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I hear and I forget. 

I see and I understand. 

I do and I remember. 

Confucius 
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1 Introduction 
 
 

1.1 Basic concepts from mathematical logic  
 

Mathematical logic deals with statements and their truth values. A proposition is any 
statement expressed in written or oral form, whose truth value can be evaluated. Any 
proposition is either true or false, and we can relate a certain truth value to it, which 
can be symbolically denoted as 1 or 0. More complex compound statements can be 
formed as compositions of two or more sentences using logical connectives. 
Corresponding semantics of logical connectives are truth functions, whose values 
are expressed in the form of truth tables. The most common logical connectives are 
binary connectives (also called dyadic connectives) that join two sentences which 
can be thought of as the function's operands. Negation is considered to be a unary 
connective. 
 
Examples 
1. Any positive number is greater than zero. 
2. Any parallelogram is a square. 
3. There exist at least three divisors of number 21. 
4. No equilateral triangle is a right triangle. 
5. Bratislava is the largest city in the world. 
6. It is Sunday today. 
7. 3 + 7 = 10 

Propositions 1., 4. and 7. are true, while propositions 2., 3. and 5. are false. Truth 
value of the proposition 6. is sometimes 0 and sometimes it is 1, with respect to what 
day it is today. 
Propositions will be denoted by small letters p, q, ... . In case of a true proposition p 
we say that p truth value is 1. Truth value of a false proposition p is zero. 
Any proposition p can be changed to a proposition negating p called negation of 
proposition p, which can be read as "it is not the case that p", "not that p", or more 
simply (though not fully grammatically correct) as "not p". Truth value of 
proposition negation is opposite to the truth value of the original proposition. 
Negation is denoted by logical operator ¬ with the meaning non, if p is a 
proposition, then its negation is ¬ p. 

 
Examples 
1. p: Any parallelogram is a square.  
 ¬ p: ”It is not the case that any parallelogram is a square.", or “There exists a

 parallelogram, which is not a square." 
2. p: It is raining in Bratislava now. ¬ p: It is not raining in Bratislava now. 

3. p: Number 25 is not a prime number. ¬ p: Number 25 is a prime number. 

4. p: All people are polite. ¬ p: Not all people are polite. 
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If proposition q is negation of proposition p, then negation of proposition q is 
proposition p. The following two logical rules are true for negations of propositions. 

Principle of contradiction consists of a logical incompatibility between 
propositions p and ¬ p, which cannot have the same truth value. 

Principle of bivalence states that every declarative sentence expressing a 
proposition has exactly one truth value, either true or false. There exists no third 
possibility. A logic satisfying this principle is called a two-valued or bivalent logic. 
Simple propositions can be combined to more complex ones by means of several 
logical connectives. Logical connectives are: ∨ – or (disjunction, alternation), ∧ – 
and (conjunction), ⇒ – if, then (implication, conditional), ⇔ – if and only if 
(equivalence, bi-conditional). 
Disjunction of propositions (alternation) is a logical sum of propositions p and q, 
with the meaning that at least one of the two propositions is true. Disjunction is 
denoted by sign ∨, disjunction of propositions p and q is p ∨ q (p or q). Connective 
or – ∨ does not have the meaning of exclusion, therefore the possibility that both 
propositions p and q are true is not excluded. Disjunction is a true proposition, 
provided at least one of the propositions p and q is true, and it is false only in the 
case that both p and q are false propositions.  
 
Examples 
1. Number 7 is odd, or any multiple of number 7 is odd. 
2. Each parallelogram has an even number of vertices or even number of sides. 
3. This triangle has a right angle or it is equilateral. 
4. Any integer is either positive or negative. 
 
Conjunction of propositions is a logical product of propositions p and q, with the 
meaning that both propositions p and q are true. Conjunction is denoted by the sign 
∧, conjunction of propositions p and q is p ∧ q (p and q). Conjunction is a true 
proposition only for both true p and q, and it is false in all other instances, when one 
or both from propositions p and q are false. 
 
Examples 
1. Number 2 is even and any multiple of number 2 is even. 
2. Right-angled triangle has two equal angles and there exists an isosceles right-

angled triangle. 
3. Any rectangular has equal diagonals and there exists a rectangular with 

perpendicular diagonals. 
4. Any positive number is greater than zero and any negative number. 
 
Implication of propositions is a proposition composed of propositions p and q, with 
the meaning that proposition p is true only if proposition q is true. Implication is 
denoted by the sign ⇒, implication of propositions p and q is p ⇒ q (p implies q, or 
if p then q). 
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Examples 
1. If at least two axes of symmetry of a polygon exist, then its centre of symmetry 

in the common point of the two axes of symmetry also exists.  
2. If an even number is divisible by five, then it is divisible by ten. 
3. If a triangle has a right angle, then it is not equilateral. 
4. Any natural number is an integer. 
5. If it rains today, then it is Wednesday tomorrow. 
 
Equivalence of propositions is a proposition composed of propositions p and q, with 
the meaning that one of them is true only if the other one is true.  
Equivalence is denoted by the sign ⇔, equivalence of propositions p and q is p ⇔ q 
(p is equivalent to q, or p if and only if q, or p iff q). 
 
Examples 
1. A number is divisible by six if and only if it is divisible by two and three. 
2. Two triangles are congruent if they have two equal sides and angle formed by 

them. 
3. Quadrilateral is a square if and only it has four equal sides and its diagonals are 

perpendicular to each other. 
4. Sum of two non-zero integers is zero, if the two numbers are opposite numbers.  
 

p q ¬ p p ∨ q p ∧ q p ⇒ q p ⇔ q 
1 1 0 1 1 1 1 
1 0 0 1 0 0 0 
0 1 1 1 0 1 0 
0 0 1 0 0 1 1 

Table 1.1. Table of truth values 
 

Composed propositions, which are true not depending on the truth values of the 
elementary propositions of which they are composed, are called tautologies. 

 
Examples 
1. p ∨ ¬ p  (principle of bivalence) 

2. ¬ (p ∧ ¬ p)  (principle of contradiction) 

3. (p ⇒ q) ⇔ (¬ p ∨ q), ¬ (p ⇒ q) ⇔ (p ∧ ¬ q) 
4. [(p ∨ q) ∨ r] ⇔ [p ∨ (q ∨ r)] (associativity of disjunction) 
 
Propositional function is a function V(x) that may be true or false depending on the 
values of its variable. A set of all x, for which V(x) is a proposition, is called domain 
of definition of the propositional function. A set of all x, for which V(x) is a true 
proposition, is called the truth domain of the propositional function. Here, V(x) is 
referred to as the predicate, and x the subject of the proposition, as each choice of x 
produces a proposition. 
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Examples 

1. V(n): Any regular n-gon has a centre of symmetry. 
2. If it rains on the Medards’s name day, then it will rain for the following 40 days.  
 V(x): If it rains on the 8th of June x, then it will also rain for the following 39 days 

in a given year x, therefore between 9th of June x – 17th of July x, x ∈ N. 
3. V(x): {x: x is a positive integer less than 4} is the set {1, 2, 3}. 
4. V(n): Any regular n-gon has a centre of symmetry. 
 
Quantifiers 
Proposition ,,For any x from the set M statement p(x) is true.” can be symbolically 
written as ∀ x ∈ M: p(x). The symbol ∀ (any) is called general quantifier. 
 
Examples 
1. For any non-negative number a holds |a| = a. 
2. ∀ x ∈ R: x2 ≥ 0  
3. All even numbers are divisible by 2. 
 
Proposition ,,There exists an x from the set M such that p(x) is true.” can be 
symbolically written as ∃ x ∈ M: p(x). The symbol ∃ (exists) is called existential 
quantifier. 
 
Examples 
1. There exists a triangle with one acute angle. 

2. ∃ x ∈ R: x2 – 1 = 0 
3. There exists at least one equilateral triangle. 
 
The negation of proposition ,, V(x) is true for any x."  is a proposition  ,,There exists 
such x, for which V(x) is false."  Symbolically this can be written as 

¬ (∀ x: V(x)) ⇔ ∃ x: ¬ V(x). 
 
1.2 Elements of set theory 

 
A set is a well defined collection of distinct objects which are called elements of the 
set. The elements or members of a set can be numbers, letters of the alphabet, other 
sets, points, geometric figures or transformations, functions, and so on. Sets are 
conventionally denoted with capital letters.  
If x is an element of the set M, this can be symbolically denoted as x ∈ M, if x is not 
a member of M, we use the denotation x ∉ M. 

The set can be described in two ways: 

• by a list of all elements written in curly brackets, 

• by determining the characteristic property satisfied by all set elements. 
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Examples 
1. M = {3, 6, 11, 107,5} 
2. e = {X ∈ E2: |F1X| + |F2X| = 2a, a > 0, |F1F2| < 2a} 

 
A set with a finite number of elements is called a finite set. A set with infinitely 
many elements is called an infinite set. A set with no elements is called an empty set 
and it is denoted ∅. Sets A and B are equal, A = B, if and only if they have precisely 
the same elements. Any element of set A is also an element of set B, and any 
member of set B is also a member of set A. 
Set A is a part (a subset) of set B, A ⊂ B, if any element of set A is also element of 
set B. 

A ⊂ B ⇔ ∀ x: x ∈ A ⇒ x ∈ B 

Alternatively the presented relation can be described using the concept of superset. 
Set B is superset of set A, B ⊃ A, if any member of set A is simultaneously a member 
of set B. 

             
 Fig. 1.1. Subset and superset  Fig. 1.2. Union of sets 
 
For any two sets A, B holds: 

A ⊂ A,    ∅ ⊂ A 
A = B ⇔ [(A ⊂ B) ∧ (B ⊂ A)]. 

The union of sets A and B, denoted by A ∪ B, is the set of all objects which are 
members of either A or B. 

A ∪ B = {x: (x ∈ A) ∨ (x ∈ B)} 

Some basic properties of union 

A ∪ B = B ∪ A,  A ∪ (B ∪ C) = (A ∪ B) ∪ C 

A ⊆ (A ∪ B) 

A ⊆ B if and only if A ∪ B = B 

A ∪ A = A,   A ∪ ∅ = A 
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Intersection of sets A, B denoted by A ∩ B is set of all objects which are members of 
both A and B. 

A ∩ B = {x: (x ∈ A) ∧ (x ∈ B)} 

        
 Fig. 1.3. Intersection of sets  Fig. 1.4. Subtraction of sets 

 
If A ∩ B = ∅, then A and B are said to be disjoint. 
Some basic properties of intersections: 

A ∩ B = B ∩ A,   A ∩ (B ∩ C) = (A ∩ B) ∩ C 

A ∩ B ⊆ A 

A ∩ A = A,    A ∩ ∅ = ∅ 

A ⊆ B  if and only if A ∩ B = A 

Subtraction of sets A, B is a set denoted A − B that consists of all objects which are 
members of set A but they are not members of set B. 

A − B = {x: (x ∈ A) ∧ (x ∉ B)} 

If B ⊂ A, then subtraction A − B is said to be the complement of set B in set A. 
Complement of set A in some basic set C is denoted AC, whereas AC = C − A. 

AC = {x ∈ C: x ∉ A}  
 

               
   Fig. 1.5. Complement of set  Fig. 1.6. Symmetric difference of sets 
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Symmetric difference of sets A, B denoted A ∆ B is a set of all objects that are 
members of set A or set B, but they are not members of their intersection A ∩ B. 
 

A ∆ B = (A − B) ∪ (B − A) = (A ∪ B) − (A ∩ B) 
A ∆ B = {x: (x ∈ A − B) ∨ (x ∈ B − A) = {x: (x ∈ A ∪ B) ∧ (x ∉ A ∩ B)} 

 
System of sets is a set consisting of sets as its members.  
 
Examples 
1. Set of all subsets of set P is denoted 2P. If P = {0, 1}, then 2P = {∅, {0}, {1}, 

{0,1}}. 

2. System of sets M = {p = AB, q = CD} is a set containing line p = AB and line 
q = CD that are infinite sets of points. 

 
de Morgan rules 
 

¬ (p ∨ q) ⇔ ¬ p ∧ ¬ q    (A ∪ B)C = AC ∩ BC 
¬ (p ∧ q) ⇔ ¬ p ∨ ¬ q    (A ∩ B)C = AC ∪ BC 

 
1.3 Relations and mappings 
 
Relation is an association between two or more objects. It can be represented by a 
formula, a table or a diagram, a graph or a mapping. Symbols =, ≠ represent 
relations of equality or inequality between mathematical expressions, order of the 
number set is represented by relations ≤, <, ≥, >, while symbols ⊂, ∪, ∩ define 
relations between sets. 
A binary relation can be written as ordered pair (a, b), in which the objects occur in 
a particular order. 
 
Examples 
1. Parity is a relation between a pair of integers: if both integers are odd, or both are 

even, they have the same parity; if one is odd and the other is even they have 
different parity. 

2. Transitivity is a relation between three elements such that if it holds between the 
first and the second one and it holds also between the second and the third one, 
then it must necessarily hold between the first and the third one. For any three 
real numbers it holds: If a ≤ b and b ≤ c, then a ≤ c. 

3. Reflexiveness, reflexivity is such a relation that holds between an element and 
itself.  

4. Cartesian product of sets A, B denoted A × B is set of all ordered pairs (a, b) such 
that a is a member of A and b is a member of B. 

A × B = {[a, b]: a ∈ A ∧ b ∈ B} 
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Fig. 1.7. Ordered pair – Cartesian product of sets 

 
Ordered pairs [a, b] and [c, d] are considered equal, if the following holds: a = c and 
simultaneously b = d. 

[a, b] = [c, d] ⇔ a = c ∧ b = d  

Mapping is an association between two sets A and B such that each element of A is 
associated with a unique element of B.  

)(:,

:

abBbAa

BA

ϕ
ϕ

=∈∃∈∀
→

 

 
a)    b)   c) 

 
Fig. 1.8. Mappings between sets A and B: a) surjective, b) injective, c) bijective 

 
Mapping ϕ  is said to be surjective, if the image of set A under ϕ  equals to B,  
ϕ(A) = B, therefore 

)(:, abAaBb ϕ=∈∃∈∀ . 

Mapping ϕ  is said to be injective, if it maps distinct arguments to distinct images, 
therefore 

212121 )()(:, aaaaAaa =⇒=∈∀ ϕϕ . 

Mapping  ϕ  is said to be bijective, if it is both surjective and injective, therefore 

)()(:, 212121 aaaaAaa ϕϕ ≠⇒≠∈∀ . 
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For a bijective mapping φ  from A to B holds 

1 2 1 2 1 2, : ( ) ( ) .a a A a a a aφ φ∀ ∈ = ⇔ =  

 
1.4 Notes on number sets 

 
The concept of a number is one of the basic concepts in mathematics, whereas 
several different types of numbers are recognized. 
Natural numbers are used to define a number of some objects in a group, or a 
number of elements of a finite set. Sums and products of natural numbers are again 
natural numbers, and these two operations are defined in the set of all natural 
numbers. The difference of two natural numbers is not necessarily a natural number; 
the operation of subtraction is not always possible in the set of all natural numbers. 
Set of all natural numbers is closed with respect to operations of summation and 
multiplication and it is denoted N = {1, 2, 3, ..., n, …}. 
Extension of the set of all natural numbers by zero and negative numbers is set of 
numbers closed with respect to operation of subtraction, while summing up, 
multiplying and subtracting two integers we receive again an integer. Ratio of two 
integers is generally not an integer. 
Set of all integers is closed with respect to operations of summation, multiplication 
and subtraction, and it is denoted Z = {..., −2, −1, 0, 1, 2, ...}. 
By extension of this set by all fractions we can obtain a set of numbers with defined 
operation of division of an integer by integer different from zero, the set of all 
rational numbers Q. Rational number is any such number that can be represented in 
the form of a fraction p/q, where p and q have no common divisors and q is a natural 
number. The set of all rational numbers is Q = {p/q: p ∈ Z, q ∈ N}. 
Set of all natural numbers is a subset of a set of all rational numbers, as any integer 
can be represented in the form p/q, while q = 1. 
All four basic operations – summation, subtraction, multiplication, division of 
numbers are possible in the set of all rational numbers. Nevertheless, an easy 
equation in the form e.g. x2 = 2 does not have a solution in this set. No rational 
number x exists such that it satisfies this equation. One of the solutions of this 
equation we denote as the number √2, which is not a rational number, as it cannot be 
represented in the form of a fraction, and we call it an irrational number. There are 
infinitely many irrational numbers that appear when finding square roots, for 
instance √3, √5, in calculation of logarithms, finding values of goniometric functions 
or solving algebraic equations.  
The discovery of irrational numbers dates back to ancient Greek geometers, who 
were able to represent irrational numbers geometrically, but they could not manage 
their mathematical symbolical denotation. They strived to denote all numbers as 
ratios of lengths of some line segments, i. e. in the form of a fraction. These numbers 
were called commensurable. Nevertheless, some line segments, whose length could 
be measured, were not able to be represented in this way, which was not well 
understood and such line segments were denoted as incommensurable. 
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Fig. 1.9. Irrational numbers  Fig. 1.10. Ratio of circumference and radius of circle - π 

 
Transcendent numbers are such numbers that are not solutions of an algebraic 
equation.  
The best known transcendent number is Ludolf’s number π, representing the ratio of 
a circle circumference and its radius. This number cannot be written as a fraction, 
but for practical calculations it is often approximated by 22/7.  
Rational and irrational numbers together form a set of real numbers denoted as R. 
The following basic rules are valid for operations with real numbers. 
 
Rules for relation of equality 

1. ∀a ∈ R: a = a (reflexiveness) 

2. ∀a, b ∈ R: a = b ⇒ b = a (symmetry) 
 

Rules for summation 

1. ∀a, b ∈ R: a + b = b + a (commutativity) 

2. ∀a, b, c ∈ R: (a + b) + c = a + (b + c) (associativity) 

3. ∀a, b ∈ R ∃ x ∈ R: a + x = b, difference of numbers x = b − a 
 
Rules for multiplication 

1. ∀a, b ∈ R: ab = ba (commutativity) 

2. ∀a, b, c ∈ R: (ab)c = a(bc) (associativity) 

3. ∀a, b ∈ R, a ≠ 0 ∃ x ∈ R: ax = b, ratio of numbers x = b/a 

4. ∀a, b, c ∈ R: (a + b) c = ac + bc (distributivity) 
 

Real numbers are ordered with respect to their value, symbols 
< − lesser than  
> − greater than  

are used for this relation with the following properties. 
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1. Any given two real numbers a, b satisfy precisely one from the three relations 

a < b, a = b, a > b (trichotomy) 

2. ∀a, b, c ∈ R: a < b ∧ b < c ⇒ a < c (transitivity) 

3. ∀a, b, c ∈ R: a < b ⇒ a + c < b + c (monotonicity with respect to summation) 

4. ∀a, b ∈ R: 0 < a ∧ 0 < b ⇒ 0 < ab (monotonicity of multiplication) 
 
Any real number a corresponds exactly to one non-negative real number usually 
denoted |a| - absolute value of number a.  

|a| = a for a ≥ 0, |a| = −a for a < 0 

Absolute value of a real number represents its position on the real axis, a distance 
from the origin O. 

