, 

focus in the point F = [−
2
p , 0] and directrix in the line x = 

2
p  in Fig 2.16 on the left is 

 
pxy 22 −= . 

 
If the parabola is placed in the Cartesian plane so that the vertex V is located at the 
origin O, and the focus F lies on the positive portion of the coordinate x in the point 

F = [
2
p , 0] in Fig 2.16 on the right, while directrix is the line with equation x = −

2
p , 

where p is the parameter of parabola, then the analytic equation of the parabola can be 
written as  
 

pxy 22 = . 



 39

 
Figure 2. 17  Parabolas in Cartesian plane with horizontal axes. 

 
Let the parabola with the vertex V at the origin, parameter p, and axis in the coordinate 
axes x or y be shifted so that the vertex is at the point V = [m, n]. The equation of a 
parabola shifted into a new position will have one of the following standard forms 
 

( ) ( )mxpny −±=− 22 ,  ( ) ( )nypmx −±=− 22  
 
for the horizontal axis, and vertical axis respectively, Fig. 2. 18. 

Parametric equations of a parabolic arc with vertex in the origin of the coordinate 
system O, axis in the coordinate axis y and parameter p corresponding to the interval 
〈−a, a〉 on the coordinate axis x (Fig. 2. 19) can be written in the vector form as  
 

( ) ( ) ( )( ) ( ) 1,0,
2

,12,
2

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±−== u

p
uuauyuxur . 

 
Vector equation of a parabolic arc with vertex in the point V = [m, n], axes in the line 
parallel to the coordinate axis y and passing through the points A = [a, 0] and 
B = [2m − a, 0] on coordinate axis x (Fig. 2. 20) is in the following vector form  
 

( ) ( ) ( )( ) ( ) ( )( ) 1,0,4,2, 2 ∈+−+−== uuunauamuyuxur . 
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Figure 2. 18  Parabolas in Cartesian plane with shifted vertices. 

 

 
Figure 2. 19  Vector equation of parabola in Cartesian plane. 
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Figure 2. 20  Vector equation of parabola with shifted vertex. 

 
To draw a parabola, we can find a circle approximating it in the vertex that is called 
hyper-osculating circle, and some points on the parabola can also be constructed, 
Fig. 2. 21. 

Construction 2. 

1. Centre S of the osculating circle is on the axis o of a parabola, and it is in a 
distance p from the vertex of parabola V. Parameter p is the radius of the 
hyper-osculating circle. 

2. Find points P and P´ on the parabola, which are in the same given distance 
a from the focus F and directrix d. 

3. Construct a line parallel to directrix d in a distance a from it. 

4. Construct a circle with centre in the focus F and with radius equal to the 
distance a. 

5. Find two intersection points of the parallel line and the circle – these are points 
P and P´ on the parabola. 

6. To find other two symmetric points Q and Q´ on the parabola, which are in a 
given distance b from the focus F and directrix d, follow the steps 3 – 5 using 
the distance b. 

Any line in a general position can: 
1. be tangent to the parabola in one point, 
2. intersect the parabola in two different points, 
3. have no common points with the parabola. 

All three possible positions of a parabola and a line are illustrated in Fig. 2. 22. 



 42

 
Figure 2. 21  Hyper-osculating circle and points on parabola. 

 
Figure 2. 22  Line t is tangent to the parabola in point T. Line p intersects the parabola in points 

P and Q. Line r does not intersect the parabola. 
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Tangent line (or tangent, for short) to the parabola contains no interior points of the 
parabola and it has a single common point with the parabola called the tangent point, 
see Figure 2. 23. Any ray passing through the parabola focus F and intersecting the 
parabola in the point T (focal line 1f in the point T) is reflected to its mirror image with 
respect to the parabola tangent into the line passing in direction of the parabola axis o 
(focal line 2f in the point T). Reflexion property of the parabola is a consequence of the 
definition of tangent line to parabola in its arbitrary point T.  

Definition 5. Line t is tangent to the parabola in point T iff it is the axis of the exterior 
angle formed by the focal lines in the tangent point T. 

 

 
Figure 2. 23  Tangent to parabola. 

 
Theorem 4.   All intersection points of tangents to the parabola and their 

perpendiculars through the parabola focus F are located on the tangent to 
the parabola in its vertex called vertex tangent v.  

Theorem 5.  All points symmetric to the focus F of the parabola with respect to all 
tangents to the parabola are located on the directrix of the parabola d.  

Theorem 6.  There exist two different tangent lines to the parabola that are passing 
through an arbitrary exterior point, but only one tangent line that is 
parallel to an arbitrary direction. 
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Figure 2. 24  Tangent to parabola at vertex and directrix as set of points symmetric to parabola 

focus. 
 

Let the tangent line t in an arbitrary point T on parabola intersect axis o of parabola in 
point R, and the chord of parabola passing perpendicularly to the parabola axis through 
tangent point T intersect the axis o in the pierce point X. Let the normal n, which is the 
line perpendicular to the tangent line t in the tangent point T, intersect axis o of the 
parabola in point Y, as illustrated in Fig. 2. 25. 

Definition 6. Line segment RX on the axis of parabola, which is the orthogonal image 
of the line segment RT on the tangent line in the point T to the parabola 
axis, is called subtangent. 

Definition 7. Line segment XY on the axis of parabola, which is the orthogonal image 
of the line segment TY on the normal line in the point T to the parabola 
axis, is called subnormal. 

Theorem 7.  Vertex V of the parabola is the centre of subtangent, line segment RX, and 
| RV | = | VX | . 
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Theorem 8. Focus of the parabola is the centre of the line segment, which is the union 
of subtangent and subnormal, and 

 
| RF | = | FY | . 

 
Corollary 3. Tangent lines to the parabola in symmetric points T and T’ that are 

forming the chord of the parabola perpendicular to the parabola axis o 
meet in a common point R on the axis. 

 

 
Figure 2. 25  Subtangent and subnormal, and tangents in symmetric points on parabola. 

 
Theorem 9. Tangent lines to the parabola in the end points T and T’ of an arbitrary 

chord meet in a point R. Centre O of the chord TT’ and point R 
determine the line s in the direction of the parabola axis o. 

This property illustrated in Fig. 2. 26 can be used for construction of a parabola 
determined by two arbitrary tangent lines with attached tangent points on them. The 
construction is shown in details in Fig. 2. 27. 
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Figure 2. 26  Tangents in endpoints of a parabola chord. 