 
Fig. 1.11. Absolute value of a real number 

 
Rules for calculation with absolute values 

1. |a| = |−a| 

2. ± a ≤ |a| 

3. |ab| = |a||b| 

4. |a/b| = |a|/|b|, for b ≠ 0 

5. |a + b| ≤ |a| + |b|, |a + b| ≥ |a| − |b| 

6. |a| ≤ K, K > 0 ⇒ −K ≤ a ≤ K 

Let a, b be arbitrary real numbers, such that a < b. Then, the following subsets can 
be generated of the set of all real numbers 

(a, b) = {x ∈ R: a < x < b} – open interval 

〈a, b) = {x ∈ R: a ≤ x < b} – left-closed, right-open interval 

(a, b〉 = {x ∈ R: a < x ≤ b} – left-open, right-closed interval  

〈a, b〉 = {x ∈ R: a ≤ x ≤ b} – closed interval 

Numbers a, b are boundary points of the interval, number b − a is the interval 
length. All above intervals have a finite length or in other words they are bounded. 
Set of all real numbers can be denoted also as (−∞, ∞). 
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Unbounded subsets of the set of real numbers are infinite unbounded intervals. 

(a, ∞) = {x ∈ R: x >a} – left open, right unbounded interval 

〈a, ∞) = {x ∈ R: x ≥ a} – left closed, right unbounded interval 

(−∞, a) = {x ∈ R: x < a} – left unbounded, right open interval 

(−∞, a〉 = {x ∈ R: x ≤ a} – left unbounded, right closed interval 

Neighbourhood of a real number a is an open interval Oɛ(a) = (a − ɛ, a + ɛ). 
Left neighbourhood of a real number a is an open interval Oɛ− (a) = (a −ɛ, a). 
Right neighbourhood of a real number a is an open interval Oɛ+ (a) = (a, a +ɛ). 
Any real number can be written as a rational number, using its decimal 
representation, which can be finite, infinite and periodic (in the case of rational 
numbers), or infinite (for irrational and transcendent numbers). 
 

r = am10m + am-110m-1 + …+ a0 + b110-1 + b210-2 + …, n ∈ N, 
 

while numbers ai, bi are integers from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 

The maximum (minimum) of a non-empty set M is such number a ∈ M, that for any 
x ∈ M it holds that a ≥ x (a ≤ x); it is the greatest (least) number from the set M. 
Any non-empty finite set has its maximum and minimum. Infinite sets of numbers 
may not have a maximum or a minimum. 
 
Non-empty set of numbers M is said to be 

1. bounded above, if such real number h exists (upper bound of set M), that 
for all x ∈ M is x ≤ h 

2. bounded below, if such real number d exists (lower bound of set M), that 
for all x ∈ M is x ≥ d 

3. bounded if it is both bounded above and below, otherwise it is said to be 
unbounded. 

 
The number set M is bounded if and only if such number K > 0 exists that for all 
x ∈ M holds |x| ≤ K. 
Any bounded set has an infinite quantity of upper and lower bounds. 

 
Fig. 1.12. Bounded set 
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Let M be a non-empty number set. 

1. The least upper bound of set M (if it exists) is called supremum of set M 
and is denoted sup M. 

2. The greatest bottom bound of set M (if it exists) is called infimum of set M 
and it is denoted inf M. 

 
Properties of supremum S of a non-empty set M 

1. for any x ∈ M it holds that x ≦ S 

2. at least one x ∈ M exists in arbitrary left neighbourhood of S - (S −ɛ, S〉. 
 
Properties of infimum s of a non-empty set M 

1. for any x ∈ M it holds that x ≧ s 

2. at least one x ∈ M exists in arbitrary right neighbourhood of S - 〈s, s +ɛ). 
 
The minimum (maximum) of set M (if it exists), equals to the infimum (supremum) 
of M. 
Many mathematical problems have no solution in the set of real numbers. Simple 
quadratic equation x2 + 1 = 0 has no solution in real numbers, as its discriminant is 
negative, D = −4. Set of all real numbers must be therefore extended to such set of 
numbers, in which all quadratic equations have a solution. 
Complex numbers are all the numbers in the form z = a + bi, where a, b ∈ R and i is 
an imaginary unit, a number, for which equality i2 = −1 is true. 
Powers of imaginary unit i are 
 

i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, … 
 

Number a is the real part of the complex number denoted also Re(z), number b is the 
imaginary part of the complex number also denoted Im(z). 
Any real number is a member of a set of all complex numbers, while its imaginary 
part is b = 0. Complex numbers with real part a = 0 are said to be pure imaginary 
numbers. The set of all complex numbers is usually denoted as C. 
Any complex number can have its complex conjugate number attached, ibaz −= . 
 
The rules for summation and subtraction, multiplication and division of complex 
numbers are 

1. (a + bi) ± (c + di) = (a ± c) + (b ± d)i 

2. (a + bi)(c + di) = (ac − bd) + (ad + bc)i 

3. i
i

i
2222 ba

adbc

ba

bdac

dc

ba

+
−+

+
+=

+
+
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For complex conjugate numbers i,i bazbaz −=+=  it holds that 
 

22,2 bazzazz +==+ . 

 
For arbitrary complex numbers z1, z2 it holds that  
 

1 2 1 2 1 2 1 2, .z z z z z z z z+ = + =
 

 
 

 

Fig. 1.13. Geometric interpretation of complex number 
 

The geometric interpretation of a set of complex numbers is a plane. Any complex 
number z = a + bi can be represented as a point in the plane, whose Cartesian 
coordinates in the determined orthogonal coordinate system with origin O = [0, 0] 
are given as ordered pair [a, b] also called the algebraic form of a complex number. 
Coordinate axis x is a real axis; and coordinate axis y is an imaginary axis. 

 

 
Fig. 1.14. Geometric interpretation of sum and difference of two complex numbers 
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Fig. 1.15. Geometric interpretation of product and ratio of two complex numbers 

 
Absolute value of complex number z = a + bi is a non-zero real number 

2 2i .z a b a b= + = +  

Geometric interpretation of the absolute value of a complex number z = a + bi is the 
distance of point z = [a, b] from the origin O. 
Real number ϕ, for which 

z

b

z

a == ϕϕ sin,cos  

is the argument (amplitude) of the complex number z = a + bi, denoted also as arg z, 
and it is the size of an angle formed by the line segment with end points in origin O 
and point [a, b], and axis x.  

arg z = ϕ + 2kπ, k = 0, ±1, ±2, ... 

Only one of the arguments of complex number z ≠ 0 satisfies condition 0 ≤ ϕ < 2π 
and this is called the principle argument (amplitude) of complex number z and is 
denoted Arg z.  
If z = 0, than |z| = 0, ϕ = 0.  

Complex number z = a + bi ≠ 0 can be written in the form 

)sini(cos ϕϕ += zz  

called the goniometric form of the complex number. 

Complex number, whose absolute value equals one, is denoted as complex unit 

)sini(cos ϕϕ +=jz . 
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Let two complex numbers be given in goniometric form 

)sini(cos),sini(cos 22221111 ϕϕϕϕ +=+= zzzz . 

Then their product and ratio are 

))sin(i)(cos( 21212121 ϕϕϕϕ +++= zzzz  

))sin(i)(cos( 2121
2

1

2

1 ϕϕϕϕ −+−=
z

z

z

z
. 

The Moivre formula for powers of complex unit is 

ϕϕϕϕ ninn sincos)sini(cos +=+ . 

For a complex number z = |z|(cos ϕ + i sin ϕ), n ∈ N it holds that 

)sin(cos)sini(cos ϕϕϕϕ ninzzz
nnnn +=+= . 

Exponential form of complex number can be written as 

ϕϕϕ i)sini(cos ezzz =+= , 

where number  e = 2,71828 is a transcendent number called Euler number. 

 
Fig. 1.16. Exponential form of complex number 

 
The Euler formula is the following relation true for complex units 

ϕϕϕ sinicosi +=e . 

One of the most beautiful mathematical equations, in which all special mathematical 
numbers appear, is the equation 

01i =+πe . 
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2 Chapters from linear algebra  
 
 

2.1 Matrices and determinants  
 

Let m and n be natural numbers. A matrix of m × n type is a table – rectangular array 
consisting of elements aij, i = 1, 2, ..., m, j = 1, 2, ..., n ordered  into m rows and n 
columns. Matrix is usually written in the form 
 

11 12 13 1

21 22 23 2

1 2 3

...

...

. . . ... .

...

n

n

m m m mn

a a a a

a a a a

a a a a

 
 
 
 
 
 

 

 
and denoted A = (aij) = Am × n, for i = 1, 2,..., m, j = 1, 2, ..., n.  
The elements aij, which are most often specific numbers (real, complex), are called 
the entries of the matrix. A matrix of the type m × n, where m ≠ n, is said to be 
rectangular matrix, matrix of the type n × n is a square matrix of degree n. Matrix of 
the type 1 × n is a row vector, while matrix of the type m × 1 is a column vector. A 
vector (a11, a22, ..., ann) in a square matrix of degree n is called major (principal, 
leading) diagonal, a vector (a1n, a2 n−1, ..., an1) is called minor diagonal. 
Let A be a matrix of the type m × n, then the matrix AT of the n × m type generated 
from matrix A exchanging rows and columns (in the given order), is said to be 
a transpose of the matrix A. 
A square matrix with all zero elements but entries on the major diagonal that are 
equal to number 1 is a unit  (identity) matrix denoted E.  
 
Examples 

1. Transpose to the matrix 

1 5 8 0

7 2 6 9

9 6 3 7

0 8 5 4

 
 
 =
 
 
 

A   

 
is the matrix  

 

T

1 7 9 0

5 2 6 8

8 6 3 5

0 9 7 4

 
 
 =
 
 
 

A
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2. Unit matrix of order three is the matrix 

1 0 0

0 1 0

0 0 1

 
 =  
 
 

E . 

 
Operations on matrices 
Let A = (aij), B = (bij), C = (cij) and D = (dij) be matrices of the same type m × n.  
Then the following relations hold 

1. Matrix equality. 
 Matrices A and B are equal, A = B, if aij = bij for all i = 1, 2, ..., m, j = 1, 2, ..., n. 

2. Matrix addition.  
 Matrix C = (cij), where cij = aij + bij for all i = 1, 2, ..., m, j = 1, 2, ..., n is called 

the sum of matrices A and B, written as C = A + B. 

3. Multiplying matrices by numbers. 
 Let k be a number. Matrix D = (dij), where dij = kaij for all i = 1, 2, ..., m, j = 1, 2, 

..., n is called a multiple of matrix A by number k, written as D = k.A. 

4. Multiplication of matrices. 
 Let A = (aij) be a matrix of type m × n and B = (bij) a matrix of type n × p. Matrix 

C = (cij) of the m × p type, such that cij = ai1b1j + ai2b2j + ... + ainbmj for i = 1, 2, 
..., m, j = 1, 2, ..., p is called the product of matrices A and B, written as C = A.B. 

 
Entries cij of matrix C are obtained as summation of all products of corresponding 
entries in the i-th row of matrix A and the j-th column of matrix B. Two matrices 
can be multiplied only when the number of columns in the first matrix equals to the 
number of rows in the second one. 
Multiplication of matrices, in general, is not commutative, A.B ≠ B.A. 
Let A be an arbitrary square matrix. For a unit matrix of the same type as A it holds 
that 

A.E = E.A = A. 

Square matrix A−1, for which A−1.A = E, A.A−1 = E is called the inverse matrix to 
matrix A. 
For the matrix transpose AT it holds that (AT)−1 = (A−1)T. 
 
Examples 

1.  Matrix 

2 5 8 0

7 3 6 9

9 6 4 7

0 8 5 5

 
 
 =
 
 
 

B  is the sum and matrix 

0 5 8 0

7 1 6 9

9 6 2 7

0 8 5 3

 
 
 =
 
 
 

C  is the  

 
 difference of matrices A and E from previous examples. 
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2. The product of matrices A and AT from previous examples  
 

T

1 5 8 0

7 2 6 9
.

9 6 3 7

0 8 5 4

 
 
 = =
 
 
 

P A A  is different from their product  

 
1 5 8 0

7 2 6 9

9 6 3 7

0 8 5 4

 
 
 =
 
 
 

R  in different order, R = AT.A. 

 
Determinant of a matrix 
A determinant of a matrix A is a number denoted detA = |A|, which can be 
calculated as follows: 

1. For matrix A of degree n = 1, i.e. A = (a11), it holds that detA = |A| = a11. 

2. For all n ≧ 2 the determinant of matrix A equals 
 

n
n

nnnnn

n

n

aaa

aaaa

aaaa

aaaa

1
1

131312121111

321

2232221

1131211

)1(...

...

.......

...

...

det

AAAA

A

+−+−+−=

==
 

 
where |A1j|, j = 1, 2,..., n are the subdeterminants of matrices obtained from the 
matrix A excluding (deleting!) its first row and j-th column. 
The following calculation holds for the determinant of a matrix of degree three  
 

11 12 13

21 22 23 11 11 12 12 13 13

31 32 33

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

11 22 33 11 23 32 12 21 33 12 23 31

( ) ( ) ( )

a a a

D a a a a a a

a a a

a a a a a a
a a a

a a a a a a

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a

= = − + =

= − + =

= − − − + − =
= − − + +

A A A

13 21 32 13 22 31a a a a a−
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The determinant of a matrix of degree three can also be evaluated using the 
following easy rule. 
 
Sarus rule 
Add the first and second rows of matrix A under its third row and sum up the 
products of three entries of this new determinant in the direction of major and minor 
diagonal, while multiplying the products in the direction of minor diagonal by –1. 
The result is the value of the matrix A determinant. 
 

11 12 13

21 22 23

31 32 33 11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 2231

11 12 13

21 22 23

a a a

a a a

a a a a a a a a a a a a a a a a a a a a a

a a a

a a a

+
+
+

= − − + + −
−
−

 

The determinant of a matrix with at least one zero row or column equals zero. 
 
Inverse matrix 
There exists an inverse matrix A−1 to any square matrix A, with a non-zero 
determinant detA ≠ 0, which can be calculated as follows  
 

11 12 13 1

21 22 23 21

1 2 3

...

...1
. . . ... .

...

T

n

n

n n n nn

D D D D

D D D D

D D D D

−

 
 
 =
 
 
 

A
A

, where  

 

( 1) , , 1,2,...,i j
ij ijD i j n+= − =A  

 

Element Dij is called the algebraic complement of matrix A entry aij, which is 
derived from the determinant detA excluding its i-th row and j-th column. 
 
Example 

1. Inverse matrix to the matrix 

2 4 0

3 7 2

3 0 1

 
 = − 
 
 

A  can be determined as follows 

,10

103

270

042

−=−=A  
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,14
70

42
)1(,4

20

02
)1(,8

27

04
)1(

,12
03

42
)1(,2

13

02
)1(,4

10

04
)1(

,21
03

70
)1(,6

13

20
)1(,7

10

27
)1(

33
33

23
32

13
31

32
23

22
22

12
21

31
13

21
12

11
11

=−==
−

−=−=
−

−=

=−==−=−=−=

−=−=−=
−

−==
−

−=

+++

+++

+++

DDD

DDD

DDD

 

 

















−−
−−

−
=

















−
−

−−
−=−

141221

426

847

10

1

1448

1224

2167

10

1

T

1A  

 
Rank of matrix 
A rank of a matrix is a natural number determining the number of non-zero, linearly 
independent rows (columns) of this matrix. A matrix with no zero rows (columns), 
i.e. none of its rows (columns) is a multiple of other rows (columns), with a value 
equal to the number of its rows (columns) is called a regular matrix. The determinant 
of a regular matrix is non-zero. The rank of matrix A is denoted h(A). 

Matrix A = (aij) is said to be upper triangular (lower triangular), if for all i > j (i < j) 
it holds that aij = 0. All entries of a square upper triangular (lower triangular) matrix 
below (under) major (minor) diagonal are equal to zero.  

Triangular matrix of type 3 × 5 has the form  

11 12 13 14 15

22 23 24 25

33 34 35

0

0 0

a a a a a

a a a a

a a a

 
 
 
 
 

. 

Equivalent manipulations with matrices are such operations, which do not change 
the rank of the matrix, but are just the following: 

1. interchanging of any two rows (columns) 

2. multiplying any row (column) by an arbitrary number c ≠ 0 

3. multiplying any row (column) by a number and adding the result to any other row 
(column) 

4. deleting zero rows (columns) and those, which are multiples of another row 
(column). 

 
 
 



28 

 

Example 

1. Inverse matrix to the matrix A  can also be calculated by means of equivalent 
manipulations with the matrix composed of a given matrix A and a unit matrix E 
of the same rank. Manipulations with rows (columns) must be carried out so that 
the matrix A will be transformed to the unit matrix E, while unit matrix E will be 
consequently transformed to the inverse matrix A-1. We can calculate the inverse 
matrix for the matrix from the previous example in the following way 
 

















−−
−−

−
≅

≅
















−−
−−

−
≅

≅
















−−
−−≅

















−−
−−≅

≅
















−−
−≅

















−

10/1410/1210/21100

10/410/210/6010

10/810/410/7001

1412211000

4260100

8470010

1412211000

213050

001042

2032120

213050

001042

2032120

010270

001042

100103

010270

001042

 

 
2.2 Linear systems of equations  

 
A system of m equations with n unknowns  
 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

1 1 2 2 3 3

...

...

...

...

...

n n

n n

n n

m m m mn n m

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + =
+ + + + =
+ + + + =

+ + + + =

 

 
where coefficients aij and absolute coefficients bi are real numbers for i = 1, 2,... m, 
j = 1, 2, ... n can be written in the matrix form as 
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11 12 13 1 1 1

21 22 23 2 2 2

1 2 3

...

...

. . . ... . . .

...

n

n

m m m mn n m

a a a a x b

a a a a x b

a a a a x b

    
    
    =
    
    
    

 

 

1 1.m n n m× × ×=A X B  

 
Matrix A = (aij), i = 1, 2, ... m, j = 1, 2, ..., n is called the matrix of the system, matrix 
C in the form  

11 12 13 1 1

21 22 23 2 2

1 2 3

...

...

. . . ... . .

...

n

n

m m m mn m

a a a a b

a a a a b

a a a a b

 
 
 
 
 
 

 

is called the extended matrix of the system. 

The system of equations is said to be 

    a) homogeneous (without the right side), if bi = 0 for all i = 1, 2, ..., m 

    b) non-homogeneous (with the right side), if bi ≠ 0 for at least one i. 

The solution of the system of m equations with n unknowns is any such ordered n-
tuple of real numbers (r1, r2, r3, ..., rn), i. e. such n-dimensional column vector, that 
satisfies the system of equations. Insertion of a vector (r1, r2, r3, ..., rn) to the 
equations from the given system instead of a vector (x1, x2, x3, ..., xn) leads to the true 
statements. 
Two systems of linear equations with the same number of unknowns are said to be 
equivalent, if any solution of one of them is also a solution of the other one.  

To solve linear systems we use the following equivalent transformations: 

1. interchanging of any two equations 

2. multiplying any equation by an arbitrary number c ≠ 0 

3. multiplying any equation by a number and adding the result to any other equation 

4. deleting the equation which is the multiple of another equation in the system, or 0. 

A system, obtained from the original system by applying a finite number of the 
above elementary transformations, is equivalent to the primary system. Equivalent 
transformations of a system result in a system equivalent to the original one.  
Matrices of two equivalent linear systems of equations can be transformed by 
equivalent manipulations with rows (columns) from one to the other. Therefore, the 
solution of a linear system of equations can be obtained by performing equivalent 
transformations with the extended matrix of the system.  
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This method is an universal method for solving systems of any number of equations 
with any number of unknowns, called the Gauss‘ elimination method. It consists of 
the reduction of a given system to a triangular system by means of a finite number of 
elementary transformations applied on the extended matrix of the system.  
Then, after the triangulation process, we can consider the following possibilities. 

A) The new equivalent system has the same number of non-zero equations 
(extended matrix rows) as is the number of unknowns – the system has a unique 
solution.  

B) There appears an equation in the form 0 = c, c ≠ 0 – the system has no solution. 

C) The resulting triangular system consists of less non-zero equations (extended 
matrix rows) than is the number of unknowns and it does not contain any 
equation in the form 0 = c, c ≠ 0 – the system has infinitely many solutions.  

 
Since homogeneous systems (or systems equivalent to them) never contain 
equations in the form 0 = c, c ≠ 0, it follows that they always have a solution, at least 
a zero solution called trivial solution (type A), or infinitely many solutions (type C). 
 
Examples 

1. Solution of a linear system with 4 unknowns 

4

022

222

43

4321

431

321

421

=+++
=−+
=+−

=−+

xxxx

xxx

xxx

xxx

 

can be found by finding an equivalent triangular system by means of equivalent 
transformations of the extended matrix of the original system 





















−−
−

≅





















−−
−−

−
≅

≅





















−−
−−

−
≅





















−

−−
≅





















−
−

−

11000

88100

43110

41111

22100

88100

43110

41111

1010500

45010

43110

41111

43110

62140

02120

41111

41111

02201

20122

41031

 

The resulting triangular system has a unique solution (2, 1, 0, 1) that is also the 
solution of the original linear system. 
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2. Homogeneous system of linear equations 

02

022

0

321

321

321

=−+
=+−

=++

xxx

xxx

xxx

 

can be transformed to the triangular system  0,0,0 321 === xxx  with a unique 

trivial solution (0, 0, 0). 

3. Linear system with 3 unknowns 

33

122

22

321

321

321

=−+
=−+

=+−

xxx

xxx

xxx

 

can be transformed  

















−
−

≅
















−
−

−
≅

















−
−

−

0000

0110

1221

0550

0550

1221

3113

1221

2112

 

to the triangular system consisting of 2 equations 

0

122

32

321

=−
=−+

xx

xxx
 

while it contains no equation in the form 0 = c, c ≠ 0, therefore both systems have 
infinitely many solutions represented parametrically as (1, p, p), for an arbitrary 
number p. 
 
Geometric interpretation of a system of linear equations 
The solution of a system of two linear equations with two unknowns  

11 12 1

21 22 2

a x a y b

a x a y b

+ =
+ =

 11 12 1

21 22 2

. , , ,
a a bx

a a by

    
⇔ = = = =    

    
A X B A X B  

can be geometrically interpreted as a determination of a set of all common points of 
two lines in a plane. Each line is represented by one of the two equations that satisfy 
the Cartesian coordinates of its points.  

Two lines in a plane can have only one of the three possible superpositions: 

a) intersecting lines, the system of equations has a unique solution 

b) coinciding lines, the system of equations has infinitely many solutions 

c) parallel lines, the system of equations has no solution. 
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If 11 22 12 21 0a a a a− ≠ , then the system has a unique solution 

1 22 2 12 11 2 21 1

11 22 12 21 11 22 12 21

,
b a b a a b a b

x y
a a a a a a a a

− −= =
− −

. 

Denoting 

1 12 11 1
11 22 12 21 1 1 22 2 12 2 11 2 21 1

2 22 21 2

, ,
b a a b

D a a a a D b a b a D a b a b
b a a b

= = − = = − = = −A

then, if D ≠ 0, 1 2,
D D

x y
D D

= = . 

Analogously we can solve a system of 3 linear equations in 3 unknowns: 

11 12 13 1

21 22 23 2

31 32 33 3

a x a y a z b

a x a y a z b

a x a y a z b

+ + =
+ + =
+ + =

 

Any equation with three unknowns can be represented as an equation of a plane in 
the three-dimensional space that is satisfied by Cartesian coordinates of its points. 
Solutions of the system of three linear equations represent the coordinates of all 
common points of the three determined planes. According to a possible 
superposition of three planes in the space we obtain: 

    a) a unique solution, all planes meet in one common point  

    b) no solution, at least two of the planes are parallel 

    c) infinitely many solutions, the planes have one common line. 

Generally, the system of m linear equations with n unknowns can have: 

    1. a unique solution 

    2. infinitely many solutions 

    3. no solution.  
 
Cramer rule 
A linear system of n equations 11. ××× = nnnn BXA  with n unknowns has a unique 

solution if the determinant of the matrix of the system is nonzero, detA = D ≠ 0, and 
the solution is  

( ) 






=
D

D

D

D

D

D
xxx n

n ,...,,,...,, 21
21 , 

where D1, D2, ..., Dn are the determinants of matrices derived from the matrix A by 
exchanging entries in the i-th column with absolute coefficients bi, for i = 1, 2, ..., n. 
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The linear system can also be solved using an inverse matrix. Multiplying the 
equation A.X = C by inverse matrix A−1 from left, we obtain 
 

A−1.A.X = A−1.C ⇒ E.X = A−1.C ⇒ X = A−1.C 
 
Examples 

1.  Solution of the linear system of equations 
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 can be obtained using the Cramer rule, because the determinant of the matrix of 
this system is nonzero 
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For determinants D1, D2, D3 it holds that 
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therefore the unique solution for the system is 
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2. The above linear system can also be solved using the inverse matrix to the matrix 
A, which is matrix A-1 
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3 Differential calculus of functions with one real variable  
 
 
3.1  Definition of function  
 
The concept of function is a basic concept in mathematics used for the description of 
dependence of various quantities. In the majority of simple dependencies certain 
value of the investigated variable depends on the value of one or more independent 
variables. Developments in the understanding of our real world are a direct 
consequence of the discoveries made in the understanding of dependencies that 
describe interrelations of phenomena and processes in the nature and in the society. 
 
Examples 

1. The tone height of a guitar string depends directly on the string tension. 

2. Newton's law of universal gravitation states that every point mass in the universe 
attracts every other point mass with a force that is directly proportional to the 
product of their masses and inversely proportional to the square of the distance 
between them. 

3. The pressure exerted on a container's sides by an ideal gas is proportional to its 
temperature. 

4. Market price of a product is primarily determined by the interaction of supply 
and demand. 

5. Distance covered by a moving object within a time interval is proportional to the 
object velocity.  

6. Circumference of a circle is directly related to its radius. 

7. Area of a parallelogram is determined by the lengths of its sides.  

8. Volume of a solid changes according to its dimensions. 

9. Age of a human person influences her/his appearance.  

10. Mood of a human being is influenced by the level of endorphins in the blood. 
 
Mathematical models of the above situations describing proportionality between 
changing quantities in various contexts are the functions with one or more variables. 
Italian scientist Galileo Galilei (1564-1642) was the first who used quantitative 
methods of investigation of dependencies between quantities in his study of 
processes in dynamics. The idea to describe these interrelations among investigated 
quantities in an effective and precise way led to the development of many new 
mathematical concepts, such as mutual correspondence of number sets, mappings of 
sets, dependent and independent variables and function. They became the primary 
subject of study in mathematics for more than two centuries, and culminated in the 
establishment of a separate domain of mathematics known as mathematical analysis, 
differential and integral calculus.  
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The mapping of a number set to another number set is called function, usually 
denoted by letters f, g etc.  
Let M be a non-empty set of real numbers: M ≠ ∅, M ⊂ R. A rule f, that assigns 
exactly one element (real number) y ∈ R to each element (real number) x ∈ M  

f: M → R, x → y = f(x) 

is called a real function of a real variable, briefly a function f(x). The set M is called 
the domain of definition of function f and it is usually denoted by D(f) and we say 
that function f is defined on D(f). The number y = f(x) is the value of the function f at 
the point x ∈ M = D(f). The set of real numbers which are the values of function f,  

R(f) = {y: ∃ x ∈ D(f): y = f(x)}  

is called the range of function f, y is said to be the dependent and x the independent 
variable (or argument). 
A function may be written in a roster form (set of ordered pairs), in a table form, as 
an arrow diagram, in a graph or in an equation form (formula). If a function is given 
by an analytic formula, without specifying its domain D(f), then we are interested in 
those real x, for which the formula makes a sense. The set of all those x is then 
accepted as the domain D(f) of the given function, and it is said to be the natural 
(maximal) domain of definition.  
The set  

G(f) = {[x , y]: x ∈ D(f), y = f(x)} ⊂ R × R  

is called the graph of function f.  
The graph of a function with one real variable can be sketched in the Cartesian plane 
with the orthogonal coordinate system Oxy as a set of all points with coordinates 
[x, f(x)]. Coordinate axis x represents the independent variable and coordinate axis y 
the dependent variable. Domain D(f) is the orthogonal projection of the function 
graph G(f) onto the coordinate axis x, while range R(f) is the orthogonal projection 
of G(f) onto the coordinate axis y.  
A set of points in the Cartesian plane is the graph of a function, if each straight line 
parallel to the coordinate axis y has at most one common point with it.  
Geometrically the graph of a function interprets a lot of important information on the 
function behaviour, such as continuity, zero points, increasing or decreasing 
character of functional dependence, stationary points, points of extreme values and 
points of inflexion. 
 
Examples 

1. Function f is defined by formula 24: xyf −= , therefore its domain of 

definition is set D(f) = 〈−2, 2〉 and range is set R(f) = 〈0, 2〉. Function graph is 
semicircle with centre in origin and radius 2, in fig. 3.1, left. 
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Fig. 3.1. Graphs of functions 

 

2. Function g is defined on R = (−∞, ∞) by the following formulae 
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x
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while its range is interval R(f) = (−∞, 2〉. The function graph consists of 3 
separate parts, see fig. 3.1, right. 

3. Graph of function xxf =)(  defined on all real numbers R is a pair of semi-

lines with a common point in the origin, in the fig. 3.2, left.  
 

        
Fig. 3.2. Graphs of functions 

 

4. Graf of function f(x) defined on R = (−∞,∞) in the following way 
f(x) = 1 for all rational numbers x 
f(x) = −1 for all irrational numbers x 

can be described into words, but cannot be sketched in the Cartesian plane. 
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5. Function defined on set D = {−3, −2, −1, 0, 1, 2, 3} with values corresponding to 
arguments in the given order R = {−1, 0, 5, −8, 4, 2, 1} can be presented also in 
the form of a table, where a series of arguments in one row corresponds to the 
series of respective function values in the second row. 

 

x −3 −2 −1 0 1 2 3 

y −1 0 5 −8 4 2 1 

Table 3.1. Function values 

 
In addition to the case of functions defined on finite discrete sets, it is sometimes 
useful to also use the table form for functions whose domain of definition is an 
infinite number set. Then only important values, those that are of interest for specific 
reasons, are given in special selected points from function domain. This function 
definition is mostly used in natural and technical sciences, where the dependence of 
one variable on others is determined experimentally or by investigation. Logarithmic 
tables or tables of values of trigonometric functions were also prepared in this way, 
as these were the most frequently used functional dependencies in different sciences 
such as physics, astronomy, chemistry, or technical engineering sciences. 

Sometimes, a function can be described only with words, e.g. Euler function ϕ is 
defined for any natural number n so that its value Φ(n) is the number of natural 
numbers that are less than n and have no common divisors with n, for instance 

Φ(2) = 1, Φ(4) = 2, Φ(5) = 4, Φ(6) = 2 

and its graph is a set of separate points in the Cartesian plane. 

The advantage of an analytic function formula dwells in the fact that strong analytic 
methods were developed to analyse function behaviour by means of the concept of 
function derivatives. Moreover, function values can be expressed in arbitrary points 
from its domain and extremal values can be easily detected. Certain disadvantage 
can be seen with regard to the unsatisfactory exemplification and insight into the 
defined dependence, but this can be avoided using the function graph in the 
Cartesian coordinate system. 
 
3.2  Operations on functions  
 
Let function f(x) be defined on set M.  

Absolute value of function 
Function h(x), whose domain of definition is M and for all x ∈ M it holds that 
h(x) = f(x) is called the absolute value of function f(x), 

h: M → R0
+, x → y = f(x) 

where R0
+ is the set of all positive real numbers.  
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Product of number and function 
Let k be a real number. Function h(x), whose domain of definition is M and for all 
x ∈ M it holds that h(x) = k ⋅ f(x) is called the product of number k and function f(x). 

Sum, difference, product and quotient of functions 
Let f  and g be two functions with domains D(f) and D(g).  

• Functions f and g are equal to one another, if D(f) = D(g) and if for each x 
from the domain their values are equal, f(x) = g(x).  

• Function F defined on D(F) = D(f) ∩ D(g) is called the sum (difference, 
product, quotient) of functions f and g and denoted f + g (f − g, f ⋅ g, f / g), if 
for each x ∈ D(F)  

F(x) = f(x) + g(x), (F(x) = f(x) – g(x), F(x) = f(x) ⋅ g(x), F(x) = f(x) / g(x)).  

Apparently, points at which g(x) = 0 must be excluded from D(f) ∩ D(g), to 
obtain the domain of the quotient f / g. 
 

Composite function 
Suppose that the values of a function g with the domain D(g) can be used as 
arguments of a function f(x) with the domain D(f). It is then possible to blend f and g 
together to form a new function F(x), whose inputs are arguments of function f and 
whose values are numbers f(g(x)).  
Function F(x) 

F: M → R, x → (f ° g)(x) = f(g(x))  

is said to be composite function composed from functions f(x) and g(x), if its domain 
of definition D(F) is the set of all such numbers from the domain of definition of 
function g(x), in which the function g(x) value is a number from the domain of 
definition of function f(x), and for all x ∈ D(F) it holds that F(x) = f(g(x)). 
Value of function F at the point x equals to the value of function f at the point u that 
is the value of function g at the point x, u = g(x). Function f(u) is the major (outside) 
part (component) and function u = g(x) is the minor (inside) part (component) of the 
composite function F(x). 
 
Examples 

1. Function 
3

)5(2)(
−

−+=
x

x
xxxh  is the difference of functions f and g. The 

domain of definition of function f(x) = 2x(x + 5) is D(f) = R, as it is the product 
of functions f1(x) = 2x (product of the real number 2 and function y = x) with 
domain D(f1) = R and function f2(x) = x + 5 that is also defined on D(f2) = R, 

therefore D(f) = D(f1) ∩ D(f2) = R. Function 
3

)(
−

=
x

x
xg  is quotient of 

functions xxg =)(1  with the domain D(g1) = {x ∈ R: x ≥ 0} and g2(x) = x − 3 
with the domain D(g2) = R, while the domain of definition of function g1 / g2 is 
a set of all those points from intersection D(g1) ∩ D(g2), for which g2(x) ≠ 0, 
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therefore  x ≠ 3, which is the set D(g) = 〈0, 3) ∪ (3, ∞). The definition domain of 
function h(x) is finally set D(h) = D(f) ∩ D(g) that equals to 〈0, 3) ∪ (3, ∞), see 
the graph in fig. 3.2, right.  

2. Function F(x) = sin(x − π) is a composite function with a major part  f: y = sin x 
and a minor part g: y = x − π. Its value at the point x = 0 is F(0) = 0, as g(0) = −π, 
sin(−π) = 0. 

 
3.3  Some special classes of functions  
 
Bounded functions 
Function f(x) defined on set D(f) is called bounded (bounded above, bounded 
below), if such a real number K exists that for all x ∈ D(f) it holds that 

( ) ( ( ) , ( ) )f x K f x K f x K≤ ≤ ≥  

It means that a function is bounded (bounded above, bounded below), if its range 
R(f) is a bounded (bounded above, bounded below) set of real numbers. Function 
that is not bounded is called unbounded.  
The property of function to be bounded can be geometrically interpreted as follows: 

• graph of function f(x) bounded from above is under or in the line y = K, (see 
fig. 3.1, on the right) 

• graph of function f(x) bounded from below is over or in the line y = K, (see 
fig. 3.2, on the left) 

• graph of bounded function f(x) is in-between parallel lines y1 = −K, y2 = K, 
(see fig. 3.1, left). 

Function f  is said to be bounded on set M ⊂ D(f), if and only if number K > 0 exists 
and such that for all x ∈ M it holds that f(x) ≤ K. 

 
Examples 

1. Function 
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xf  defined on R is bounded. For any real number x it 

holds that 
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and if K = f(0) = ¼, f(x) ≤ K. The graph of function f is sketched in fig. 3.3. 

2. Function g(x) = 2 − x2 is bounded from above, as for all x ∈ D(f) = R it holds that 
g(x) ≤ 2. Its graph is a parabola with vertex in the point V = [0, 2], fig. 3.4.  

3. Function xxh =)(  is bounded from below, h(x) > 0, (fig. 3.2, on the left). 
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Fig. 3.3. Function graph   Fig. 3.4. Function graph 

 
Monotone functions 
There can be distinguished 4 types of monotone functions: increasing, decreasing, 
non-decreasing and non-increasing functions.  
A function f is called increasing (decreasing, non-decreasing, non-increasing), if for 
any two points x1, x2 from its domain of definition the following is valid:  

x1 < x2 ⇒ f(x1) < f(x2) (f(x1) > f(x2), f(x1) ≤ f(x2), f(x1) ≥ f(x2)). 

It is clear that any increasing function is non-decreasing, and any decreasing 
function is non-increasing, but the opposite is not true. Constant functions represent 
the only possible type of functions, which are non-decreasing and non-increasing 
simultaneously. Increasing and decreasing functions are said to be strictly monotone.  
 
Examples 

1. Function y = x2 is not monotone in the above sense, as none of the required 
conditions are fulfilled for each pair of points from its domain of definition 
D(f) = R. Nevertheless, restricting its domain to the set of non-negative numbers, 
it is easy to see that f is increasing there, and similarly f is decreasing on the set 
of non-positive numbers. 

2. Function 
x

yf
1

2: −=  is strictly monotone, as for all x from its domain of 

definition D(f) = R+ (all non-negative real numbers) it holds that 
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3. Function xxh =)(  is decreasing on (−∞, 0〉 and increasing on 〈0, ∞), (fig. 3.2, 

on the left). 
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4. Function 
x

x
xg =)( , x ≠ 0 is non-decreasing (non-increasing) on its domain of 

definition, see graph on fig. 3.5. 

  
Fig. 3.5. Function graph   Fig. 3.6. Function graph 

 
Periodicity of function 
A function  f  is called periodic, if a positive number p exists such that if  x ∈ D(f), 
then also x ± p ∈ D(f), and f(x + p) = f(x) for each x ∈ D(f). Number p is called the 
period of the function  f. 
All functional values of a periodic function repeat themselves infinitely many times, 
which means that the part of graph on any interval of the length p is also repeated 
infinitely many times and the whole graph of function consists of copies of it. 
 
Example 

1. Trigonometric functions are the most frequently used periodic functions. Period 
of the functions sine and cosine is p = 2π, while minimal period of the functions 
tangent and cotangent is p = π. 

 
Parity of functions 
Let function f be defined on set M such that for each x ∈ M is also –x ∈ M. Function 
f is said to be even, if for any x ∈ M it holds that f(−x) = f(x), and it is said to be odd, 
if for any x ∈ M it holds that f(−x) = −f(x). 

Function f: M → R, x → f(x) is on the set M: 

a) even, if ∀x ∈ M: −x ∈ M ∧ f(−x) = f(x) 

b) odd, if ∀x ∈ M: −x ∈ M ∧ f(−x) = −f(x). 