 

 
Figure 2. 27  Construction of parabola determined by 2 tangents with tangent points. 
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2. 3  HYPERBOLA 
 

Hyperbolas are of practical importance in fields ranging from engineering to 
navigation. The natural-draft evaporative cooling towers used at large electric power 
stations are in the shape of 1-sheet hyperboloids with hyperbolic cross sections. 
A comet or other object moving with sufficient kinetic energy to escape the solar 
gravitational pull traces out one branch of a hyperbola. 

Definition 8. A hyperbola is a set of all points P in Euclidean plane such that the 
absolute value of the difference of the distances from P to two fixed 
points 1F and 2F is a constant positive number. Here 1F and 2F are called 
the focal points, or the foci, of the hyperbola.  

 

 
Figure 2. 28. Definition of hyperbola in plane. 

 
The midpoint S of the line segment 1F 2F is called the centre of the hyperbola, 
Fig. 2.28. The distance between the centre S and either focus 1F and 2F is called the 
linear eccentricity of the hyperbola and it is denoted by e. Notice that the hyperbola is 
symmetric about a line through the foci 1F and 2F. Let A and B be the points where the 
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line through points 1F and 2F intersects the hyperbola. Centre S bisects the line segment 
AB and hyperbola is symmetric also with respect to the line through S and 
perpendicular to the line AB. Let C and D be points on sides of rectangular KLMN, 
with sides passing in direction of the line through points 1F and 2F. The four points A, 
B, C, D are called the vertices of the hyperbola. The line AB is called the major axis, 
and the line CD the minor - transverse axis of the hyperbola. Let a denote the length 
of the line segment SA = SB, and b the length of the line segment SC = SD. The 
numbers a and b are called the semi-major (semi-transverse) axis and the semi-
minor (semi-conjugate) axis of the hyperbola.  
Applying the Pythagorean theorem to the right triangle CSB (Fig. 2. 28) we find that 
 

e2 = a2 + b2,  
 
which is called the geometric equation of the hyperbola. 

Lines passing through an arbitrary point T of the hyperbola and either focus 1F or 2F, 
1f = 1FT , 2f = 2FT, are called focal lines. Line segments 1FT and 2FT located on the 
focal lines in the point T indicate the distances of the hyperbola point T to the foci, the 
difference of which is constant and according to the definition of hyperbola this is 
equal to 2a.  
 

⎜⎜1F T ⎜− ⎜2F T ⎜⎜ = 2a 
 
The focal lines in the point T form two angles with the common vertex in their 
common point T on the hyperbola. These are: 

3. interior angle in which the centre of the hyperbola is located,  

4. exterior angle in which the major vertices A and B are located, 

as illustrated in Fig. 2. 29. 

Any line segment MN determined by endpoints M, N on the hyperbola is called the 
chord of the hyperbola. A focal chord is passing through a focus perpendicularly to 
the major axis of the hyperbola.  

If the hyperbola is placed in the Euclidean plane E2 with defined Cartesian coordinate 
system {O, x, y} so that centre S is located at the origin O, and the two foci 1F = [−e, 0] 
and 2F = [e, 0] both lie on the negative and positive portions of the coordinate axis x 
respectively, then the analytic equation of the hyperbola is  
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where a is the semi-major axis, b is the semi-minor axis. 
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Figure 2. 29. Angles of hyperbola focal lines. 

 
Let P = [xP, yP] be a point on the hyperbola, see Fig. 2. 30. Then the equation holds 
 

|1F P| − |2F P| = 2a, 
 
from which follows 
 

( ) ( ) ayexyex PPPP 22222 =+−−++ . 
 
Squaring the above equation, and after some manipulations we have 
 

( ) 222
PPP yexaaex +−=− . 

 
Squaring the last equation we obtain 
 

( ) ( ) 22222222
PP yaxeaeaa +−=− . 
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Since e2 = a2 + b2, then e2 − a2 = b2, and the equation above can be rewritten as 
 

222222
PP yaxbba +−=− . 

 
Dividing both sides of the above equation by a2b2, we receive 
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which is the presented equation of the hyperbola. 
 

 
Figure 2. 30. Hyperbola in Cartesian plane, with horizontal major axis. 

 

Conversely, it can be shown that if the equation 12

2

2

2

=−
b
y

a
x

 holds, then the point 

P = [x, y] is located on the hyperbola with the foci at 1F = [−e, 0], 2F = [e, 0] and 
 

| |1F P| − |2F P | | = 2a. 
 

Note: If a and b are positive constants, a > b, the above Cartesian equation is called the 
standard form for the equation of a hyperbola with the centre at the origin O and with 
the horizontal major axis 1o in the coordinate axis x. The standard equation of the 
hyperbola with the same centre but with the vertical major axis in coordinate axis y is 
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Let the hyperbola with the centre S at the origin, semi-major (semi-transverse) axis a, 
semi-minor (semi-conjugate) axis b, and axes in the coordinate axes x and y be shifted 
so that the centre is at the point S = [m, n]. The equation of the hyperbola shifted into a 
new position, see Fig. 2. 31 for example, will have one of the following standard forms 
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Figure 2. 31  Hyperbola with shifted centre and vertical major axis. 
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Parametric equations of a hyperbolic arc with centre in the origin of the coordinate 
system O corresponding to the central angle π2,0∈ϕ , with axes in the coordinate 
axis x and y and semi-axes a and b (Fig. 2. 32) are in the following vector form  
 

( ) ( ) ( )( ) ( ) ( ) 1,0,21tan,
21cos

, ∈⎟⎟
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u
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and vector equation of the hyperbola with the shifted centre in the point S = [m, n] is 
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Figure 2. 32  Vector form of parametric equations of a hyperbola. 
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To draw a hyperbola, we can find two circles that approximate it in vertices and we 
call them hyper-osculating circles. Diagonals of the rectangular KLMN are called 
asymptotes of hyperbola, and they show the hyperbola direction to infinity. 
 
Construction 3. 

1. Draw rectangular KLMN with sides parallel to hyperbola axes. 

2. Through point K and L construct lines perpendicular to asymptotes of the 
hyperbola. 

3. Find intersection points of these lines and the major axis of the hyperbola AB. 

4. These are points SA and SB on axis AB. 

5. Construct 2 circles with centres SA , SB passing through the hyperbola vertices 
A, B. 

 

 
Figure 2. 33. Osculating circles of hyperbola. 