The graphs of even functions are symmetrical with respect to the coordinate axis y, 
while the graphs of odd functions are symmetrical with respect to the origin of the 
coordinate system. 
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Examples 

1. Function y = cos x is an even function, cos(−x) = cos x and the function graph is 
symmetric with respect to the coordinate axis y.  

2. Function y = sin x is an odd function, sin(−x) = − sin x and the function graph is 
symmetric with respect to the origin of the coordinate system. 

3. Function 
x

x
xf

−= 1
)(  is neither odd, nor even, see the function graph presented 

in fig. 3.6, as 
x

x
xf

x

x
xf

1
)(,

1
)(

−=−+−=− . 

 
One-to-one function 
Let f be a function defined on D(f). If for any two x1, x2 ∈ D(f), x1 ≠ x2 implies 
f(x1) ≠ f(x2), then the function is said to be one-to-one. A function is one-to-one if 
each straight line parallel to the coordinate axis x has at most one common point 
with the function graph G(f). Any strictly monotone function is on-to-one. 
 
Inverse function 
Let f be a one-to-one function with the domain D(f) and the range R(f) and let 
function f −1(x) be defined on R(f) as follows: for each y0 ∈ R(f): f −1(y0) = x0 ∈ D(f), 
if f(x0) = y0. Then function f −1 is called the inverse function of function f.  
Obviously: D(f −1) = R(f), R(f  −1) = D(f), (f  −1) −1 = f . 
Any inverse function is again one-to-one. The graphs of two mutually inverse 
functions f and f −1, therefore G(f) and G(f −1) are symmetric with respect to the 
straight line y = x. 
 
Examples 

1. Function f(x) = 2x + 3, whose domain and range is a set of all real numbers R is 
strictly monotone (increasing) function, as 

)()(323222 21212121 xfxfxxxxxx <⇒+<+⇒<⇒<  

therefore it is one-to-one, and its inverse function exists determined by 
exchanging depended and independent variables as follows 

2
3

,23,32
−==−+= y

xxyxy  

and the inverse function 
2

3
)(1 −=− x

xf  is defined on R . The graphs of f and f −1 

are in fig. 3.7. 
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Fig. 3.7. Graphs of inverse functions 

2. Trigonometric functions  y = sin x, y = cos x, y = tan x, y = cot x are periodic, it 
means that they acquire each value from their ranges infinitely many times, so it 
follows that they are not one-to-one and they have no inverse functions. 

 
3.4 Elementary functions  
 
A constant or power function with real exponent, exponential and logarithmic 
functions, trigonometric and their inverse cyclometric functions or hyperbolic and 
hyperbolometric functions are collectively called elementary functions.  
Any function represented by means of a finite number of operations such as sum, 
difference, product or quotient on these functions, or any function composed from a 
finite number of presented elementary functions is also considered an elementary 
function. 
An elementary function is considered to be defined for all those values of argument 
x, at which the given analytic formula makes sense, and it reaches a real value. 
Elementary functions are frequently used in mathematics and its applications. Many 
functions (often with rather complicated analytic formulas) describing for example 
the dependence of various physical variables, properties and behaviour of complex 
systems that are mathematical models of certain problems from technical practise, or 
determining influence of specific parameters on functionality of some technical 
devices, are elementary functions. Their properties can be investigated by means of 
differential calculus. 
 
Rational functions 
A polynomial function is P in x defined on R by the formula     

P(x) = an x
n + an−1 x

n−1+ ...+a1 x + a0 

where n is a non-negative integer and real numbers a0, a1,..., an are its coefficients. 
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Polynomial is of degree n if an ≠ 0. The graph of the polynomial function is a curve 
of degree n, which means that it has at most n intersection points with a straight line 
passing not parallel to the coordinate axis y. 
For a0 = a1 = ... = an = 0 is P(x) = 0 for all x ∈ R. This polynomial is called zero 
polynomial. For n = 0, a0 ≠ 0 it holds that P(x) = a0 for all x ∈ R, which is a non-
zero constant function with a graph in a straight line y = a0 parallel to the coordinate 
axis x. 
For n = 1, P(x) = a1 x + a0  for all x ∈ R is a polynomial of degree 1, which is a linear 
function with a graph in a line, increasing or decreasing on R. 
For n = 2, P(x) = a2 x

2 + a1 x + a0  for all x ∈ R is a polynomial of degree 2, which is 
a quadratic function with a graph in a parabola with axis parallel to the coordinate 
axis y, fig. 3.4. 
For n = 3, P(x) = a3 x

3 + a2 x
2 + a1 x + a0  for all x ∈ R is a polynomial of degree 3, 

which is a cubic function. The graph of a cubic function is a curve of degree three 
called a cubic curve. 
Let P(x) be an arbitrary polynomial, Q(x) be a non-zero polynomial, and let M be a 
set of all those real numbers x, for which Q(x) ≠ 0. Function R(x) defined on M by 
the formula 

)(

)(
)(

xQ

xP
xR =  

is called a rational function. If the degree of polynomial in the enumerator is less 
than the degree of polynomial in the denominator, then the function is called purely 
rational, otherwise it is called not-purely rational. 
 
Power functions 
Function f: y = xr for x > 0, where r is a real number, is a power function.  
For natural number r = n, function y = xn is defined on R and it is called a power 
function with natural exponent. In the case of an even number n, the range is 
H = 〈0, ∞) and the function is even, increasing on interval 〈0, ∞) and decreasing on 
interval (−∞, 0〉. For all odd numbers n the range of power function with natural 
exponent is H = R, while the function is odd and increasing on R. 
If exponent r is a negative integer number, then y = xr defines a rational function on 
the set D = (−∞,0) ∪ (0,∞).  

If N∈= q
q

r ,
1

, then function qq xxry ===
1

is defined on R for an odd q, 

while it is defined on interval 〈0, ∞) for an even q. 
The graph of a power function y = xr for r = 0, r = 1 is a straight line y = 1, y = x, for 
r = ½ it is a part of parabola with axis in the coordinate axis x and vertex in the 
origin, fig. 3.8, left. 
Hyperbola with equal semi-axes, axes in the coordinate axes x and y and the centre 
in the origin is the graph of a power function with exponent r = −1, y = x−1. 
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Fig. 3.8. Graphs of power functions 

 
Exponential function 
Function f(x) = ax, a >0, a ≠ 1 defined on R is an exponential function increasing for 
a > 1 and decreasing for 0 < a < 1, with the range H(f) = (0, ∞). 
 

 
Fig. 3.9. Graphs of exponential functions 

 
Exponential function is a constant function for a = 1 with the value 1, its graph is a 
straight line parallel to coordinate axis x. This function is not one-to-one, therefore it 
is usually assumed that a ≠ 1, if not stated differently. 
Especially important function is the natural exponential function y = ex with the base 
equal to the transcendent Euler number e = 2,718281... . 
Let x1, x2 be two real numbers, then the following holds: 
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Logarithmic function 
Function 1,0,log)( ≠>= aaxxf a defined on interval D(f) = (0, ∞) with range 

H(f) = R is a logarithmic function, increasing for a > 1 and decreasing for 0 < a < 1. 
Logarithmic function is an inverse to exponential function. Its graph is symmetric to 
the graph of exponential function with respect to line y = x. 
 

 
Fig. 3.10. Graphs of logarithmic functions 

 
The value of logarithmic function at the point x is logarithm of number x for the base 
a, loga x, i.e. it is the value of the exponent to which base a should be raised to 
obtain x. 
The most frequently used logarithms in practical calculations are decimal logarithms 
with the base a = 10, the decimal logarithmic function is usually denoted 
y = lg x = log10 x, and natural logarithms with the base in Euler number e, while the 
natural logarithmic function is denoted y = ln x = loge x. 

For any x > 0, y > 0, a > 0, a ≠ 1 the following holds: 

x

a
r

a

aaa

aaa

aax.

rxrx

yx
y

x

yxxy

log4

,loglog.3

logloglog.2

logloglog.1

=

∈=
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+=

R
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Trigonometric functions 
Functions sine, cosine, tangent and cotangent are collectively called trigonometric 
functions. 
The function sine defined on R, with range H = 〈−1, 1〉, 

sin x: R → 〈−1, 1〉: y = sin x 

is an odd function, periodic with period 2π, bounded, and its graph is a sinusoidal 
curve in fig. 3.11. 

 
Fig. 3.11. Graf of function sine – sinusoidal curve 

 
Function cosine defined on R, with range H = 〈−1, 1〉, 

cos x: R → 〈−1, 1〉: y = cos x 

is an even function, periodic with period 2π, bounded, and its graph is a shifted 
sinusoidal curve. 

 
Fig. 3.12. Graf of function cosine – shifted sinusoidal curve 

 
Function tangent is defined as the quotient of functions sine and cosine for those 

x ∈ R, for which cos x ≠ 0, its domain is 






 ∈+≠∈= ZR k

k
xxD ,

2

π)12(
: , 

while its range is R. 

tan x (tg x): D → R: )tg(tan
cos
sin

xx
x

x
y ===  
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It is an odd function, periodic with period π, unbounded, and increasing on all 

intervals Z∈






 ++− kkk ,π
2

π
,π

2

π
. 

 

 
Fig. 3.13. Graf of function tangent 

 
Function cotangent is defined as the quotient of functions cosine and sine for those 
x ∈ R, for which sin x ≠ 0, its domain is { }ZR ∈≠∈= kkxxD ,π: , while its 
range is R. 

cot x: D → R: )cotg(cot
sin
cos

xx
x

x
y ===  

It is an odd function, periodic with period 2π, unbounded, and decreasing on all 
intervals( ) Z∈+ kkk ,π)1(,π . 
 

 
Fig. 3.14. Graf of function cotangent 
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Cyclometric functions 
Trigonometric functions are periodic, it means that they assume each value from 
their ranges infinitely many times, therefore they are not one-to-one and they have 
no inverse functions. But if these functions are considered to be defined on those 
relevant parts of their natural domains on which they are one-to-one, their inverse 
functions exist, they are called cyclometric functions and they are defined as below. 

The function arcsine is inverse to function sine on interval 〈−π/2, π/2〉, its domain is 
D = 〈−1, 1〉 and its range is H = 〈−π/2, π/2〉. 

arcsin: 〈−1, 1〉 → 〈−π/2, π/2〉: y = arcsin x 

It is increasing, bounded and odd, and for all u ∈ 〈−1, 1〉 it holds that 
v = arcsin u ⇔ u = sin v. 

 
Fig. 3.15. Graph of function arcsine 

 
The function arccosine is inverse to function cosine on interval 〈0, π〉, its domain is 
D = 〈−1, 1〉 and its range is H = 〈0, π〉.  

arccos: 〈−1, 1〉 → 〈0, π〉: y = arccos x 

It is decreasing and bounded, while for all u ∈ 〈−1, 1〉 it holds that 
v = arccos u ⇔ u = cos v. 

 
Fig. 3.16. Graph of function arccosine 
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The function arctangent is inverse to function tangent on interval (−π/2, π/2), its 
domain is R and its range is H = (−π/2, π/2). 

arctan: R → (−π/2, π/2): y = arctan x 

It is increasing, bounded and odd, while for all u ∈ R it holds that 
v = arctan u ⇔ u = tan v. 

 
Fig. 3.17. Graph of function arctangent 

 

The function arccotangent is inverse to function cotangent on interval (0, π), its 
domain is R and its range is H = (0, π). 

arccot: R → (0, π): y = arccot x 

It is decreasing and bounded, while for all u ∈ R it holds that 
v = arccot u ⇔ u = cot v. 

 
Fig. 3.18. Graph of function arccotangent 
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Hyperbolic functions  
Function sine hyperbolic is defined by the formula 

sinh x: R → R: 
2

sinh
xx ee

xy
−−==  

and it is an odd function, increasing. 
Function cosine hyperbolic is defined by the formula 

cosh x: R → 〈1, ∞): 
2

cosh
xx ee

xy
−+==  

and it is an even function, decreasing on interval (−∞, 0) and increasing on interval 
(0, ∞). 

 
 Fig. 3.19. Sine hyperbolic      Fig. 3.20. Cosine hyperbolic 
 
Function tangent hyperbolic is defined by the formula 

tanh x: R → (−1,1): 
xx

xx

ee

ee

x

x
xy −

−

+
−===

cosh

sinh
tanh  

and it is an odd function, increasing. 
 

 
Fig. 3.21. Tangent hyperbolic 
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Function cotangent hyperbolic is defined by the formula 

coth x: R − {0}→ R − 〈−1, 1〉: 
xx

xx

ee

ee
xy −

−

−
+== coth  

and it is an odd function, decreasing. 

 
Fig. 3.22. Cotangent hyperbolic 

 
Inverse hyperbolic functions (area hyperbolic, hyperbolometric functions) 
Hyperbolometric, or area hyperbolic functions, are inverse functions to hyperbolic 
functions on intervals, on which these functions are strictly monotone. 
Inverse hyperbolic sine 

x = sinh y, y ∈ R, y = arcsinh x, x ∈ R. 

 

 
Fig. 3.23.  Graph of function inverse hyperbolic sine 
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Inverse hyperbolic cosine 

x = cosh y, y ∈ 〈0, ∞), y = arccosh x, x ∈ 〈1, ∞). 

 
Fig. 3.24. Graph of function inverse hyperbolic cosine 

 
Inverse hyperbolic tangent 

x = tanh y, y ∈ R, y = arctanh x, x ∈ 〈−1, 1〉. 

 
Fig. 3.25. Graph of function inverse hyperbolic tangent 

 
Inverse hyperbolic cotangent 

x = coth y, y ≠ 0, y = arccoth x, x > 1. 
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3.5  Sequences  
 
Every function f defined on the set of all natural numbers D(f) = N, is called a 
sequence. If its range of values is a set of real numbers, R(f) ⊂ R, function f is called 
a numerical or number sequence. The value f(n), for n ∈ N is called the n-th term 
(member) of the sequence, while its usual notation is an instead. All terms of the 

sequence are referred as {an}, or ∞
=1}{ nna . 

 
Examples 

1. The following notations have the same meaning 

{ } ,...
4

3
,

3

2
,

2

1
,0

1
,

1
)( =







 −=∈−=

n

n
an

n

n
nf nN,  

2. Arithmetic sequence is defined as {a + (n − 1)d}, where a is the first term and d 
is the difference, both are real numbers.  

3. Geometric sequence with the first term a and quotient q, both real numbers, is 
defined by formula an = aqn-1.  

4. Sequence ,...
1

,...,
3

1
,

2

1
,1

1

nn
=









is called harmonic sequence. 

5. Sequence 2, 3, 5, 7, ..., pn, ... is the sequence of prime numbers, where n-th term  
pn is the n-th largest prime. 

 
Sequences are real functions, so they can possess some of the general properties of 
real functions. 
The graph of a sequence is a set of isolated points {An = [n, an], n ∈ N, fig. 3.26. 

 

 
Fig. 3. 26. Graph of a sequence 

 



55 
 

The domains of definition disable sequences to be even, odd or periodic, but they 
can be monotone or bounded. Monotonicity and boundedness of sequences is 
defined in the same way as for real functions of a real variable. The definition of 
monotonicity for sequences can be simplified in the following way:  
A sequence {an} is increasing (decreasing, non-decreasing, non-increasing), if for 
each n ∈ N  

an < an+1 (an > an+1, an ≤ an+1, an ≥ an+1). 

Increasing, non-decreasing, decreasing and non-increasing sequences are called 
monotone sequences, increasing and decreasing sequences are called strictly 
monotone sequences. 
 
Examples 

1. Arithmetic sequence is increasing for positive difference, d > 0, and decreasing 
for negative difference, d < 0, while it is stationary for d = 0. 

2. Geometric sequence is decreasing for q < 1, and it is increasing for q > 1, while it 
is stationary for q = 1. 

3. Harmonic sequence is decreasing for all natural n. 

4. Sequence of primes is increasing. 
 
Sequence {an} is bounded (bounded below, bounded above) if such real numbers K, 
L exist that for all natural numbers n it holds that 

K < an < L (K < an, an < L). 

 

 
Fig. 3.27. Graph of bounded sequence 
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Number K or L is called the lower, or upper bound of sequence. All points on the 
graph of bounded sequences are in the layer between parallel lines with equations 
y = L, y = K. All points on the graph of a sequence bounded from above or from 
below are in one half-plane determined by the line with equation y = L. 
 
Examples 

1. Arithmetic sequence with positive difference is bounded from below; sequence 
with negative difference is bounded from above. 

2. Harmonic sequence is bounded, as for all natural n it holds that 1
1

0 ≤<
n

. 

 
Fig. 3.28. Graph of harmonic sequence 

 

3. Oscillating sequence ,...1,1,1,1})1{( 1 −−=− ∞
=n

n is bounded. 

 
Limit of a sequence  
The concept of a limit of a sequence is one of the most important concepts in 
mathematics. It describes a special property of some sequences, which can be 
represented as the following tendency: with an increasing n the corresponding 
sequence terms assume a value close to a certain number called the limit of a 
sequence.  
Let us consider a sequence  

,...
4

3
,

3

2
,

2

1

1
=









+n

n
 

that is increasing, bounded, and it has a special property that if n tends to infinity, its 
n-th term tends to one. For large enough n its terms are very close to number 1. In 
geometric interpretation we obtain points on the sequence graph appearing close to 
the line y = 1, and their distance is diminishing with an increasing n.  
Choosing an arbitrary small positive number ε > 0, such term always exists in the 
sequence, from which all consequent terms are in a distance from 1 that is lesser 
then the chosen ε. This leads to the concept of a limit of a sequence.  
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Fig. 3.29. Graph of sequence 
 

Let {an} be a sequence and a be a real number. If for any ε > 0 such a number n0(ε) 
exists that for each n ∈ N, n > n(ε) it holds that   an − a  < ε , then number a is 
called a (proper) limit of the sequence {an}, the sequence is said to be convergent to 
a, and it is written as 

aan
n

=
∞→

lim  

Briefly: εεεε <−>>∀∃>∀⇔=
∞→

aannnaa nn
n

)(:)(,0lim 00  

A sequence that is not convergent is called divergent. 
 
Examples 

1. 1
1

lim =
+∞→ n

n
n

 

2. 0
1

lim =
∞→ nn

 

3. Sequence ∞
=− 1})1{( n

n  has no limit. 

 

 
Fig. 3.30. Graph of sequence limit 
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Alternatively, the limit of a sequence can also be determined as a property of almost 
all sequence terms to be in an ε-neighbourhood of the number a that is the sequence 
limit, see fig. 3.30. 
Number a is called the limit of a sequence {an}, if for any number ε > 0 and for 
almost all sequence terms an it holds that | an − a| < ε. 
In other words:  
Number a is called the limit of a sequence {an}, if any neighbourhood Oε(a) contains 
almost all sequence terms. 
For relations between convergence and boundedness or monotonicity of a sequence, 
the following is valid.  

1. Any sequence has at most one limit (i.e. none or just one). 

2. Sequence {an} has a limit if and only if the sequence {an − a} has a limit 
equal to 0. 

3. If 0lim =
∞→ n

n
a , then also 0lim =

∞→ n
n

a and vice versa, if 0lim =
∞→ n

n
a , then also 

0lim =
∞→ n

n
a . 

4. Let it hold for all terms of sequence {an} that an ≤ A (an ≥ A) and let 
aan

n
=

∞→
lim . Then it holds that a ≤ A (a ≥ A). 

5. Sandwich theorem: Let aan
n

=
∞→

lim , acn
n

=
∞→

lim , and let it hold for all 

natural n that an ≤ bn ≤ cn , then abn
n

=
→∞

lim . 

6. Any convergent sequence is bounded. Unbounded sequence is divergent. 

7. Any sequence that is both monotone and bounded is convergent. 

8. Let sequences {an}, { bn} be convergent. Then the following sequences are 

convergent: {k ⋅ an}, k ∈ R, {an ± bn}, { an
 ⋅ bn}, 0, ≠









n
n

n b
b

a
 for all n.  

If aan
n

=
∞→

lim , bbn
n

=
∞→

lim , then akak n
n

⋅=⋅
∞→

lim , ( ) baba nn
n

±=±
∞→

lim , 

baba nn
n

⋅=⋅
∞→

lim , 0,lim ≠=
∞→

b
b

a

b

a

n

n

n
. 

 
Examples 

1. Let there be two different limits a ≠ b of a sequence {an}. Then almost all 
sequence terms are in any neighbourhood Oε(a) and also Oε(b), it means, in their 
intersection. Then choosing ε = (b − a)/3 > 0, we obtain Oε(a) ∩ Oε(b) = ∅, 
which means that almost all sequence terms can be only in one of the two 
neighbourhoods, therefore the sequence does not have two different limits. 
Property 1 has been proved. 
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2. For all terms of sequence { } ,...
1

,...,
3
1

,
2
1

,1
n

an = it holds that an ≤ 1, and 

10lim <=
∞→ n

n
a . 

3. Sequence {(−1)n }is bounded, but not convergent. It is neither monotone. 

4. Sequence ,...
9

64
,

4

9
,2

1
1 =




















 +
n

n
 is increasing and bounded, as 1 < an < 3, 

therefore it is convergent and its limit equals to Euler number e, 

e
n

n

n
=







 +
∞→

1
1lim . 

 
Fig 3.31. Graph of sequence 

 
Improper limit of a sequence 
Suppose sequence {an} is increasing, unbounded, and therefore not convergent. For 
all terms of such sequence it holds that with an increasing index n the value of the 
sequence terms is also increasing without any bounds. It means that for any number 
A such a number n0 must exist that for all n > 0 it is an > A, i.e. almost all the 
sequence terms are in any neighbourhood OA(∞). This leads to the concept of an 
improper limit ∞ of a sequence. 
The sequence {an} has an improper limit ∞, if almost all its terms are in any 
neighbourhood OA(∞), that is to any number A such number n0 exists that for all 
n > 0 it is an > A, which means ∞=

∞→ n
n

alim . The sequence {an} has an improper 

limit −∞, if almost all its terms are in any neighbourhood OA(−∞), that is to any 
number A such number n0 exists, that for all n > 0 it is an < A, which means 

−∞=
∞→ n

n
alim . 

In brief:  
AannnAa non

n
>>∀∃∀⇔∞=

∞→
::,lim 0 , fig. 3.32 

AannnAa non
n

<>∀∃∀⇔−∞=
∞→

::,lim 0 , fig. 3.33. 
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Fig. 3.32. Graph of a sequence with improper limit ∞ 

 

  
Fig. 3.33. Graph of a sequence with improper limit -∞ 

 
For a sequence {an}, only one of the following is true: 

1. There exists a proper limit aan
n

=
∞→

lim . 

2. There exists an improper limit ∞=
∞→ n

n
alim . 

3. There exists an improper limit −∞=
∞→ n

n
alim . 

4. There exists no proper or improper limit, the sequence is oscillating. 
 

Examples 

1. Sequence {n2} = 1, 4, 9, ... is increasing and unbounded, so it is divergent and 

∞=
∞→

2lim n
n

. 
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2. Sequence {1-2n} = −1, −3, −26, ... is decreasing and unbounded, so it is divergent 

and −∞=−
∞→

)21(lim n

n
. 

3. Sequence {(1 − n)n} = 0, 1, −8, 81, ... is unbounded and oscillating, so it has no 
limit. 

 
Some properties of the limit of monotone sequences:  

1. Let sequence {an} be non-decreasing. If it is not bounded from above, then 
∞=

∞→ n
n

alim . If it is bounded from above, then it has a proper limit a and 

an ≤ a for all n. 

2. Let sequence {bn} be non-increasing. If it is not bounded from below, then 
−∞=

∞→ n
n

alim . If it is bounded, it has a proper limit a and an ≥ a for all n. 

3. Monotone sequence is convergent if and only if it is bounded. 

4. Let sequence {an} be bounded and let ∞=
∞→ n

n
blim . Then  

( ) ( ) nb
b

a
baba n

n

n

n
nn

n
nn

n
∀≠=−∞=−∞=+

∞→∞→∞→
0,0limlimlim . 

5. If ∞=
∞→ n

n
alim  and ∞=

∞→ n
n

blim , then ( ) ( ) ∞=⋅∞=+
∞→∞→ nn

n
nn

n
baba lim,lim . 

6. If ∞=
∞→ n

n
alim  and −∞=

∞→ n
n

blim , then  

( ) ( ) −∞=⋅∞=−
∞→∞→ nn

n
nn

n
baba lim,lim . 

7. If 0lim ≠=
∞→

aan
n

 and ∞=
∞→ n

n
blim , then 

( )
( ) 0,lim

0,lim

<−∞=⋅

>∞=⋅

∞→

∞→

aba

aba

nn
n

nn
n . 

8. If 0lim ≠=
∞→

aan
n

 and nbb nn
n

∀>=
∞→

,0,0lim , then 

0,lim

0,lim

<−∞=

>∞=

∞→

∞→

a
b

a

a
b

a

n

n

n

n

n

n

. 

 
Examples 

1. ∞=
∞→

n

n
2lim , therefore 0

2
1

lim =
→∞ nn

. 

2. ∞=






 −−=−−
∞→∞→

3
32

3 105
1lim)105(lim n

nn
nn

nn
 because  

∞=>=






 −−
∞→∞→

3
32 lim,01

105
1lim n

nn nn
. 
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3. 0
134

1

251

lim
134

25
lim

42

432

234

2

=
+++

++
=

+++
++

∞→∞→

nnn

nnn
nnn

nn
nn

, because 

0
251

lim,01
134

1lim
43242

=






 ++≠=






 +++
∞→∞→ nnnnnn nn

. 

 
3.6 Limit and continuity of function 

 
The concept of a limit of a function is one of the basic concepts in calculus leading 
to other important concepts as continuity, derivative, or anti-derivative of a function. 
The limit of a function determines the behaviour of the function in the 
neighbourhood of a certain point, while the function itself is defined on a certain 
neighbourhood of this point but not necessarily in the point itself. 

Let us investigate the function 
1

1
)(

2

−
−=

x

x
xf  defined for all real numbers but 1, 

D(f) = R − {1}, in the neighbourhood of point 1. The function values are 
f(0.8) = 1.8, f(0.9) = 1.9, f(1.1) = 2.1, f(1.2) = 2.2, therefore the function values are 
approaching number 2, and it is said that the limit of function f at the point 1 equals 
to 2, fig. 3.34. 

 
Fig. 3.34. Limit of function          Fig. 3.35. Limit of function – Heine definition 

 
This property can be precisely formulated in the following Heine definition of the 
limit of function f at the point a, where f is defined on some neighbourhood of point 
a, see fig. 3.35. 
Let function f  be defined for all x ≠ a from some neighbourhood of point a. Function 
f  is said to have limit b at the point a, if for any sequence {xn} of points from the 
domain of definition of function f such that xn ≠ a convergent to a the corresponding 
sequence of function values {f(xn)} has the limit b. 
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[ ]bxfaxfDxaxbxf n
n

nnn
nax

=⇒≠∈=⇔=
∞→∞→→

)(lim),(,lim)(lim  

The definition of the limit of function describes the fact that in points x slightly 
different from the point a (but different from a) the values f(x) differ only slightly 
from b. 

Cauchy definition of the limit of function at the point a 
Let function f be defined for all x ≠ a from some neighbourhood of point a. Function 
f is said to have limit b at the point a, if to any neighbourhood Oε(b) such 
neighbourhood Oδ(a) exists that for all x ∈ Oδ(a), x ≠ a is f(x) ∈ Oε(b). 

εδδε <−⇒<−<>∃>∀ bxfax )(0:00  

The Cauchy definition of bxf
ax

=
→

)(lim  can be interpreted geometrically as the 

property of the function graph in the neighbourhood Oδ(a) of point a to be located in 
the layer between the parallel lines y = b − ε, y = b + ε, see fig. 3.36. 
The function has no limit at the point a, if for some (at least one) ε-neighbourhood 
of number b, Oε(b) = (b − ε, b + ε), there exists no δ-neighbourhood of point a, 
Oδ(a) = (a − δ, a + δ), such that for all points from this neighbourhood different from 
a, x ≠ a, is f(x) ∈ Oε(b), see fig. 3.37. 

           
Fig. 3.36. Limit of function – Cauchy definition     Fig. 3.37. Non-existing limit of function 
 
Basic properties of limit of a function 

P1. Any function f can have at most one limit. 

P2. 0))((lim)(lim =−⇔=
→→

bxfbxf
axax

 

P3. Let bxf
ax

=
→

)(lim  and let there exists such neighbourhood O(a) that for all 

axaOx ≠∈ ),( is LxfK ≤≤ )(  (the function is bounded on O(a)), then 

K ≤ b ≤ L. 
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Fig 3.38. Limit of a function bounded on O(a) 

 
P4. If f(x) = c, c ∈ R, D(f) = R, then function f  has limit for all a ∈ R and 

cxf
ax

=
→

)(lim . 

P5. Limit of three functions: Let bxf
ax

=
→

)(lim  and bxh
ax

=
→

)(lim  and let there be 

such neighbourhood O(a) of point a that for all axaOx ≠∈ ),(  is 

)()()( xhxgxf ≤≤ . Then it also holds that bxg
ax

=
→

)(lim . 

P6. If Axf
ax

=
→

)(lim  and Bxg
ax

=
→

)(lim  and k, l are real numbers, then: 

a) [ ] lBkAxglxfkxglxfk
axaxax

±=±=⋅±⋅
→→→

)(lim)(lim)()(lim  

b) BAxgxfxgxf
axaxax

⋅=⋅=⋅
→→→

)(lim)(lim)()(lim  

c) If 
B

A

xg

xf

xg

xf
b

ax

ax

ax
==≠

→

→

→ )(lim

)(lim

)(

)(
lim,0  

d) [ ]lim ( ) lim ( ) ,k k k

x a x a
f x f x A k

→ →
 = = ∈
 

N  

e) 0,,lim
)(lim)( ≠∈== →

→
ccccc Axfxf

ax

ax R   

P7. Limit of a composite function: Let Bufbxg
buax

==
→→

)(lim,)(lim  and let there be 

such neighbourhood O(a) of point a that for all axaOx ≠∈ ),( it holds that 
g(x) = b. Then the composite function f(g(x)) has the limit at point a and 

( ) Bufxgf
buax

==
→→

)(lim)(lim . 
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Examples 

1. Let function R∈= x
x

xxf ,
1

sin)( , then 0)(lim
0

=
→

xf
x

. 

        
     Fig. 3.39. Graph of R∈= x

x
xxf ,

1
sin)(               Fig. 3.40. Graph of 

31

28
)(

3 −−
−=

x

x
xf  

 

2. 13494limlim)4(lim
3

2

3

2

3
=+=+=+

→→→ xxx
xx  

3. 1
2

2

1lim

2lim

1

2
lim

2

1

5

1
2

5

1
−=−=

+
=

+
−→

−→

−→ x

x

x

x

x

x

x
 

4. 122222lim 011
1lim

3
lim1

3
lim1

3

3

333 ===== −







 −






 −−

→

→→→ xxx

xxx

x
 

5. 27
31

28
lim

328
=

−−
−

→ x

x
x

, because  if 31)( 3 −−== xxgu , 

then 27)3(28)3(113 333 −+=−⇒+=−⇒−=+ uxuxxu  

and substitution to 
31

28
)(

3 −−
−=

x

x
xf  results in  

( ) 279
27)3(

)()( 2
3

++=−+== uu
u

u
ufxgf   

that yields 

( ) 27279lim
27)3(

lim
31

28
lim 2

28

3

0328
=++=−+=

−−
−

→→→
uu

u

u

x

x
xux
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6. 1lim 12

1
=−

→

x

x
x , because if 12)( −== xxgu , then 

u
u

uf
u

x 






 +=+=
2

1
)(,

2

1
 

and 11
2

1
lim

2

1
limlim 1

lim

11

12

1

1

==






 +=






 +=
→

→→

−

→

u

u

u

u

x

x

uuu
x  

 
Improper limit of a function 
In the definition of a limit of function the letters a, b denote numbers. Exchanging 
letter b by symbol ∞ or −∞, the definition of improper limit of function at the point a 
is defined. 
Let function f be defined for all x ≠ a from some neighbourhood of point a. Function 
f  has an improper limit ∞, or −∞, at the point a, if from  

axfDxax nnn
n

≠∈=
∞→

),(,lim
 
implies 

,)(lim)(lim ∞==
→∞→

xfxf
ax

n
n

 or −∞==
→∞→

)(lim)(lim xfxf
ax

n
n

. 

Briefly: 

lim ( ) lim , ( ), lim ( )n n n n
x a n n

f x x a x D f x a f x
→ →∞ →∞

 = ∞ ⇔ = ∈ ≠ ⇒ = ∞
 

 

 

lim ( ) lim , ( ), lim ( )n n n n
x a n n

f x x a x D f x a f x
→ →∞ →∞

 = −∞ ⇔ = ∈ ≠ ⇒ = −∞
 

 

The geometric interpretation of the fact that function f  has an improper limit ∞ or 
−∞ at the point a means that if x is approaching a, then the values of f(x) are 
increasing above any bounds. 
 

 
Fig. 3.41. Improper limit ∞ of function f          Fig. 3.42. Improper limit −∞ of function f 
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Limit of function at improper point 
Exchanging letter a in definition of the limit of function by symbol ∞ or −∞, the 
definition of the limit of function at the improper point ∞ or −∞ is defined. 
Let function f  be defined on interval (−∞, a) or (a, ∞). Function f  has limit b at the 
improper point −∞ or ∞, if for any neighbourhood O(b) such number A > 0 exists 
that for all x < −A or all x > A  it holds that f(x) ∈ O(b), which is denoted as 

bxfbxf
xx

==
∞→−∞→

)(limor,)(lim . 

 

            
Fig. 3.43. Limit of function f at −∞                 Fig. 3.44. Limit of function f at ∞ 

 
 
 

          
  Fig. 3.45. Improper limit ∞ of f at −∞            Fig. 3.46. Improper limit ∞ of f at ∞ 
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Improper limit of function at improper point 
Let function f be defined on interval (−∞, a) or (a, ∞). The function f has improper 
limit ∞ in the improper point −∞ or ∞, if for any K > 0 such number A > 0 exists that 
for all x < −A or x > A it holds that f(x) > K. 

∞=∞=
∞→−∞→

)(limor,)(lim xfxf
xx

 

 
Similarly, the improper limit −∞ at improper point −∞ or ∞ can be defined. 
 
Properties of improper limit of a function 
P8. If 0)(lim,0)(lim =≠=

→→
xgbxf

axax
 and for all x ≠ a from some neighbourhood 

O(a) it holds that  

−∞=<
→ )(

)(
lim  then  ,0

)(

)(
ax xg

xf

xg

xf
, 

∞=>
→ )(

)(
lim  then  ,0

)(

)(
ax xg

xf

xg

xf
. 

P9. Let function f(x) be bounded on some neighbourhood of point a and let 
∞=

→
)(lim xg

ax
, then 

[ ] 0
)(

)(
lim,)()(lim =∞=+

→→ xg

xf
xgxf

axax
. 

P10. If 0)(lim ≠=
→

bxf
ax

 and such number p > 0 exists that for all x ≠ a from some 

neighbourhood of point a is g(x) > p, then ∞=⋅
→

)()(lim xgxf
ax

. 

 
Examples 

1. ( ) ( ) ∞=
−
+

⇒=−=+∞=
−
+

→→→→ 22

2

2x2x22 2

1
lim0)2(lim,3)1(lim  because ,

2

1
lim

x

x
xx

x

x
xx

  

2. 
5

2

05

002
1

5

11
2

lim
5

12
lim

2

3

3

23

=
−

−+=
−

−+
=

−
−+

∞→∞→

x

xx
xx

xx
xx

 

3. ( )  lim  and  ,1sin  because,sinlim ∞=≤∞=+
∞→∞→

xxxx
xx

 

4. ∞==
∞→∞→

x
x

x
xx
lim  because ,0

sin
lim  and sin x is the bounded function. 
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Fig. 3.47. Graph of function xx sin+              Fig. 3.48. Graph of function 

x

xsin  

5. 
1 1 1 1

lim lim 0  lim  lim 0 0,  
k

k
kx x x xx x x x→∞ →−∞ →∞ →∞

 = = ⇒ = = = 
 

 

1 1
lim  lim 0 0

k
k

kx xx x→−∞ →−∞

 = = = 
 

 

 
One sided limits 
If we replace neighbourhood Oδ(a) of point a in the definitions of limits by the left 
O-
δ(a) or the right O+

δ (a) neighbourhood, we obtain definitions of one-sided limits.  

Limit on the right of f(x) at a 

)()()(:0,0)(lim bOxfaOxbxf
ax

εδδε ∈⇒∈>∃>∀⇔= +

→ +
 

Limit on the left of f(x) at a 

)()()(:0,0)(lim bOxfaOxbxf
ax

εδδε ∈⇒∈>∃>∀⇔= −

→ −
 

If b = ∞ or −∞, function f has improper limit on the right or on the left at the point a.  

Theorem. The limit of function f at the point a exists if and only if both one-sided 
limits exist at the point a and they are equal 

)(lim)(lim)(lim xfxfxf
axaxax −+ →→→

==  . 

If some of the one-sided function limits does not exist at the point a, then the limit of 
function f does not exist at the point a. 

All properties P1 – P10 are equally valid for one-sided limits.  
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Examples 

1. 02lim
2

=+
+−→

x
x

  

2. ∞=
+→ xx

1
lim

0
, −∞=

−→ xx

1
lim

0
, therefore 

xx

1
lim

0→
 does not exist. 

3. ,1limlim,1limlim
0000

==−=−=
++−− →→→→ x

x

x

x

x

x

x

x

xxxx
 therefore 

x

x
x 0
lim

→
 does not exist. 

4. 0
1

lim
1

lim ==
−∞→∞→ xx xx

 

 
Continuity of function 
Function f(x) is said to be continuous at a point a if )()(lim afxf

ax
=

→
, which means:  

1. f(x) is defined at a (a ∈ D(f)), 

2. there exists )(lim xf
ax→

, 

3. this limit is equal to f(a). 

It is said that function f(x) is continuous at a on the right (on the left) if  

)()(limor()()(lim afxfafxf
axax

==
−+ →→

. 

A function f(x) is said to be continuous on an interval 〈a, b〉 if it is continuous at each 
x ∈ 〈a, b〉 and moreover, if it is continuous at a on the right and at b on the left.  
If functions f(x) and g(x) are continuous at a point a, then the following functions are 
also continuous at this point: 

1. )()( xgxf ±  

2. R∈⋅ cxfc ),(  

3. )()( xgxf ⋅  

4. 0)( if ,
)(

)( ≠ag
xg

xf
 

5. [ ] N∈kxf k ,)(  

A function continuous at each point of its domain of definition is said to be 
continuous. The graph of a continuous function is a non-interrupted curve. All 
elementary functions are continuous at each point of their domains of definition. 