 
Any line in a general position can: 

1. be tangent to the hyperbola in one point, 

2. intersect the hyperbola in two different points, 

3. have no common points with the hyperbola. 
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All three possible positions of a hyperbola and a line are illustrated in Fig. 2. 34. Line t 
is tangent to the hyperbola in the tangent point T, line p intersects hyperbola in two 
different points P and Q, while line r does not intersect the hyperbola. Lines passing 
through the centre of the hyperbola and located in the same angle of the asymptotes as 
the conjugate (imaginary) axis, do not intersect the hyperbola. 

 
Figure 2. 34. Superposition of line and hyperbola. 

 

Definition 9.   Line t is tangent to the hyperbola in point T if it is the axis of the 
exterior angle formed by the focal lines in the tangent point T. 

Note: Tangent line to the hyperbola contains no hyperbola interior points.  

Theorem 10.  All intersection points of tangents to the hyperbola and their 
perpendiculars through the hyperbola foci 1F and 2F are located on 
a circle with centre in the centre of the hyperbola and radius equal to 
the hyperbola semi-transverse (semi-major) axis. Circle v(S, a) is 
called the auxiliary circle.  

Theorem 11.   All points symmetric to one focus of the hyperbola with respect to all 
tangents to the hyperbola are located on a circle with centre in the 
other focus and radius equal to the doubled semi-transverse (semi-
major) axis of the hyperbola. Circle 1g = (2F, 2a) is called the control 
circle related to the focus 1F.  
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Note: The control circle related to the focus 2F has a centre in the focus 1F and the 
same radius equal to the double semi-major axis of the hyperbola, 2g = (1F, 2a).                          

 
Figure 2. 35  Tangent to the hyperbola.  

                         

 

 

 

 

 

 

 

 

 

 

 

   
  v(S, a) 

 

Figure 2. 36  Auxiliary circle 
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 2g(1F, 2a) 
 
 
 

Figure 2. 37  Control circle. 
 

Theorem 12. There exist two different tangent lines to the hyperbola that are passing   
through an arbitrary exterior point of the hyperbola, or that are parallel 
to an arbitrary direction, but asymptotes of the hyperbola. 

Corollary 4. Tangent points of two tangent lines to the hyperbola that are parallel to 
each other form a line segment with endpoints on the hyperbola and 
midpoint in the centre of the hyperbola. 

A line that is not tangent to the hyperbola, is not parallel to any of the two asymptotes 
and is not passing through the hyperbola centre and has at least one common point with 
the hyperbola, intersects hyperbola in one more point. Lines passing parallel to any of 
the asymptotes intersect the hyperbola in one real point.  
Any line passing through the hyperbola centre is called the diameter of the 
hyperbola. Diameters of the hyperbola passing in that angle formed by asymptotes, in 
which major vertices and foci are located, intersect hyperbola in two different real 
points. Line segment determined by these two intersection points is called the chord of 
the hyperbola. 
Distance of the two intersection points of the hyperbola and its diameter varies in the 
interval 〈2a, ∞), where a is the semi-major axes of the hyperbola.  
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Definition 10.  Any two diameters of the hyperbola are called related or conjugate 
diameters, if they satisfy the following property: Tangent lines to the 
hyperbola in the endpoints of one of the diameters are parallel to the 
other diameter, which is not intersecting the hyperbola. 

Note: Semi-major and semi-minor axes form the only pair of related diameters of the 
hyperbola such that the two diameters are perpendicular lines. 

 
Figure 2. 38  Hyperbola chord formed by tangent points of two parallel tangents. 
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3 CONIC SECTIONS ON CYLINDRICAL AND CONICAL 
SURFACES 

 
 
 

Planar intersections of circular cylindrical surfaces or circular conical surfaces are 
conic sections of different types, depending on the position of the intersection plane to 
the surface generating lines. Any of these conic sections can be determined by basic 
elements, and its views can be drawn using supporting hyper-osculating circles. Single 
points of the intersection conics can be constructed as pierce points of the intersection 
plane and specific generating lines of concerning surfaces. Other determining elements 
of the intersection conics might be axes or conjugate diameters for an ellipse, whereas 
for a parabola it is possible to determine its axis, vertex and two tangent lines with 
attached tangent points on them, and for a hyperbola its vertices, axes, and asymptotes 
can be found. Visibility of the resulting conic section images must be determined in all 
views.  
 
 
3.1  ELLIPSE ON CYLINDRICAL SURFACES 
 
Circular cylindrical surface can be determined as a set of all lines that are passing in 
a given direction s, while each of them is passing through one point on a given basic 
circle k(S, r) with centre S and radius r, which is located in plane α not parallel to the 
direction s. Any line h forming the surface is called the generating line. Line o passing 
through the centre S of the basic circle k in the given direction s is called the axis of 
the circular cylindrical surface. If the given direction s is perpendicular to the plane 
α of the basic circle k, we refer to the cylindrical surface of revolution. The name is 
derived from the fact that this rotational surface can also be determined by revolving an 
arbitrary line h about the chosen parallel line o, which stands for the axis of revolution, 
and consequently, the axis of the cylindrical surface of revolution. 
If the circular cylindrical surface is placed in the Euclidean space E3 with the Cartesian 
coordinate system {O, x, y, z} so that its axis o is parallel to the coordinate axis z and 
the basic circle k(S, r) is in the coordinate plane π = xy, while its centre is the point S = 
[m, n, 0], then the analytic equation of the surface is  
 

( ) ( ) Rzrnymx ∈=−+− ,222  
 
Axonometric view of the circular cylindrical surface is presented in Fig. 3. 1. 
Axonometric view and axonometric top view of the basic circle k(S, r) in the 
coordinate plane π = xy coincide in an ellipse k = k1, whose centre is in the incident 
views of point S in π. Major axis AB is perpendicular to the view of the coordinate axis 
z, semi-major axis equals to the radius r. Minor axis CD is in the direction of the 
coordinate axis z, and semi-minor axis b can be expressed by means of the slope ϕ of 
the axonometric image plane to the coordinate plane π, b = r cos ϕ. 
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Axonometric view of the axis o determines the direction of the views of cylindrical 
surface generating lines. Outlines f and g are tangent lines to the ellipse k = k1 in the 
given direction. Tangent points F and G form one diameter of the ellipse, and they 
determine change of visibility of the basic circle k in the axonometric view. 
Axonometric front view of the surface can be outlined by front views of generating 
lines h and l that are parallel to the axonometric front view o2 of the cylindrical surface 
axis. Their axonometric views are passing through such points on the basic circle k, 
which form its diameter parallel to the coordinate axis x. Axonometric front view of 
the basic circle k is a line segment k2 on the coordinate axis x with centre S2 as the 
axonometric front view of the centre S. 
 