The points at which function f is not continuous are called the points of discontinuity 
of f. Point a is a point of discontinuity of function f, if the function: 
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a) has no limit at a 

b)  is not defined at a 

c)  has a limit at a that is not equal to the function value f(a). 
 

Properties of functions continuous on a closed interval 

T1. Function continuous on a closed interval is bounded on this interval. 

T2. Function continuous on a closed interval 〈a, b〉 acquires the greatest value 
(maximum) and the least value (minimum) in this interval, i.e. such points 

c1, c2 ∈ 〈a, b〉 exist that baxcfxfcf ,),()()( 21 ∈∀≤≤ . 

   
Fig. 3.49. Properties T2 and T3 of functions continuous on a closed interval 

T3. If function f is continuous on a closed interval 〈a, b〉 and )()( bfaf ≠ , then for 

arbitrary K such that )()( bfKaf ≤≤  at least one c ∈ (a, b) exists at which 
f(c) = K.  

T4. If function f is continuous on a closed interval 〈a, b〉 and 0)()( <⋅ bfaf , then 

such c ∈ 〈a, b〉 exists that f(c) = 0. 

T5. If function f is continuous on a closed interval 〈a, b〉, then the image of this 

interval, set ( ) { }baxxfbaf ,:)(, ∈= , is again a closed interval, or a one 

point set (in the case of a constant function f). 

T6. If function f is increasing (decreasing) and continuous on a closed interval J⊂ R, 
then its inverse function f −1 is also increasing (decreasing) and continuous on 
the range of function f, R(f) ⊂ R. 

T7. If function g(x) is continuous at the point x0 and function f(u) is continuous at the 
point u0 = g(x0), then the composite function f(g(x)) is also continuous at the 
point x0. 
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Fig. 3.50. Properties T4 and T5 of functions continuous on a closed interval 

 

Asymptotes to graph of function 
The behaviour of functions on neighbourhoods of points which are not in their 
domains of definition can be analysed by means of lines known as asymptotes to 
graphs of functions.  
Asymptotes are lines coming close to the graph of function. A straight line is an 
asymptote to the graph of a function, if the distance from the variable point M of the 
graph to this line approaches zero, as the point M tends to infinity (asymptotes are 
tangents at infinity).  
Two forms of asymptotes must be distinguished: vertical asymptotes (without the 
slope) and inclined asymptotes (with the slope).  
Asymptotes that are not perpendicular to coordinate axis x are called asymptotes 
with a slope, asymptotes without slope are perpendicular to coordinate axis x. 

Line y = kx + b is called asymptote with slope (inclined asymptote) to the graph of 
function f, if  

( )[ ] ( )[ ] 0)(limor    ,0)(lim =+−=+−
−∞→∞→

bkxxfbkxxf
xx

. 

Line y = kx + b is asymptote with slope (inclined asymptote) to the graph of function 
f  as x approaches infinity, x → ∞, or as x approaches minus infinity, x → −∞ , if and 
only if  

( ) bkxxfk
x

xf
xx

=−=
∞→∞→

)(lim    ,
)(

lim , or 

( ) bkxxfk
x

xf
xx

=−=
−∞→−∞→

)(lim    ,
)(

lim . 
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Fig. 3.51. Asymptote to graph of function 

 
In particular, if the function f tends to a finite limit as x approaches infinity, that is  

bxf
x

=
∞→

)(lim , 

then obviously k = 0 and G(f) has a horizontal asymptote (regarded as a special case 
of the inclined asymptote) parallel to the coordinate axis x, namely y = b. Similar 
relations hold for x → −∞.  
The asymptotic behaviour of a function may be of a different character when x 
becomes positively or negatively infinite, and therefore the cases x → +∞ and 
x → −∞ should be treated separately. If for x → +∞ and x → −∞ numbers k and b 
coincide, then both asymptotes form a common straight line. 
Line x = a is called asymptote without slope to the graph of function f, if at least one 
of above relations is true 

−∞=∞=−∞=∞=
−−++ →→→→

)(lim,)(lim,)(lim    ,)(lim xfxfxfxf
axaxaxax

. 

 
Examples 

1. Line x = 0 is asymptote without slope and line y = 0 is horizontal asymptote to the 

graph of function 
x

y
1= , as ∞=

+→ xx

1
lim

0
and also −∞=

−→ xx

1
lim

0
, and 

0
1

lim
1

lim
)(

lim
22

====
−∞→∞→∞→ xxx

xf
k

xxx
,

( ) 0)(lim)(lim.)(lim ===−=
−∞→∞→∞→

xfxfxkxfq
xxx

. 

2. Lines y = x and y = − x are inclined asymptotes to the graph of function

9)( 2 −= xxf . The function is defined on set M = (−∞, −3〉 ∪ 〈3, ∞) in real 
numbers, and the following holds  
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1
9

1lim
9

lim
9

lim
)(

lim
22

22

=






 −=−=−==
∞→∞→∞→∞→ xx

x

x

x

x

xf
k

xxxx
,  

( ) ( ) ( )( )
( )

0
9

9
lim

9

9
lim

9

99
lim9lim)(lim

22

22

2

22
2

=
+−

−=
+−

−−=

=
+−

+−−−=−−=−=

∞→∞→

∞→∞→∞→

xxxx

xx

xx

xxxx
xxkxxfq

xx

xxx

 

 and similarly holds ( ) 0)(lim,1
)(

lim =−=−==
−∞→−∞→

kxxfq
x

xf
k

xx
. 

 

 

Fig. 3.52. Graph of function 9)( 2 −= xxf  with asymptotes 
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3.7  Derivative of function  
 
Let f  be a function defined on domain D(f), with a graph in a certain curve. 
Choosing arbitrary numbers x, x0 ∈ D(f), the difference ∆x = x − x0  will be called 
increment of the argument, therefore x = x0 + ∆x. The difference of function values 
at points x, x0 denoted ∆f = f(x) − f(x0) is called the increment of function f value at 
the point x0, corresponding to the increment ∆x of the argument, or the function f 
difference at the point x0, while  

f(x) = f(x0 + ∆x) = f(x0) + ∆f . 

Quotient 

( ) ( )
x

xfxxf

x

f

∆
−∆+=

∆
∆ 00  

is called the differential quotient of function f at the point x0, or the relative 
increment of the function f value at the point x0. 
The differential quotient of function f characterises relative change of the function f 
values with respect to the change of its argument. 

 

    
        Fig. 3.53. Differential quotient of f         Fig. 3.54. Geometric interpretation of derivative  

 
The differential quotient of function f at the point x0 can be geometrically interpreted 
as a slope of line passing through the points A = [x0, f(x0)], B = [x0 + ∆x, f(x0 + ∆x)] 
on the function f graph, which intersects curve G(f) in these points 

x

f

∆
∆=αtan .  

Let function f  be defined at the point x0 and on some neighbourhood of this point. If 
limit (the proper limit)  

( ) ( )
x

xfxxf

x

f
xx ∆

−∆+=
∆
∆

→∆→∆

00

00
limlim  
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exists, then this limit is said to be the derivative of function f at the point x0 and it is 
denoted )( 0xf ′  

( ) 0
00

0
0

0
0 ,

)()(
lim

)()(
lim

0

xxx
x

xfxxf

xx

xfxf
xf

xxx
−=∆

∆
−∆+=

−
−=′

→∆→
. 

If real number )( 0xf ′  exists, function f is called differentiable at x0.  

The derivative of a function at the point x0 therefore determines the slope of the 
curve that is the graph of function f, so it is the slope of a line, which is the limit 
position of the line intersecting the graph and passing through points A and B − a 
tangent to the function graph at the point [x0, f(x0)]. 
To denote derivative of function y = f(x) at the point x0 various symbols are used  

( )
00

)()( 000
xxxx dx

dy
xy

dx

df
x

dx

df
xf

==





=′=




==′ . 

 
Examples 

1. Derivative of function f(x) = x2 at the point x0 can be determined as 

( )

0
0

0

2
0

2
0

0

00

0
0

2
)2(

lim
)(

lim

)()(
lim

x
x

xxx

x

xxx

x

xfxxf
xf

xx

x

=
∆

∆−∆=
∆

−∆+=

=
∆

−∆+=′

→∆→∆

→∆
 

2. Function xxf =)(  has no derivative at the point x0 = 0, as  

x

x

x

fxf

xx

xfxf
xxxx 00

0

0 lim
)0()(

lim
)()(

lim
0 →→→

=−=
−
−

  

does not exist. 
 
If the derivative of function f exists at all points of some set, then the function is said 
to have derivative on this set and it is called differentiable on this set. The set of 
points, on which derivative of function f exists, is a number set

{ })(:)( xffDxM ′∃∈= . Number )( 0xf ′  can be attached to any number x0 ∈ M, 

thus a new function is defined on the set M called the derivative of function f that is 
denoted )(or , 0xff ′′ and the following holds 

)(: xfyx,Mf ′=→→′ R . 

Necessary condition of differentiability: If a function f(x) is differentiable at a point 
x0, it is continuous at this point:  

( ) )((
)()(

lim)(lim 0)00
0

0

00

xfxfxx
xx

xfxf
xf

xxxx
=








+−

−
−=

→→
. 
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Continuity is not a sufficient condition of differentiability.  
 
Improper derivative 

If ∞−+∞=
−
−

→
or   ,

)()(
lim

0

0

0 xx

xfxf
xx

, it is said that f has an improper derivative at 

the point x0 (but function f is not differentiable at the point x0). 
 
One-sided derivatives 

If limit 
0

0

0

0 )()(
limor   ,

)()(
lim

00 xx

xfxf

xx

xfxf
xxxx −

−
−
−

−+ →→
 exists, it is called the derivative 

of function f at the point x0 on the right, or on the left, and denoted by symbol
)(or  ),( 00 xfxf −+ ′′ . 

If these limits are improper, we speak about improper derivative of function f at the 
point x0 on the right, or on the left.  
Function f is said to have derivative on a closed interval 〈a, b〉, if it has derivative at 
all points x ∈ (a, b), and a derivative on the left at the point a and a derivative on the 
right at the point b. 
 
Geometric meaning of derivative 
If the value of the derivative of a function f(x) at a point x0 is )( 0xf ′ , then the 

straight line ))(()( 000 xxxfxfy −′==  is the tangent to the graph G(f) of 

function f at the point [x0, f(x0)]. Hence )( 0xf ′  is the slope of the tangent to G(f) at 

the point [x0, f(x0)]. 
 

 
Fig. 3.55. Graph of function f and its tangent 
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Physical meaning of derivative 
If a point moves along a straight line and its law of motion is s = f(t), where variable 

t means time, then the ratio 
0

0)()(

tt

tftf

−
−

 is an average velocity of the motion, 

corresponding to the time interval ∆t = t − t0. Then 

0

0
00

)()(
lim)()(

0 tt

tftf
tftv

tt −
−=′=

→
  

is called the velocity of the rectilinear motion s = f(t), at the given moment t = t0. 
 
Examples 

1. Function f(x) = x2 has a derivative at all points of its domain of definition, 
x ∈ (−∞, ∞), and f ′(x) = 2x. The graph of function f therefore has a tangent line at 
any point 2

0 0,x x   , and it is determined by the equation )(2 00
2
0 xxxxy −=− . 

The tangent at the point [−1, 1] has the equation 2x + y + 1 = 0, fig. 3.56. 
 

          
 Fig. 3.56. Tangent to the graph of function  Fig. 3.57. Graph of function 
 

2.  Function 3)( xxf =  has an improper derivative at the point x0 = 0, as  

∞====′
→→→ 3 20

3
30

3

0

1
limlimlim)0(

xx

x

x

x
f

xxx
. 

Because it is continuous at the point 0, at the point [0, 0] its graph has a tangent 
line with the equation x = 0, fig. 3.57. 

3. Graph of function xxf =)(  has no tangent line at the point [0, 0], as no 

derivative defined at the point 0, nor improper derivative at this point exist, see 
fig. 3.1, right.  



79 

 

4. Function 21)( xxf −=  defined for all real x such that x≤ 1 has a derivative 
at all interior points of its domain, interval (−1, 1), and it has improper one-sided 
derivatives in the points 1 and −1, as the following holds 

−∞=
−
−=′∞=

+
−=−′

+− →+−→− 1

1
lim)1(,

1

1
lim)1(

2

1

2

1 x

x
f

x

x
f

xx
,  

and the tangent line equations at these points are x = −1, x = 1, see fig. 3.58. 
 

      
 Fig. 3.58. Graph of function  Fig. 3.59. Graph of function 

 

5. Function f(x) = kx + q, for arbitrary constants k, q∈ R has a constant 
derivative equal to k at all points of its domain of definition R, while the 
graph of function coincides with the tangent line y = kx + q, fig. 3.59. 

6. Function has no derivative at any point of its domain of definition R. 
 
Basic properties of differentiation 
If function f(x) and g(x) are differentiable on the set M, then also functions c⋅f(x), 

f(x) ± g(x), 
( )

( ) ( ), , if ( ) 0 ,
( )

f x
f x g x g x x M

g x
⋅ ≠ ∀ ∈ are differentiable on M, while  

[ ]
[ ]
[ ]

2

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

c f c c f x

f x g x f x g x

f x g x f x g x f x g x

f x f x g x f x g x

g x g x

′ ′⋅ = ⋅
′ ′ ′± = ⋅

′ ′ ′⋅ = ⋅ + ⋅

′ ′  ⋅ − ⋅′= 
 
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Chain rule 
If function g(x) has a derivative at the point x0 and function f(x) has a derivative at 
the point u0 = g(x0), then the composite function F(x) = f(g(x)) also has a derivative 
at the point x0 and it holds that 

)(),()()( 00000 xguxgufxF =′′=′ ,  

which can also be written for all suitable x as 

)(for  ),(
)()())(()(

0 xguxg
dx

xdg

du

udf

dx

xgdf

dx

xdF ==⋅== , 

and denoting y = f(u) we receive  
dx

du

du

dy

dx

dy ⋅= . 

 
 

 
Fig. 3.60. Inverse functions 

 
 
Derivative of inverse function 
Let function  f  be one-to-one and continuous on interval (a, b), and let there exist a 
non-zero derivative f ′ of this function on the interval. Then the inverse function f −1 
also has a derivative on its domain of definition (that is the range of function f), and 
for all x ∈ (a, b) it holds that 

1
1

1
( ) .

( ( ))
f x

f f x
−

−
′  =  ′

 

Logarithmic differentiation 
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If function f  has a derivative f ′ on interval (a, b) and f(x) > 0 on this interval, then 
for all x ∈ (a, b) it holds that  

[ ] ( )
ln ( )

( )

f x
f x

f x

′′= . 

The derivatives of elementary functions can be derived from the definition of 
derivative and from the rules on differentiation. Some of these are presented in the 
following. 

Derivatives of basic elementary function 

1. Power function 

1

1

, , , 

and generally , , (0, )

n n

a

x nx n x

ax a x

−

−

′  = ∈ ∈ 
′

  = ∈ ∈ ∞ 
a

N R

x R
 

2. Rational function 

0)(,
)(

)()()()(

)(

)(
2

≠∈∀
′⋅−⋅′

=
′









x:Qx

xQ

xQxPxQxP

xQ

xP
R  

3. Exponential function 

ln , , 0, 1, ,

while particularly 

x x

x x

a a a a a a x

e e

′  = ∈ > ≠ ∈ 
′

  = 

R R
 

4. Logarithmic function 

[ ]

[ ]

1
log , , 0, 1, (0, ), 

ln
1

while particularly ln

a x a a a x
x a

x
x

′= ∈ > ≠ ∈ ∞

′=

R
 

5. Goniometric functions 

[ ]
[ ]

[ ]

[ ]

2

2

sin cos ,

cos sin ,

1 π
tan , (2 1) ,

cos 2
1

cot , π,
sin

x x x

x x x

x x k k
x

x x k k
x

′= ∈
′= ∈

′= ≠ − ∈

′= − ≠ ∈

R

R

Z

Z

 



82 

 

6. Cyclometric functions 

[ ]

[ ]

[ ]

[ ]

2

2

2

2

1
arcsin , ( 1,1)

1
1

arccos , ( 1,1)
1

1
arctan ,

1
1

arccot ,
1

x x
x

x x
x

x x
x

x x
x

′= ∈ −
−

′= − ∈ −
−

′= ∈
+

′= − ∈
+

R

R

 

 
Examples 

1. Derivative of function y = sinh x is 

x
eeeeee

y
xxxxxx

cosh
22

)1(

2
=+=−−=







 −=′
−−−

,  

and in a similar way it can be shown that 

[ ] [ ] [ ]2 2

1 1
cosh sinh , tanh , coth .

cosh sinh
x x x x

x x

′ ′ ′= = =  

2. Derivative of function xxxxyxxy sincos5 is cos 545 −=′= . 

3. Derivative of function 
( )3 22

3 2

523

4
function  is 52

−
=′−=

x

x
yxy . 

4. Derivative of composite function  
3sinxey = can be calculated using denotation 

 ,sin, 3xvvuey u === . 

Then we can write 

23sin 3cos and,
3

xxey
dx

dv

dv

du

du

dy

dx

dy
y x ⋅⋅=′⋅⋅==′ . 

5. For function ( )22ln axxy −+=  it holds that  

2 2 2 2

2 2
2 2

2 2 2 2 2 2

1 2
1

2

1 1
, .

x
y

x x a x a

x x a
x a

x x a x a x a

 
′ = + = 

+ − − 

+ −= ⋅ = ≠
+ − − −
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6. Looking for the derivative of function y = xx we can write xxx eey
x lnln == , 

hence denoting , lnuy e u x x= =  we receive 

  ( )1
 1 ln 1 ln .u xdy dy du

e x x x x
dx du dx x

 = ⋅ = ⋅ + = + 
 

 

7. Another possibility is to use the logarithmic differentiation and write  

xxxy x lnlnln == , while  

[ ] [ ] 1
ln ln ln 1 lny x x x x x

x
′ ′= = + = + .  

Then from [ ]ln 1 ln
y

y x
y

′′= = +  it follows ( ) ( )xxxyy x ln1ln1 +=+=′ . 

 
3.8  Basic theorems of calculus 
 
Fermat theorem 
If function f attains minimal or maximal value at the point ξ and a derivative of 
function exists at this point, then f ′(ξ) = 0. 

The geometric interpretation of this theorem is very simple:  

if function f is differentiable at the point ξ, in which it attains maximal or minimal 
value, then the tangent line to the graph of function f at the point T = [ξ, f(ξ)] is 
parallel to the coordinate axis x. 
 
 

 
Fig. 3.61. Fermat theorem 
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Rolle theorem 
Let the following properties hold for function f 

1. it is continuous on closed interval 〈a, b〉 

2. it is differentiable at each point of the open interval (a, b) 

3. f(a) = f(b). 

Then in the interval (a, b) at least one point ξ exists such, that f ′(ξ) = 0. 
 

 
Fig. 3.62. Rolle theorem 

 
Lagrange theorem (on function increment) 
Let the following properties be true for function f 

1. it is continuous on closed interval 〈a, b〉 

2. it is differentiable at each point from open interval (a, b). 