 
Figure 3. 1  Circular cylindrical surface in axonometric projection. 

 
Planar intersections on the circular cylindrical surface can be of the following types: 

1. circle - intersection plane ρ is parallel to the plane α of the basic circle k 
2. 1 or 2 generating lines - intersection plane ρ is parallel to the surface axis o, 

while in case of just 1 common line plane ρ  is called the tangent plane 
3. ellipse - intersection plane ρ is neither parallel to the surface axis o, nor 

parallel to the plane α of its basic circle. 
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Illustration of an elliptic intersection on circular cylindrical surface by arbitrary plane 
generated in mathematical software Maple is presented in Fig 3.2. 

 
Figure 3. 2  View of elliptic intersection on circular cylindrical surface. 

 
Related views of the circular cylindrical surface with basic circle k(S, r) in the 
coordinate plane π = xy and axis o determining the direction of the cylindrical surface 
generating lines are shown in the Monge method in Fig. 3. 3. Choosing the intersection 
plane ρ perpendicular to the front image plane, therefore appearing in the edge view ρ2, 
the front view of the intersection ellipse e appears as a line segment e2. Top view e1 of 
the intersection can be determined by the related diameters. End points H1 and L1 on 
one diameter are top views of line segment e2 end points H2 and L2 on surface 
generating lines h and l. These are passing through such points on the basic circle k 
which form its diameter parallel to the coordinate axis x. Centre O of the line segment 
HL is the centre of ellipse e, common point of the surface axis o and intersection plane 
ρ. Its views are centres of intersection ellipse views - line segment e2 and ellipse e1. 
End points of the related diameter MN are on generating lines m and n forming 
projecting plane perpendicular to the frontal image plane. Their front views coincide 
with O2 and top views can be easily found on top views m1 and n1 of respective lines m 
and n. Visibility in the top view is defined by top views of points F and G, which are 
common points of the outlines f and g and the intersection plane ρ  directly accessible 
in the front view.   
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Figure 3. 3  Related views of elliptic intersection on circular cylindrical surface. 

 
Axonometric view of the elliptic intersection on the circular cylindrical surface can be 
determined from the axonometric front view in Fig. 3. 4. Let the intersection plane ρ be 
perpendicular to the frontal image plane, therefore its traces, pρ  in the coordinate plane 
π = xy and m ρ  in the coordinate plane μ = yz, are parallel to the coordinate axis y, and 
this remains true also for their axonometric views.  
Axonometric front view e2 of the intersection ellipse appears as line segment, whose 
end points are determining end points H and L on one diameter of the axonometric 
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view of the intersection e. These points are located on the surface generating lines h 
and l. Centre O of the line segment HL is the centre of ellipse e. Generating lines m and 
n forming plane perpendicular to the frontal image plane appear in front views in one 
line with the axonometric front view of the surface axis,  o2 = m2 = n2. Their 
intersection points M and N in the plane ρ are end points of the related diameter MN of 
the intersection ellipse e.  
Visibility of the intersection ellipse in the axonometric view can be determined by 
points F and G located on outlines f and g of the surface axonometric view and forming 
additional diameter of the intersection ellipse view. Lines f and g are mapped to the 
ellipse e tangent lines in the axonometric view, while axonometric views of tangent 
points on them can be derived from their clearly visible axonometric front views F2 
and G2 in the common points of axonometric front views of lines f2 , g2 and intersection 
plane edge view ρ2 .  
 

 
Figure 3. 4  Axonometric view of elliptic intersection on circular cylindrical surface. 
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3.2  CONIC SECTIONS ON CONICAL SURFACES 
 
Circular conical surface can be determined as a set of all lines that are passing 
through a given point V, each intersecting in one single point a given circle k(S, r) with 
centre S and radius r located in plane β not passing through the point V. Lines h 
forming the surface are called generating lines, given point V is the main vertex and 
the circle k is the basic circle. Line o passing through the centre S of the basic circle k 
and the main vertex V is called the axis of the circular conical surface, Fig. 3. 5. If 
the axis o is perpendicular to the plane β of the basic circle k, we refer to conical 
surface of revolution. The name stems from the fact that this rotational surface can 
also be determined by revolving an arbitrary line h about the chosen line o, the axis of 
revolution, while lines h and o are meeting in one common point V.  
If the circular conical surface is placed in the Euclidean space E3 with the Cartesian 
coordinate system {O, x, y, z} so that its vertex is the point V = [m, n, d] and the basic 
circle k(S, r) is in the coordinate plane π = xy, while its centre is the point S = [m, n, 0], 
therefore its axis o is parallel to the coordinate axis z, then the analytic equation of the 
surface is  
 

( ) ( ) ( ) Rkdzknymx ∈−=−+− ,222  
 
Axonometric view of the circular conical surface is presented in Fig. 3. 5. 
Axonometric views of the basic circle k(S, r) in the coordinate plane π = xy can be 
determined in the same way as views of the basic circle of the circular cylindrical 
surface. Outlines f and g are tangent lines to the ellipse k = k1 passing through the 
axonometric view of the main vertex V. Tangent points F and G do not form a diameter 
of the ellipse, but they determine change of visibility of the basic circle k in its 
axonometric view. Axonometric front view of the surface is outlined by front views of 
generating lines h and l that are passing through the axonometric front view V2 of the 
conical surface vertex. Their axonometric views are determined by those points on the 
basic circle k, which are forming its diameter parallel to the coordinate axis x. 
Axonometric front view of the basic circle k is a line segment k2 on the coordinate axis 
x with centre S2 as the axonometric front view of the centre S. 
Conic sections form a group of curves that might be determined as different forms of 
circular conical surface planar cuttings, i.e. intersections of conical surface by planes in 
special superposition to the surface generating lines. 
With respect to the position of the intersecting plane ρ  to the circular conical surface 
of revolution, different types of regular conic sections can be distinguished, when plane 
ρ  is not passing through the surface main vertex:  

1. circle - plane ρ  is perpendicular to the surface axis  
2. ellipse - plane ρ intersects all generating lines on the surface 
3. parabola - plane ρ intersects all but one generating line on the surface 
4. hyperbola - plane ρ is parallel to 2 different generating lines on the surface. 



 64

 
Figure 3. 5  Circular conical surface. 