Then at least one point ξ exists in the interval (a, b) such, that  

( ) ( )
( )

f b f a
f

b a
ξ −′ =

−
. 

The theorem can be interpreted geometrically as follows: 
Graph G(f) of such function f that satisfies all of the above properties, has a tangent 
line at all points but the end points A = [a, f(a)], B = [b, f(b)]. There exists at least 
one point T  =  [ξ,  f(ξ)] on the graph G(f) such that the tangent to the graph at this 
point is parallel to the line segment AB, and its slope f ′(ξ) equals to the slope of this 
line segment, i.e. ab

afbf
−
− )()( . 
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If f ′(x) = 0 for all x ∈ (a, b), then the function f(x) is constant on entire interval 
(a, b), therefore f(x) = c, ∀x ∈ (a, b). 
If f ′(x) − g′(x) = 0 for all x ∈ (a, b), then the function f(x) − g(x) is constant on (a, b), 
therefore 

f(x) = g(x) + c, ∀x ∈ (a, b). 

Physical interpretation of Lagrange theorem: 
Let function s = f(t) represent the trajectory of a point moving on a straight line, and 
its derivative f ′(t) determine the velocity of a point in time t. The average velocity of 
this rectilinear motion in the time interval 〈t1, t2〉 is determined by the quotient  

2 1

2 1

( ) ( )f t f t

t t

−
−

 

and such moment ξ exists in this time interval at which instantaneous velocity equals 
to the average (mean) velocity, 

2 1

2 1

( ) ( )
( )

f t f t
f

t t
ξ −′ =

−
 

Lagrange theorem is therefore sometimes denoted the theorem about mean value. 
 

 
Fig. 3.63. Lagrange theorem 

 
3.9  Higher order derivatives, differential, Taylor polynomial  
 
Let function f(x) be differentiable on a set M. If its derivative f ′(x) has a derivative at 
each point x ∈ M, then this derivative is called the second derivative of function f(x) 

on M and it is denoted 
2

2

)(
dx

fd
xf =′′ . 
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The third derivative and derivatives of higher orders can be defined analogously. 
If for all points x ∈ M the function f (n-1)(x) (the derivative of (n − 1)-th order) is 
differentiable, then its derivative is called the n-th derivative, or derivative of the 
order n of the function f, it means that  f (n)(x) = [f (n−1)(x)]′, for n = 2, 3, 4, … . 

Another notation of the n-th derivative is 
n

n
n

dx

xdf
xf

)(
)()( = . 

 
Examples 

1. Function 
x

xf
1

arctan)( =  has the following first three derivatives: 

( )
( )

( )32

2

2222

2
1

312
)(,

1

2
)(,

1

11
1

1

1
)(

x

x
xf

x

x
xf

xx
x

xf
+
−=′′′

+
=′′

+
−=−⋅

+
=′ .  

2. The tenth derivative of function xexf 5)( =  is ( ) xexf 51010 5)( = . 

3. The n-th derivative of function 0,
1

)( ≠= x
x

xf  is 
1

)( !
)1()( +−=

n
nn

x

n
xf , 

therefore 
432

6
)(,3,

2
)(,2,

1
)(,1

x
xfn

x
xfn

x
xfn −=′′′==′′=−=′= , 

and so on. 
 

Differential and its meaning 
 

 
Fig. 3.64. Geometric interpretation of differential 
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Suppose function f(x) is defined on a neighbourhood Nε(x0) and differentiable at 
point x0. The expression ( )00)( xxxf −⋅′  is called the differential of f at the point x0  

and it is denoted 

( )00)( xxxfdf
ox −⋅′= . 

The differential 
oxdf of a function f(x) at a point x0 is equal to the increment of the y-

coordinate of points on the tangent line to the function graph G(f) at the point 

[ ]0 0, ( )x f x . If difference x −  x0 approaches 0, then f∆ equals approximately df, 

thus 
( )000 )()()( xxxfxfxf −⋅′=− .  

For the function f: y = x, we have df = dx = ∆x, that is why the differential at an 
arbitrary point is denoted dxxfdf )(′= . 
 
Examples 

1. Differential of function f(x) = arctan(x) at the point x0 = 2, is 
5

2
)(2

−= x
xdf , and 

its value at the point x = −3 equals −1. 

2. Approximate value of sin α, α = 60∘18' can be calculated using differential of 
function sin x, x ∈ R. 

0 0

0 0 0

π π 203π
60 ,18' ,

3 200 600
( ) sin , ( ) cos , ( ) ( ) ( )

203π π π π π π
sin sin sin cos

600 3 200 3 3 200

3 π
0,8660254 0,0078539 0,9738793

2 400

x x x x x

f x x f x x f x x f x f x x

= = = = ∆ = + ∆ =

′ ′= = + ∆ = + ⋅∆

 = + = + ⋅ = 
 

= + = + =

�

 

3. The radius of a circle is to be increased from the initial value of r0 = 10 by an 
amount dr = 0.1. An estimation of the corresponding increase in the circle area 
A = πr2 can be obtained by calculating the differential dA, which can be 
compared with the true change ∆A. 

π01,2π1,201,0π)101,10)(101,10(π)101,10(

π10π1,10)10()1.010()()(

π21.010π2)()()(

π2)(,π)(,1.0,10

22

22
00

000

2
0

=⋅=+−=−=

=−=−+=−∆+=∆

=⋅⋅=⋅′=−⋅′=
=′===

AArArrAA

drrArrrAdA

rrArrAdrr
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Exploring the behaviour of functions in the neighbourhood of some point is often 
rather difficult in the case of functions with complicated formulas. It is therefore 
better to consider some easier function instead, which is a good enough 
approximation of the original one. Functions are most frequently substituted by 
polynomials. These are infinitely times differentiable and their derivatives of any 
order are again polynomials. 
In order to substitute the function f  differentiable up to order n, n ∈ N, by linear 
polynomials, we can at first substitute the function graph by a line, while it is natural 
to choose here the tangent to the function graph at point [a, f(a)], the graph of 
function T1(x) = f(a) + f ′(a)(x − a). It holds that T1(a) = f(a), T1′(a) = f′(a). A better 
approximation can be obtained by polynomials of higher degrees, while it is required 
that the values of their higher derivatives are equal to the values of the respective 
derivatives of function f at the point a. 
There exists exactly one polynomial in the form 

n
n

n ax
n

af
ax

af
ax

af
afxT )(

!

)(
...)(

!2

)(
)(

!1

)(
)()(

)(
2 −++−

′′
+−

′
+=  

whose coefficients are uniquely determined by the value of function f and by the 
values of its first n derivatives at the point x = a. It is called the Taylor polynomial 
of function f at the point a. 
An approximation of function f by the Taylor polynomial leads to a certain error. 
This can be estimated as the difference f(x) − Tn(x), which is denoted by Rn(x) and 
called the radical of function f by the n-th Taylor polynomial 

Rn(x) = f(x) − Tn(x). 
 
Taylor theorem 
Let a, x be two different numbers, n ≧ 0 is the integer and J is the closed interval 
with end points a, x. Let f be a function differentiable on interval J with continuous 
derivatives on the interior of J up to order n + 1. Then such point ξ exists inside J, 
ξ ∈ (a, x) that 

1
)1()(

2

)(
)!1(

)(
)(

!

)(

...)(
!2

)(
)(

!1

)(
)()(

+
+

−
+

+−+

++−
′′

+−
′

+=

n
n

n
n

ax
n

f
ax

n

af

ax
af

ax
af

afxf

ξ
 

i.e. f(x) = Tn(x) + Rn(x), where Tn(x) is the n-th Taylor polynomial of f at the point a 
and 

1
)1(

)(
)!1(

)(
)( +

+

−
+

= n
n

n ax
n

f
xR

ξ
 

is the radical of function f after the n-th member of Taylor polynomial. 
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For a = 0 the form of Taylor formula is  

1
)1()(

2

)!1(

)0(

!

)0(
...

!2

)0(

!1

)0(
)0()( +

+

+
+++

′′
+

′
+= n

n
n

n

x
n

f
x

n

f
x

f
x

f
fxf , 

where 0 < ξ < x (or x < ξ < 0), and it is called the MacLaurin formula. 

 

 
Fig. 3.65. Geometric interpretation of Taylor polynomials 

 
The following rule can be used for the evaluation of the limits leading to one of the 
undetermined expressions of the type  
 

 

 
L´Hospital rule  
Suppose 

a) lim ( ) lim ( ) 0,   or  lim ( ) lim ( )
x a x a x a x a

f x g x f x g x
→ → → →

= = = = ∞  

b) there exists (proper or improper) 
)(
)(

lim
xg

xf
ax ′

′
→

. 

Then 
)(
)(

lim
xg

xf
ax→

 also exists, and 
)(
)(

lim
)(
)(

lim
xg

xf

xg

xf
axax ′

′
=

→→
. 

This rule is also valid for the limits at improper points and for one-sided limits. 
 

00 10.0
0
0 ∞∞−∞∞

∞
∞ ∞
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Examples 

1. Approximation of function f(x) = sin x at the point a = 0 by Taylor polynomial of 
order 4 is  

83333,0
6

5

6

1
11sin

6
)0(

!4

0sin
)0(

!3

0cos

)0(
!2

0sin
)0(

!1

0cos
0sinsin

3
43

2

==−=

−=−−+−−+

+−−+−+=

x
xxx

xxx

 

 
Fig. 3.66. Taylor polynomials for function sin x 

 

2. By means of L´Hospital rule we can evaluate the following limits 

a) 3ln
cos

3ln3
lim

sin

13
lim

00
==−

→→ xx

x

x

x

x
 

b) 
6

1

6

cos
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6

sin
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3
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002030
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x

x

x

x

x
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c) 1
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1
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1
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tan1
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2

2
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x

x
x

x
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ππ
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d) 1
1
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1
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1

1
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1
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f) 1
1
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3.10  Function monotonicity and extrema  
 
The application of the differential calculus in the investigation of functions is based 
on a simple relationship between the behaviour of a function and the properties of its 
derivatives, and particularly of the first derivative. An increase is associated with 
positive derivatives and a decrease with negative derivatives. 
Suppose that a function f(x) is differentiable at every point x of an interval J. Then  

1. f is increasing on J if Jxxf ∈∀>′ ,0)(  

2. f is decreasing on J if Jxxf ∈∀<′ ,0)(   

3.  f is non-decreasing on J if Jxxf ∈∀≥′ ,0)(  

4. f is non-increasing on J if Jxxf ∈∀≤′ ,0)( . 

In geometric terms it appears clearly evident that differentiable functions increase on 
intervals where their graphs have positive slopes and decrease on intervals where 
their graphs have negative slopes. It is evident that if the derivative of a function 
takes zero values at some isolated points but it retains constant sign at all other 
points, this function is strictly monotone (increasing or decreasing) in the given 
interval. 
 
Examples 

1. Function f(x) = x3 − 3x is strictly monotone on its domain of definition R. Its first 
derivative f’ (x) = 3(x2 − 1) equals zero at points −1 and 1, and as f ′(x) < 0 for all 
points from interval (−1, 1), function f is decreasing on this interval. It is 
increasing on (− ∞, −1) and (1, ∞), as f’ (x) > 0 on these intervals, fig. 3.67. 

2. Function f(x) = x – sin x is increasing on R, whereas f ′(x) = 1 – cos x ≥ 0 and 
f ′(2kπ) = 0, ∀ k = 0, ±1, ±1, ..., fig. 3.68. 
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Fig. 3.67. Function monotonicity  Fig. 3.68. Strictly monotone function 
 
Local (relative) extrema 
Many application problems require the determination of those arguments from the 
function domain of definition, in which function attains its maximal or minimal 
value with respect to the whole function range or on a certain interval called the 
function extrema, maximum or minimum.  
Let f be a function defined on a neighbourhood of point x0. The value f(x0) is said to 
be a local maximum of function f(x) if such neighbourhood Oε(x0) exists that 

)(),()( 00 xOxxfxf ε∈∀≤ . 

Point x0 is called the point of local maximum.  
The value f(x0) is said to be a local minimum of function f(x) if such neighbourhood 
Oε(x0) exists that 

)(),()( 00 xOxxfxf ε∈∀≥ .  

Point x0 is called the point of local minimum.  

If 
)(),()(or  ),(),()( 0000 xOxxfxfxOxxfxf εε ∈∀>∈∀< ,  

the value f(x0) is called the strict local maximum or minimum, respectively.  

When speaking of maximum or minimum at a point, we usually mean a strict 
extremum.  
If x0 is a point of local extremum of a function f differentiable at x0, then f '(x0) = 0.  
From this assumption it follows that a function can possess local extrema at the 
points at which the derivative is equal to zero (these are called the stationary points) 
or at points at which the derivative does not exist.  
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Points at which the function derivative f ′ is zero or it fails to exist are called the 
critical points of function f (for the first derivative). Existence of a local extrema at 
the point x0 means that tangent line to the function graph at the point T = [x0, f(x0)] is 
parallel to the coordinate axis x with equation y = f(x0), or it is parallel to the 
coordinate axis y with equation x = x0, or no tangent line exists at this point. 
 

  
Fig. 3.69. Tangents and points of extrema  Fig. 3.70. Local minimum of function 

 

Examples 

1. Function f(x) = x3 − 3x with the first derivative f ′(x)  = 3(x2 − 1) equal to zero at 
points −1 and 1 attains the local maximum at −1, f(−1) = 2, and local minimum at 
1, f(1) =  −2. The tangent lines to function graph at points [−1, 2] and [1, −2] are 
parallel to the coordinate axis x, fig. 3.69. 

2. Function 3 2)( xxf = is defined on R, whereas its non-zero first derivative 

33

2
)(

x
xf =′ is not defined at the point x = 0. The range of the function is the 

interval 〈0, ∞), while the minimum 0 is the function value at the point x = 0. The 
tangent line to the function graph at the point [0, 0], is the line x = 0, fig. 3.70.  

 

The first derivative test 
Let a function f be differentiable at each point x ∈ Oε(x0), x ≠ x0 and f '(x0) > 0 
(f '(x0) < 0) for all points from interval (x0 − ε, x0) and f '(x0) < 0 (f '(x0) > 0) for all 
points from interval (x0, x0 + ε). Then f(x0) is the strict local maximum (minimum). 
It means that to attain the local maximum f(x0) the function f(x) must be increasing 
on Oε

−(x0) and decreasing on Oε
+(x0), while for a local minimum f(x0) the function 

f(x) is decreasing on Oε
−(x0) and increasing on Oε

+(x0).  
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The second derivative test 
If f '(x0) = 0 and f ''(x0) ≠ 0 , then x0 is a point of local extremum. If f ''(x0) < 0, then 
f(x0) is the strict local maximum of function f and if f ''(x0) > 0, then f(x0) is the strict 
local minimum of function f. 
 
Examples 

1. Function f(x) = x3 − 3x second derivative f '(x) = 6 is negative at the point −1 and 
it is positive at the point 1, fig. 3.69. 

2. Suppose we have to make a can in the shape of a right circular cylinder with a 
given volume V > 0. To find its dimensions that will use the minimum material 
we can consider the formula for calculation of the cylinder area, A = 2π(xy + x2), 
and its volume, V = πx2y, where x > 0 is the cylinder radius and y > 0 is its height. 

From 
2

πx

V
y = defined for all real x > 0 we obtain the function 


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 += 22
2

π
π2

π
π2)( x
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x

x

V
xxA .  

The first derivative 
2

2
π4)(

x

V
xxA −=′  is defined for all x > 0, whereas A’(x) = 0 

at the point 3
0

π2

V
x = . The second derivative is

3

4
π4)(

x

V
xA +=′′ , and its 

value at the point x0 is 0π12
π2

3 >=







′′ V

A , therefore the function A(x) attains 

local minimum at this point. The related height of the cylinder is 

3

3
2

20
π

4

π4
π

V

V

V
y == , while the minimal material consumption is the value of 

the area function, which is 3 23
2

2
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2

2

0 π23
π4π2

4
π2)( V

VV
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











+= . 

Global (absolute) extrema 
Let a function f(x) be defined on a set M and let x0 ∈ M. The value f(x0) is said to be 
a global (absolute) maximum of f on M, if for all x ∈ M it holds that f(x) ≤ f(x0). The 
value f(x0) is said to be a global (absolute) minimum of f on M, if for all x ∈ M it 
holds that f(x) ≥ f(x0). Therefore the global maximum is the greatest and the global 
minimum is the least value assumed by the function f on set M.  
Without specifying the set M, the least or the greatest value of function f is 
considered to be on the function domain of definition D(f).  
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A problem often appearing in technical applications is to find the greatest 
(maximum) and the least (minimum) values of a continuous function on a closed 
interval 〈a, b〉. Here we first specify all critical points in the open interval (a, b), then 
calculate the function values at these points and the values at the end points f(a), 
f(b), and finally determine the greatest and the least number among these values, 
which are the global extrema of the function on the closed interval 〈a, b〉. 
 
Examples 

1. Function f(x) = 2x3 − 3x2 − 12x + 1 defined on R has two critical points, the roots 
of quadratic equation f '(x) = 6x2 − 6x − 12 = 0, x1 = −1, x2 = 2, while for the 
function second derivative f ''(x) = 12x − 6 it holds that f ''(−1) = −18, and 
f ''(2) = 6, therefore the function attains local maximum f(−1) = 8 and local 
minimum f(2) = −19. To determine the function global extrema on the closed 
interval 〈−2, 4〉, we must consider the fact that both points of the local extrema 
are in the open interval (−2, 4), and the function values at the endpoints are 
f(−2) = −3 and  f(4) = 33. Therefore on interval 〈−2, 4〉 the function attains its 
global maximum 33 at the point 4 and global minimum −19 at the point 2. The 
function graph is in fig. 3.71. 

2. A rectangle is to be inscribed in a semicircle with radius 2. What is the largest 
area the rectangle can have and what are its dimensions? The problem can be 
analysed for example by means of its visualisation in fig. 3.72. Considering the 
coordinates of one rectangle vertex located on the semicircle, A = [x, y], the 
rectangle area P equals 2xy, while from the circle equation in the simple form 

x2 + y2 = 4 we obtain 24 xy −= . Looking for the local maximum of function 
242)( xxxP −= , whose first derivative can be determined in the form 

 
2

2

2

2
2

4

)2(4

4

2
42)(

x

x

x

x
xxP

−
−=

−
−−=′ ,  

stationary points can be calculated as the roots of the equation P'(x) = 0, therefore 

02 2 =− x  and 22,1 ±=x , while 2=y . Because 

 ( ) 22

22

44

)2(448
)(

xx

xxxx
xP

−−
−+−−=′′   

is negative in the point 2max =x , the area function has its maximum at this 

point, 4)2( =P . One vertex of the obtained rectangle located on the semicircle 

is the point [ ]2,2=Y , while the rectangle dimensions are 2,22 .  
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Fig. 3.71. Function global extrema on closed interval            Fig. 3.72. Inscribed rectangle 
 
In the case that function f fails to be continuous on set M, or M is not a closed 
interval, then the minimum and maximum of f on M can be, but need not be reached. 
 
3.11  Convexity, concavity and points of inflexion 
 
Let f be a function differentiable on interval J. Function f is said to be convex 
(concave) on interval J, if all points on its graph lie above (below) any tangent line 
of the function graph on this interval, with the exception of the tangent point.  
Let function f be continuous on interval J and let its second derivative exist at each 
interior point of this interval. If for all points within the interior of the interval J it 
holds that  

f ″(x) > 0 (f ″(x) < 0), 

then function f is convex (concave) on interval J. 