 
In Fig. 3.6 the illustration on the left is the circular intersection mapped in the Monge 
method, which is the orthographic view onto 2 different perpendicular image planes 
(frontal image plane and ground plane). On the right, the same circular intersection of a 
cone by plane α is presented in axonometric view. Plane α is perpendicular to the axis 
of the conical surface of revolution, it is parallel to the plane π = xy of its basic circle k 
with centre S, therefore the surface intersection is a circle mapped in the axonometric 
view as an ellipse. This ellipse can be determined by related diameters AB, CD 
intersecting in the centre O of the ellipse, while the end points A, B, C, D can be 
constructed as intersections of surface generating lines mapped in the axonometric 
views and in the axonometric front views. Point O, centre of the intersection circle, is 
the intersection point of the conical surfaces axis o and the intersection plane α. Points 
E and F are points of the change of visibility in the axonometric view, which can be 
determined as intersections of the plane α and surface lines forming the outlines of the 
conical surface. These can be found in the axonometric front view, where the plane α 
perpendicular to the front image plane appears in the edge view.  
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Figure 3. 6  Views of circular intersection on circular conical surface 
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Ellipse can be one of the possible planar intersections of the circular conical surface, 
provided the intersection plane α is intersecting all generating lines of the surface. 
View of the elliptic intersection on the circular conical surface by arbitrary plane not 
passing through the surface vertex generated in software Maple is in Fig 3. 7. 
 

 
Figure 3. 7  Elliptic intersection on circular conical surface. 

 
Construction of the elliptic intersection on the conical surface of revolution is 
presented in Fig. 3. 8. The illustration on the left is the elliptical intersection mapped in 
the Monge method, presented are orthographic views in the frontal image plane and in 
the ground plane. Intersection plane α perpendicular to the frontal image plane appears 
in the front view as a line α2. Intersection ellipse can be determined directly by four 
vertices A, B, C, D and axes, while their common point is its centre O , which is not the 
point on the axis VS of the conical surface. 
On the right the same elliptic intersection on conical surface of revolution by plane α is 
presented in the axonometric view. Here the intersection ellipse is determined by 
related diameters AB, CD intersecting in the centre O of the intersection ellipse. The 
end points A, B, C, D can be constructed as intersections of the respective surface 
generating lines mapped in the axonometric views and in the axonometric front views. 
Diameter AB is parallel to the frontal image plane, so AB // A2B2 .Points E and F of the 
change of visibility in the axonometric view of the intersection ellipse are received 
from the axonometric front view, where the ellipse is mapped to a line segment A2B2. 
These are tangent points on conical surface outlines, which are the views of generating 
lines mapped to the tangents of the basic circle axonometric view. 
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Figure 3. 8  Views of elliptic intersection on circular conical surface. 

 



 68

Parabolic intersection on circular conical surface of revolution can be achieved with 
intersection plane α parallel to one of the surface generating lines. Views of parabolic 
intersection on the circular conical surface by arbitrary plane not passing through the 
surface vertex generated in software Maple is in Fig 3.  9. 

 

 
Figure 3. 9  Parabolic intersection on circular conical surface. 

 
Construction of the parabolic intersection on the conical surface of revolution is 
presented in the Fig. 3. 10, where the parabolic intersection is mapped in Monge 
method on the left, and in the axonometric view on the right. Intersection plane α 
perpendicular to the frontal image plane appears in the edge view as a line parallel to 
one of the conical surface outlines in the front view. In the Monge method, intersection 
parabola can be determined directly by axis o, vertex M and two points K and L on the 
conical surface basic circle k, with attached tangent lines in these points. Axonometric 
view of this parabolic intersection is determined by 3 points K, L, M with tangent lines 
to parabola in them, and by the point E of the change of visibility. This point is the 
intersection of the plane α  and the surface generating line forming the outline in the 
axonometric view, and can be found in the axonometric front view.  
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Figure 3. 10  Views of parabolic intersection on circular conical surface. 
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Hyperbola is a planar intersection of circular conical surface of revolution by plane α 
that is parallel to two different generating lines on the surface, while it is not passing 
through the conical surface vertex. View of the intersection generated in software 
Maple is in Fig 3. 11. 
 

 
Figure 3. 11  Hyperbolic intersection on circular conical surface. 

 
Construction is illustrated in Fig. 3. 12, in the Monge related views and in axonometric 
view. The intersection plane α is perpendicular to the frontal image plane and appears 
as line α2 in the front view. In the Monge method, intersection hyperbola is determined 
directly by its major axis 1o with major vertices M1, M´1. Its asymptotes 1a, 2a are lines 
passing in direction of top views of generating lines PV and TV through the hyperbola 
centre O, which is the centre of the line segment MM´. These lines are intersections of 
the conical surface and the plane σ passing through the vertex V and parallel to the 
plane α. The end points K, L, K´, L´ of the hyperbolic arcs are points on the conical 
surface basic circle k and a symmetric circle k´ with respect to the surface vertex V. 
Both circles’ top views coincide.  
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Similarly as in the previous constructions, the axonometric view of the intersection 
hyperbola can be found using axonometric front views of the conical surface 
generating lines. The upper arc is determined by points K´M´L´ and the bottom arc by 
points KML. Here, axonometric views of intersection hyperbola points M and M´ are 
not major vertices of the hyperbola axonometric view, but form its diameter passing 
through the hyperbola centre O and parallel to the frontal image plane. Visibility of the 
intersection hyperbola axonometric view changes in the point E on the conical surface 
outline, and it can be uniquely determined from the axonometric front view.  
 

 
Figure 3. 12  Views of hyperbolic intersection on circular conical surface. 
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4 QUADRATIC SURFACES OF REVOLUTION 
 
 
 

Surfaces of revolution are surfaces generated by revolution of an arbitrary generating 
curve about a fixed axis in the space. Quadratic surfaces (surfaces of the second 
degree) are all surfaces intersecting an arbitrary line in not more then two different 
points. We can distinguish between singular (cylindrical and conical) and regular 
(spherical surface, ellipsoids, paraboloids and hyperboloids) quadratic surfaces.  
By revolving line a about axis o we can determine: 

 cylindrical surface of revolution   a // o 

 conical surface of revolution   a x o 

 one-sheet hyperboloid of revolution  a / o. 

Revolving circle k(S, r) about the axis o in the plane of circle, while point S is on the 
axis of revolution, S ∈ o, a spherical surface (or sphere) is determined.  
Regular quadratic surface of revolution can be determined by revolution of a conic 
section about its axis. Revolving an ellipse about its major axis 1o an ellipsoid of 
revolution called prolate (or elongate) ellipsoid can be created, while an oblate (or 
flat) ellipsoid of revolution is determined by revolution about its minor axis 2o. 
Parabola revolving about its axis o generates a paraboloid of revolution. Revolving 
circle, ellipse or parabola form a system of meridians of the respective surface of 
revolution, while trajectories of their points form a system of surface parallel circles. 
Equator is the parallel circle with the largest radius, neck with the minimal radius. 
Both ellipsoids and paraboloid of revolution with their net of meridian ellipses or 
parabolas and parallel circles mapped in Maple can be seen in Fig. 4.1.  
 

   
Figure 4. 1  Prolate (left), oblate (middle) ellipsoid of revolution, paraboloid of revolution. 

 
Revolution of a hyperbola about its minor axis 2o determines a 1-sheet hyperboloid of 
revolution, whereas revolution of a hyperbola about its major axis 1o generates 
a hyperboloid of revolution of two sheets. Both hyperboloids are mapped with their 
net of meridian hyperbolas and paralel circles in Fig. 4.2.  
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Figure 4. 2  Hyperboloid of revolution: of 1-sheet (left), of 2-sheets (right). 

 
 
4.1  SPHERE 
 
Sphere can be determined as a set of all points in the same distance r ≠ 0 from a given 
fixed point S, which is the centre of the sphere G = (S, r) with radius r.  
Any line o passing through the centre S is the axis of the sphere G. Planes passing 
through the axis o of a sphere are meridian planes μ, these intersect the sphere in 
circles that are meridians with centres in the point S and radius equal to the radius r of 
the sphere, m = (S, r). Sphere G can be therefore generated by revolution of meridian m 
about axis o.  
Circles, which are intersections of the sphere G and a system of parallel planes αi 
perpendicular to the axis o are parallel circles ki with centres Ki located on axis o and 
radii ri from the interval 〈0, r〉. Any point T on the sphere G is the point located on one 
meridian mT and one parallel circle k, as their common point. Tangent plane τ  to the 
sphere G in the point T is determined by tangent lines tm and tk in this point to the 
respective circles mT and k located in planes μT and αT. Normal to the sphere in the 
point T is a line n passing through this point perpendicularly to the tangent plane τT of 
the sphere. All normals to the sphere G are meeting in one common point, centre S of 
the sphere. In Fig. 4. 3 the construction of a tangent plane and normal to the sphere in 
the point T is presented in the Monge method. 
Any plane ρ that is intersecting sphere G = (S, r), regardless of its position, intersects it 
in a circle l. Centre O of this circle is located on line passing through the sphere centre 
S and perpendicular to the intersection plane ρ. Radius p of the intersection circle 
l, 22 drp −= , can be derived from triangle LSO with a right angle at the vertex O, 
where L is an arbitrary point of the intersection circle l, therefore ⎜SL ⎜ = r, and 
distance of the plane ρ from the sphere centre S is ⎜SO ⎜ = d. 
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Figure 4. 3  Related views of  tangent plane and normal to the sphere 
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Choosing the intersection plane ρ in a position perpendicular to the frontal image 
plane, construction of the intersection circle l = (O, p) is provided in Fig. 4. 4. 
Intersection circle is mapped in the front view to the line segment l2. Top view appears 
in the form of an ellipse l1. Its centre O is on the line h passing through the sphere 
centre S perpendicularly to the intersection plane ρ. In the front view centre O 
coincides with views of points A and B, which are mapped in the top view to the major 
vertices of l1 and can be found on sphere parallel circle k. End points C2 and D2 of l2 
are mapped in the top views as minor vertices of ellipse l1. Visibility in the top view is 
determined by the sphere equator r, whose common points E an F with the circle l are 
mapped in the top views to the points of change of visibility of the ellipse l1. Part of 
circle l over the equator r is visible in the top view.  
 

 
Figure 4. 4  Related views of the planar intersection on the sphere 
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If the sphere G(S, r) is placed in the Euclidean space E3 with the coordinate system 
{O, x, y, z} and the centre is point S = [m, n, p], the analytic equation of the sphere is 
 

( ) ( ) ( ) 2222 rpznymx =−+−+−  
 
4.2  ELLIPSOIDS 
 
Ellipsoid of revolution E determined by revolution of an ellipse with centre at point 
S = [m, n, p] and axes parallel to the coordinate axis x and z with semi-axis a and b, 
whose axis is parallel to coordinate axis z has the analytic equation 
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while for a < b a prolate, and for a > b an oblate ellipsoid of revolution is generated. 
Planar intersection of an ellipsoid of revolution can be: 

 a) a circle, if the intersection plane is perpendicular to the ellipsoid axis, 

 b) an ellipse in all other cases. 

 
Figure 4. 4  Views of  elliptic intersection on ellipsoids of revolution. 

 
Intersection of an oblate ellipsoid (with axis o and with meridian ellipse m) by plane 
ρ  perpendicular to the ground image plane is an ellipse e (in Fig. 4. 5) mapped as line 
segment e1 in the top view and as an ellipse e2 in the front view. End points A1, B1 of 
the top view mapped to the major vertices A2, B2 of the frontal view e2 are points on the 
ellipsoid equator r. Centre O of the ellipse e coincides in the top view with top views of 
points C, D, which are mapped to the minor vertices of the intersection frontal view are 
on parallel circles k and l of the ellipsoid. Visibility in the frontal view is determined 
by meridian m, its common points E and F with the intersection ellipse e can be 
determined from the top view. The front view e2 of the intersection ellipse e is tangent 
to the ellipsoid outline m2 in the points E2 and F2. 



 77

 
Figure 4. 5  Related views of planar intersection on oblate ellipsoid of revolution. 
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Figure 4. 6  Related views of planar intersection on prolate ellipsoid of revolution. 
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Construction of elliptic intersection on a prolate ellipsoid with axis o perpendicular to 
the ground image plane and with meridian ellipse m in the plane parallel to the frontal 
image plane is presented in Fig 4. 6. Intersection plane ρ is perpendicular to the frontal 
image plane. Intersection ellipse e appears as a line segment e2 in the front view, with 
end points C2 and D2, while points C and D are points on the ellipsoid meridian m. 
They are mapped in the top views as minor vertices C1 and D1 of ellipse e1 that is the 
intersection ellipse e top view. Major vertices A1 and B1 of the ellipse e1 can be 
determined from the front views A2 and B2, coinciding with the front view of the 
intersection ellipse centre O2. Points A and B are on one parallel circle k of the 
ellipsoid. Visibility of the intersection top view is determined by equator r, its common 
points E and F with the intersection ellipse e can be directly determined from the front 
view, where their front views coincide. Ellipse e1 can be constructed by means of its 
four hyper-osculating circles with centres SA, SB, and SC, SD, symmetric in pairs of 
major and minor vertices. 
 
4.3  PARABOLOID 
 
If paraboloid of revolution P is placed in Euclidean space E3 with coordinates system 
{O, x, y, z}, and it is determined by parabola with vertex at the point V = [m, n, p], 
parameter p, and axis parallel to the coordinate axis z, then the analytic equation of the 
sphere can be written as 
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Planar intersection of a paraboloid of revolution can be: 
 a) a circle, if the intersection plane is perpendicular to the paraboloid axis, 
 b) a parabola, if the intersection plane is parallel to the paraboloid axis, 
 b) an ellipse in all other cases. 
Elliptic and parabolic intersection on paraboloid of revolution mapped in Maple is 
presented in Fig. 4. 7. 

 
Figure 4. 7  Elliptic and parabolic intersection on paraboloid of revolution. 
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Theorem 1.  Orthographic view of any ellipse on a paraboloid of revolution in a plane 
perpendicular to the paraboloid axis is a circle. 

Construction of an elliptic intersection on a paraboloid of revolution is presented in the 
Monge method in Fig. 4. 8. Paraboloid of revolution is determined by axis o 
perpendicular to the ground image plane and meridian parabola m in the plane parallel 
to the frontal image plane. Intersection plane ρ is perpendicular to the frontal image 
plane, therefore the intersection ellipse e appears in the front view as a line segment e2 
with end points A2 and B2. Points A and B are points on the paraboloid meridian m. Top 
views A1 and B1 form one diameter of the circle e1, which is the top view of the 
intersection ellipse e, see the Theorem 1. Centre O of the ellipse e is mapped to the 
centre O2 of the line segment e2 and to the centre O1 of the circle e1 in the top view. 
Intersection is entirely visible in the top view. 

 
Figure 4. 8  Elliptic intersection on paraboloid of revolution in Monge method. 
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Plane ρ parallel to the axis o of the paraboloid of revolution is intersecting it in 
a parabola. In Fig. 4. 9 this construction is illustrated in the Monge method. 
Intersection plane appears in the edge view ρ1, so the respective parabolic arc p1 of the 
intersection is mapped as line segment A1B1. Points A and B are on one parallel circle k, 
in which ground image plane π  intersects paraboloid of revolution, therefore their 
front views A2, B2 are on the coordinate axis x. Axis o´ of the intersection parabola is 
parallel to the axis o of the paraboloid, while its vertex V is mapped in the top view to 
centre V1 of line segment A1B1. Front view V2 can be determined by means of a parallel 
circle h, passing through the point V on the paraboloid of revolution. Applying the 
properties of a subnormal and subtangent to the intersection parabola front view p2, 
tangent lines t2

A, t2
B in the points A2, B2 and hyper-osculating circle in the vertex V can 

be attached. Visibility is determined by the meridian parabola m, its common point 
with the intersection parabola p can be derived from the top view. Parabolic arc AVE in 
front of the meridian m is visible. 
 

 
Figure 4. 9.  Related views of parabolic intersection on paraboloid of revolution. 
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4.4  HYPERBOLOIDS 
 
Hyperbola revolving about one of its axes generates a hyperboloid, whereas its 
asymptotes, as lines meeting in one common point (centre S of the hyperbola) at the 
axis of revolution, generate a conical surface of revolution with the main vertex S 
called asymptotic conical surface of a hyperboloid. Asymptotic conical surface is 
inside the hyperboloid of one sheet, while it is outside the hyperboloid of two sheets. 
Hyperboloid of revolution H determined by a hyperbola with centre at point 
S = [m, n, p] and axes parallel to the coordinate axis x and z with semi-axis a and b, 
whose axis is parallel to the coordinate axis z has the analytic equation 
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while a 1-sheet hyperboloid is generated for +1, and a 2-sheet hyperboloid for −1. 
Planar intersection of a hyperboloid of revolution can be: 
 a) a circle, if the intersection plane is perpendicular to the hyperboloid axis, 

b) a conic section of the same type, as the intersection of the plane and 
asymptotic conical surfaces of the hyperboloid. 

 
Figure 4. 10  Conic sections on a 1-sheet hyperboloid of revolution. 

   
Figure 4. 11  Conic sections on a 2-sheet hyperboloid of revolution. 
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Construction of the elliptic intersection on the 1-sheet hyperboloid of revolution in the 
Monge method is presented in Fig. 4. 12. Intersection plane ρ perpendicular to the 
frontal image plane intersects all lines on the hyperboloid asymptotic conical surface, 
and intersection ellipse on the hyperboloid appears as a line segment e2 in the front 
view. Top view in the form of an ellipse e1 can be constructed in the same way as the 
elliptic intersection on the ellipsoid of revolution.  
 

 
Figure 4. 12  Views of elliptic intersection on 1-sheet hyperboloid of revolution. 
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Parabolic intersection on the 2-sheet hyperboloid of revolution in the Monge method is 
presented in Fig. 4. 13. Intersection plane ρ perpendicular to the frontal image plane is 
parallel to the outline of the asymptotic conical surface of the hyperboloid, therefore it 
intersects all but one line on this surface, and intersection conic is a parabola on both, 
asymptotic conical surface and hyperboloid of revolution. Segment of the intersection 
parabola p on the hyperboloid patch appears as a line segment p2 in the front view, top 
view is in the form of the parabolic arc p1. End points A1 and B1 of p1 are mapped to 
one end point A2 = B2 of the line segment p2 , while the other endpoint V2 is mapped in 
the top view as the vertex V1 of the parabolic arc p1. Axis o, focus F, hyper-osculating 
circle hV(SV, p) and tangent lines t1

A, t1
B in endpoints A1 and B1 to the parabolic arc p1 

can be constructed by means of known constructions.  
Hyperbola is the intersection of a hyperboloid of revolution by the plane which also 
intersects the surface asymptotic conical surface in a hyperbola; therefore it is parallel 
to two generating lines on this asymptotic conical surface. Construction of a hyperbolic 
intersection on a 1-sheet hyperboloid of revolution is presented in Fig. 4. 14, while 
how to construct this intersection on a 2-sheet hyperboloid of revolution can be seen in 
Fig. 2. 15.   
Intersection plane in Fig. 4. 14 is perpendicular to the ground image plane, therefore 
the segment of the intersection hyperbola on the mapped patch of the hyperboloid of 
revolution appears as line segment h1 = P1R1 in the top view. Its end points determine 
endpoints of the 2 branches of the intersection hyperbola arcs in the top view, and these 
points are located on the hyperboloid parallel circles k and k´ symmetric with respect to 
the neck circle l. Centre of h1 is the top view of the intersection hyperbola centre O 
coinciding with the top views of its major vertices A and B. Their front views can be 
attached using views of hyperboloid parallel circles. Major axis is line o2 = A2B2. 
Asymptotes 1a, 2a of the intersection hyperbola are lines in direction of asymptotic 
conical surface generating lines, which are intersections of asymptotic conical surface 
and plane σ parallel to the intersection plane ρ and passing through its vertex V. The 
intersection hyperbola is entirely visible in the front view, as it has no common points 
with the surface meridian m and is located in front of it. Hyperbola can be constructed 
more precisely when the hyper-osculating circles are attached in its major vertices. 
Hyperbolic intersection on the 2-sheet hyperboloid of revolution in Fig. 4.15 is in the 
plane perpendicular to the frontal image plane. Segment of the intersection hyperbola h 
on the hyperboloid patch appears as a pair of line segments P2´A2 and B2P2, top view is 
in the form of the hyperbolic arc h1 with two branches. End points P1´ and R1´ of one 
branch of h1 are views of one end point P2´ = R2´ of one line segment, while the other 
endpoint A2 is mapped in the top view A1 as one vertex of the hyperbolic arc h1. End 
points of the other line segment B2P2 determine the other branch end points P1 and R1 
and other major vertex B1. Major axis is o1 = A1B1. Asymptotes 1a, 2a are as in the 
previous example lines parallel to those generating lines, in which plane σ parallel to 
the intersection plane ρ and passing through the vertex V intersects the asymptotic 
conical surface. Branch P´AR´ is visible, while PBR is not visible in the intersection 
hyperbola top view.   
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Figure 4. 13  Views of parabolic intersection on 2-sheet hyperboloid of revolution. 
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Figure 4. 14  Views of hyperbolic intersection on 1-sheet hyperboloid of revolution. 
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Figure 4. 15  Views of hyperbolic intersection on 2-sheet hyperboloid of revolution. 
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5 PROBLEMS 
 
 
 
5.1  PLANAR INTERSECTIONS ON SPHERE 
 
1. Find related views of the intersection on the sphere G(S, r) by plane α perpendicular 

to the ground image plane. 
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5.2  PLANAR INTERSECTIONS ON CYLINDRICAL SURFACES 
 
2. Find axonometric view of the planar intersection of a cylindrical surface of 

revolution with the basic circle k(S, r) in the ground image plane and axis o by the 
plane α perpendicular to the frontal image plane. 
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3. Find related views of the planar intersection of a circular cylindrical surface with the 
basic circle k(S, r) in the ground image plane and axis o by the plane ρ parallel to 
the frontal image plane. 
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5.3  PLANAR INTERSECTIONS ON CONICAL SURFACES 
 
4. Find related views of the elliptic intersection on the conical surface of revolution 

with the basic circle k(S, r) in the ground image plane by the plane ρ perpendicular 
to the frontal image plane. 
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5. Find related views of the parabolic intersection on the conical surface of revolution 
with the basic circle k(S, r) in the ground image plane by the plane ρ perpendicular 
to the frontal image plane and determined by the trace pρ. 
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6. Find related views of the hyperbolic intersection on the conical surface of revolution 
with the basic circle k(S, r) in the ground image plane by plane ρ perpendicular to 
the ground image plane. 
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7. Find axonometric views of the elliptic intersection on the conical surface of 
revolution with the basic circle k(S, r) in the ground image plane and axis o by the 
plane α perpendicular to the frontal image plane. 
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8. Find axonometric views of the parabolic intersection on the conical surface of 
revolution with the basic circle k(S, r) in the ground image plane by the plane α 
perpendicular to the frontal image plane and determined by the trace pα. 
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9. Find axonometric views of the hyperbolic intersection on the conical surface of 
revolution with the basic circle k(S, r) in the ground image plane by the plane α 
parallel to the side image plane. 
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5.4  PLANAR INTERSECTIONS ON ELLIPSOIDS 
 

10. Find related views of the planar intersection on the ellipsoid of revolution  with 
axis o by the plane ρ  perpendicular to the ground image plane. 
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11. Find related views of the planar intersection on the ellipsoid of revolution  with 
axis o by the plane ρ  perpendicular to the frontal image plane. 
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5.5  PLANAR INTERSECTIONS ON PARABOLOIDS 
 

12. Find related views of the elliptic intersection on the paraboloid of revolution  with 
the axis o by the plane ρ perpendicular to the frontal image plane.  
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13. Find related views of the planar intersection on the paraboloid of revolution  with 
axis o by the plane ρ  perpendicular to the ground image plane.  
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5.6  PLANAR INTERSECTIONS ON HYPERBOLOIDS 
 
14. Find related views of the elliptic intersection on the 1-sheet hyperboloid of   

revolution  with axis o by the plane ρ  perpendicular to the frontal image plane. 
 

 
 



 102

15. Find related views of the elliptic intersection on the 2-sheet hyperboloid of 
revolution  with axis o by the plane ρ  perpendicular to the frontal image plane. 
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16. Find related views of the parabolic intersection on the 1-sheet hyperboloid of 
revolution with the axis o by the plane ρ passing through the trace pρ and 
perpendicular to the frontal image plane. 
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17. Find related views of the parabolic intersection on the 2-sheet hyperboloid of 
revolution  with the axis o by the plane ρ  passing through the trace pρ. 
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18. Find related views of the planar intersection on the 1-sheet hyperboloid of 
revolution  with axis o by the plane ρ  perpendicular to the frontal image plane. 

 

 
 
 



 106

19. Find related views of the planar intersection on the 2-sheet hyperboloid of 
revolution  with axis o by the plane ρ  perpendicular to the ground image plane. 
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20. Find related views of the planar intersection on the 2-sheet hyperboloid of 
revolution  with axis o by the plane ρ  perpendicular to the ground image plane. 
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