Suppose function f  be continuous at the point x0. If such neighbourhood Oε(x0) of 
this point exists, that function f is concave (convex) on Oε

-(x0) and it is convex 
(concave) on Oε

+(x0), then the point x0 is called the point of inflection (inflexion 
point) of function f. 

If x0 is the point of inflection of function f, then point I0 = [x0, y0] is called the point 
of inflection of the function graph G(f). The tangent line to G(f) at the point of 
inflection intersects the graph, which means it comes from one half-plane 
determined by a common boundary line in the respective tangent line to the other, 
see fig. 3.73. 
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Fig. 3.73. Geometric interpretation of convexity and concavity 
 
Let the third derivative of function f exists at the point x0 , and let f ''(x0) = 0, while 
f '''(x0) ≠ 0. Then x0 is the point of inflection of the function f. Moreover, if x0 is the 
point of inflection of a function f, then either f ″(x0) = 0, or f ″(x0) does not exist. 

Let f ′(x0) = f ″(x0) = ... = f (n−1)(x0) = 0, but f (n)(x0) ≠ 0. If n is an even number, then 
function f attains a local extrema at the point x0 , which is  

a strict local maximum if f (n)(x0) < 0,  

a strict local minimum if f (n)(x0) > 0.  

If n is an odd number, then the point x0 is the point of inflection of the function f. 
 
Examples 

1. To find intervals of convex and concave behaviour of function f(x) = x3 − 3x 
means to find the zero points of its second derivative f ″(x) = 6x, which is the 
point x = 0. The function is concave on interval (−∞, 0), because on this interval 
is f ″(x) < 0, and it is convex on interval (0, ∞), as on this interval holds f ″(x) > 0. 
Point x = 0 is the point of inflection, as f ‴(x) = 6 ≠ 0, fig.3.69. 

2. Function 
x

x
y

−
+=

1

1
ln  is defined on interval (−1, 1), its derivatives are 

( ) ( )32

2

222
1

412
,

1

4
,

1

2

x

x
y

x

x
y

x
y

−
+=′′′

−
=′′

−
=′ . The second derivative equals zero 

at the point x = 0, while the third derivative is non-zero at this point, which is 
therefore the point of inflection of this function.  
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Function behaviour 

To investigate the function behaviour means to determine the following: 

1. domain of definition, points of discontinuity and zero points 

2. parity or periodicity 

3. intervals of strict monotonicity, and points of local (global) extrema 

4. points of inflection and intervals of convex and concave behaviour 

5. equations of asymptotes to the function graph 

6. coordinates of some points on the function graph – the table of function 
values 

7. sketch the graph of function 

 
Example 

The behaviour of function f(x) = x3 − 3x has been investigated in the previous 
examples. 

1. D(f) = R, the function is continuous on R, the zero points are 3,0,3− . 

2. Function is odd, as f(−x) = −f(x). 

3. Function is increasing on intervals (−∞, −1) and (1, ∞), decreasing on 
(−1, 1), and it has the local maximum at the point x = −1, f(−1) = 2, the local 
maximum  at the point x = 1, f(1) = −2, the function does not have a global 
extrema. 

4. Point x = 0 is the point of inflection, the function is concave on interval 
(−∞, 0), convex on interval (0, ∞).  

5. No asymptotes to the graph of function exist.  

6. Function values at selected points 

x 3−  −1 0 1 3  

f(x) 0 2 0 −2 0 

Table 3.2. Function values 

7. Function graph is in fig. 3.69. 
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4 Integral calculus of functions with one real variable  
 
 
4.1 Indefinite integral  
 
An inverse problem to differentiation often appears in many scientific and technical 
applications, which can be formulated as follows: find function F(x) to a given 
function f(x) such, that )()( xfxF =′ . If such interval J exists that for each 

)()(: xfxFJx =′∈ , then the function F(x) is said to be antiderivative of function 
f(x) on interval J. The set of all antiderivatives of function f(x) on interval J is called 

the indefinite integral of f on J and the notation is ∫ dxxf )( .  

If formula F(x) + C gives all antiderivatives, we indicate this with the expression  

∫ ∈∀+= JxCxFdxxf ,)()( . 

To integrate a function means to find all its antiderivatives, thus its indefinite 
integral. Operations of differentiation and integration are inverse to each other 

( ) ( ) , ( ) ( )f x dx f x C f x dx f x′ ′ = + = ∫ ∫ . 

If the function f(x) find is continuous on an open interval J, then it possesses 
antiderivative on J, or it is said to be integrable on J.  
Let Fi be an antiderivative of a function fi  on an open interval J for all i = 1, 2, ..., n.  
Then function F = k1F1 + k2F2 +...+ knFn, where ki are constants, is antiderivative of 
function f = k1f1 + k2f2 +...+ knfn on interval J, therefore 

( )1 1 2 2

1 1 2 2

( ) ( ) ... ( )

( ) ( ) ... ( ) .

n n

n n

k f x k f x k f x dx

k f x dx k f x dx k f x dx

+ + + =

= + + +

∫

∫ ∫ ∫
 

In particular 

[ ]∫ ∫∫ ±=± dxxgdxxfdxxgxf )()()()(  

∫ ∫⋅=⋅ dxxfkdxxfk )()( . 

 
Examples 

1. Antiderivative of function f(x) = 1 – 3x2 is the function F(x) = x – x3, but also any 
function F(x) + C, C ∈ R, because for its derivative it holds that  

[F(x) + C]’ = [x – x3 + C]’ = 1 – 3x2.  
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The antiderivative whose graph is passing through the point [1, 2] is a particular 
function Fp(x) = F(x) + Cp with a specific value of the constant Cp such that 
Fp(1) = 2, it means Cp = 2, Fp(x) = x – x3 + 2. The graph is in fig. 4.1. 

2. Function F(x) = ex – sin x whose graph is passing through the point [0, 1] is one 
antiderivative of function f(x) = ex – cos x, while this integral curve is one of a 
system of parallel curves representing the system of functions that are 
antiderivatives of function f(x). These can be determined as the indefinite integral 
of function f(x), which is denoted as  

( ) R∈+−=−∫ CCxedxxe xx ,sincos .  

The system of curves is presented in fig. 4.2. 

3. Indefinite integral of function 
xx

xf
2cos

11
)( +=  is the system of functions  

( ) ln tanf x x x C= + + ,  

which is formally denoted as 

2

1 1
ln tan

cos
dx x x C

x x
 + = + + 
 
∫   

and defined for all 0,,
2

π ≠∈≠ xkkx Z . Some integral curves are illustrated in 

fig. 4.3. 
 

 
Fig. 4.1. Graphs of antiderivatives 
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Fig. 4.2. System of antiderivative graphs 

 

 
 

Fig. 4.3. Graphs of system of antiderivatives 
 

4.2  Integration of elementary functions  
 
The formulas for antiderivatives of elementary functions are valid on any open 
intervals that are parts of the domains of definition of corresponding antiderivatives 
on the right side.  
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Basic integration formulae 

1. 1,
1

1

−≠+
+

=
+

∫ nc
n

x
dxx

n
n  

2. cxdx
x

+=∫ ln
1

 

3. 10,
ln

≠<+=∫ ac
a

a
dxa

x
x  

4. cedxe xx +=∫  

5. cxxdx +−=∫ cossin  

6. cxxdx +=∫ sincos  

7. cxdx
x

+=∫ tan
cos

1
2

 

8. cxdx
x

+−=∫ cot
sin

1
2

 

9. 0,arcsin
1

,arcsin
1

1
222

>+=
−

+=
− ∫∫ ac

a

x
dx

xa
cxdx

x
 

10. 0,arctan
11

,arctan
1

1
222

>+=
+

+=
+ ∫∫ ac

a

x

a
dx

xa
cxdx

x
 

11. 0,ln
1 22

22
>±+=

±∫ aaxxdx
ax

 

12. cxfdx
xf

xf +=
′

∫ )(ln
)(

)(
 

 
To integrate a function means to calculate its indefinite integral using the basic 
integration formulas and properties of indefinite integrals.  
 
Examples. 

1. ( ) cx
xx

dxxx ++−=+−∫ 5
43

52
46

35  
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2. =









+−=+−

∫∫
−−−

dxxxxdx
x

xx 414
3
2

4

33 2

32
32

 

 

c
xxx

c
x

x
x

dxxdx
x

dxx

+−+−=

=+
+−

+−=+−=
+−

+−

+−

−−

∫∫∫

323 7

14

1
3

10

1
3

10

43

10

11
ln

7

3

14
3ln23

1
2

 

3. c
x

xdx
x

dxdx
x

x
dx

x

x +−=
+

−=
+

−+=
+ ∫∫∫∫ 2

arctan
2

2
4

44
4 22

2

2

2

2

2

 

4. ( ) cxcxdx
x

x
dx

x

x ++=++=
+

=
+ ∫∫

322
22

2ln2ln
2

3

2

2

2

3

2

3
 

5. ( ) cxdx
x

x
dxdxx

x
xx ++=−+=− ∫∫∫ cosln

3ln

3

cos

sin
3tan3  

6. Let the velocity of a rectilinear motion be given by the relation v(t) = t2, where t 
is the time of motion. To find the law of the motion we are looking for the 
function s(t) representing the trajectory of this motion under the condition 
s(0) = 1, which is a particular antiderivative of function v(t). Therefore 

c
t

dttts +== ∫ 3
)(

3
2 ,  

from which s(0) = c = 1, 1
3

)(
3

+= t
ts . 

 
4.3  Basic integration methods  
 
Integration by parts 
This method is most frequently used for integration of such expressions that may be 
represented in the form of a product of two functions u(x) and v(x) in such a way, 

that the finding of the function u(x) and the evaluation of the integral ∫ ′⋅ dxvu  is a 

simpler problem than the direct evaluation of the original integral ∫ ⋅′ vdxu . 

Let u(x) and v(x) be functions possessing continuous derivatives. Then 

( ) ( ) ( ) ( ) ( ) ( )u x v x dx u x v x u x v x dx′ ′⋅ = ⋅ − ⋅∫ ∫ . 
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Examples 

1. cxedxexedxxe xxxx +−=−= ∫∫ )1(  

2. =−= ∫∫ xdxxxxxdxx sin2sincos 22  

  ( ) =+−−−−= ∫ cxdxxxxx cos2cos2sin2  

  cxxxxx +−+= sin2cos2sin2  

3. =−−−== ∫∫∫ xdxxxxdxxxdx 22 coscossinsinsinsin  

  ( ) =−+−= ∫ dxxxx 2sin1cossin  

  

Cxdxxxx

xdxxdxx

+−+−=

=−+−=

∫

∫∫
2

2

sincossin

sin1cossin
 

cxx
x

xdxCxxxxdx +−=⇒+−= ∫∫ cossin
2

1

2
sincossinsin2 22  

4. cxxcxxxdx
x

xxxxdxxdx ++−=+−=−== ∫∫∫ )ln1(ln
1

lnln1ln  

5. Cxdx
x

xxdx
x

dx
x

x +−== ∫∫∫ ln
1

lnln
1ln 2  

cxdx
x

x
Cxdx

x

x +=⇒+= ∫∫
22 ln

2

1ln
ln

ln
2  

6. =
+

−== ∫∫∫ dx
x

x
xxxdxxdx

1
arctanarctan1arctan 2  

  c
x

xxcxxx +
+

+=++−=
1

1
lnarctan1ln

2
1

arctan
2

2  

7. ( ) Cxdxexexexdxexexdxe xxxxxx ++−=−= ∫∫∫ sincossincossinsin  

( ) ( ) cxxexdxeCxxexdxe xxxx +−=⇒+−= ∫∫ cossin
2

1
sincossinsin2  

 
Substitution integration method 
A change of variable can often transform an unfamiliar integral into one which can 
be evaluated directly or by another known method. This method is called the 
substitution method, while it is mostly used if the integrand is a function of the form  

f(ϕ(x)) ⋅ ϕ  '(x). 
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Let ∫ += CuFduuf )()(  on (α, β). Then 

CxFdxxxf +=′∫ ))(()())(( ϕϕϕ  on (a, b), 

which is in short 

CxFCuFduuf
dxxdu

xu
dxxxf +=+==

′=
=

=′ ∫∫ ))(()()(
)(

)(
)())(( ϕ

ϕ
ϕ

ϕϕ . 

 
Examples 

1. cxcuudu
xdxdu

xu
dxxx ++=+==

=
+=

=+ ∫∫ )1sin(sincos
2

1
)1cos(2 2

2
2  

2. cxcuudu
dxdu

xu
xdx +−=+−==

=
=

= ∫∫ 5cos
5

1
cos

5

1
sin

5

1
5

5
5sin  

3. cxcuduu
xdxdu

xu
xdxx +−=+−=−=

−=
=

= ∫∫
8877 cos

8

1

8

1
sin

cos
sincos  

4. cxcuduudx
x

du

xu
dx

x

x +=+===
=

= ∫∫
554

4

ln
5

1

5

11
lnln

 

5. =+−=−=
−=
+=

=
+ ∫∫ cudu

uxdxdu

xu
dx

x

x
ln

1
sin

cos2

cos2

sin
 

c
x

cx +
+

=++−=
cos2

1
lncos2ln  

6. cecedue
xdxdu

xu
dxxe xuux +=+==

=
=

= ∫∫
22

2

3

2

3

2

3

2
3

2

 

7. cxcuduudx
x

du

xu
dx

x

x +=+==
+

=
=

=
+ ∫∫

332

2
2

2

arctan
3

1

3

1

1

1
arctan

1

arctan
 

 
Another form of possible substitution is to take x as a function of u, i.e.  x = ϕ(u). 
In this case a suitable function ϕ should be chosen so that one can evaluate the 
obtained indefinite integral and determine the inverse function ϕ 

−1. 
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( )

CxFCuF

duuuf
duudx

xuux
dxxf

+=+=

=′⋅=
′=

=⇒=
=

−

−

∫ ∫

))(()(

)()(
)(

)()(
)(

1

1

ϕ

ϕϕ
ϕ

ϕϕ
 

 
Examples 

1. =++−==
=

=⇒=
= ∫∫ cuuuuduu

ududx

xuux
dxx sin2cos2sin2

2
sin

2

 

            cxxx ++−= sin2cos2  

2. =−=
=

=⇒==− ∫∫ uduauaa
uduadx

a

x
uuaxdxxa cossin

cos

arcsinsin 22222  

              =+






 +=+= ∫ cuu
u

acudua cossin
2

1

2
cos 222

 

  ( ) =+−+=++= cuuu
a

cuuu
a

sinsin1
2

)cossin(
2

2
22

 

  c
a

x

a

x

a

xa +













−+=

2

22

1arcsin
2

 

3. c
x

cuudu
dx

x
du

u
x

x
u

dx
xx

+=+=−=
−=

=⇒=
= ∫∫

1
coscossin

1

11
1

sin
1

2

2
 

 
Generally, the integration process consists of transforming the given integral by 
means of algebraic transformation of the integrand to an integral already known, 
which can be evaluated by means of integration by parts or by change of variable. 

 
Examples 

1. ( ) cxecueduue
udxdx

xuux
dxe xuux

+−=+−==
=

=⇒=
= ∫∫ 12)1(22

2

2

 

2. =++−===
=⇒=

= ∫∫ cuuudu
dx

x
du

exxu
dx

x

x
u

)ln1(ln1
ln)ln(ln

 

  ( ) cxx ++−= )ln(ln1ln  
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3. =++−===
=⇒=

= ∫∫
− cuuudue

dx
x

du

exxu
dxx u

u

)ln1(cos1
ln

)cos(ln  

  ( ) cxx ++−= )ln(ln1ln  

4. cxc
u

udu
xdxdu

xu
xdxx +=+==

=
=

= ∫∫
2

2

sin
2

1

2cos

sin
cossin  

cxc
u

udu
xdxdu

xu
xdxx +−=+−=−=

−=
=

= ∫∫
2

2

cos
2

1

2sin

cos
cossin  

where according to trigonometric identity it holds that  

 xx 22 cos
2

1

2

1
sin

2

1 −=  

 
4.4  Integration of special functions  
 
Rational functions 
One of the most important classes of elementary functions whose antiderivatives are 
elementary functions that can be found in a relatively simple way, are rational 
functions.  
Consider integrals of the type  

dx
qpxx

xP
∫ ++2

)(
,  

where P(x) is a polynomial, p, q ∈ R.  
If the degree of the polynomial P(x) is greater than 1, then the division of P(x) by 
x2 + px + q results in a polynomial Q(x) and a polynomial ax + b, as the remainder. 
Consequently 

qpxx

bax
xQ

qpxx

xP

++
++=

++ 22
)(

)(
. 

The integration of the polynomial Q(x) can be performed without any difficulties, 
and hence the problem is reduced to the integration of a fraction  

qpxx

bax

++
+

2 , if a2 + b2 ≠ 0.  

Each integral of that type can be transformed to one of the following basic types: 

I. 0,arctan
1

22
>+=

+∫ aC
a

x

aax

dx
 (basic integration formula) 
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II.  =+








+
−

−
=

− ∫∫∫ C
ax

dx

ax

dx

aax

dx

2

1
22

 

   ( ) C
ax

ax

a
Caxax

a
+

+
−=++−−= ln

2

1
lnln

2

1  

III.  Caxdx
ax

x
dx

ax

x +±=
±

=
± ∫∫

22
2222

ln
2

12

2

1
 

IV.  ( ) ( ) ( ) ( ) =+
±±

±=
±

−+=
± ∫∫∫∫ C

ax

dx
adx

ax

ax
dx

ax

aax
dx

ax

x
2222 ∓  

         c
ax

a
ax +

±
±±= ln  

 
If two different real numbers x1, x2 exist, such that x2 + px + q = (x − x1)(x − x2), then 
constants A and B exist such that  

21
2 xx

B

xx

A

qpxx

bax

−
+

−
=

++
+

 

The two partial fractions can be easily integrated, and the unknown constants A and 
B can be determined by the method of the indefinite coefficients based on the 
comparison of the coefficients of two polynomials of the same degree. 
 
Examples 

1. =
++

−
++

+=
++
−+=

++ ∫∫∫∫ dx
xx

dx
xx

x
dx

xx

x
dx

xx

x

1

1

2

1

1

12

2

1

1

112

2

1

1 2222
 

c
x

xxdx

x

xx ++−++=
+







 +
−++= ∫ 3

12
arctan

3

1
1ln

4

3

2

1

1

2

1
1ln

2

1 2
2

2  

2. ( ) cxx
x

dx
x

dxxdx
x

x ++−=
+

+−=
+ ∫∫∫ arctan

31

1
1

1

3

2
2

2

4

 

3. c
x

x

x

dx

x

dx

x

dx

x

dx +
+
−=









+
−

−⋅
⋅=

−
=

− ∫∫∫∫ 3

3
ln

18

1

3332

1

3

1

93

1

273 22  

4. To calculate ∫ ++
+

dx
xx

x

65

212
2

 it is suitable to reduce the given fraction to partial 

fractions with linear denominators, such that 65)3)(2( 2 +−=−− xxxx . 
Basically we have to solve the following equation. 
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3265

212
2 −

+
−

=
+−

+
x

B

x

A

xx

x
 

BAxBAxxBxAx 23)(212)2()3(212 −−+=+⇒−+−=+  

Comparing coefficients of the polynomials we receive system of 2 equations with 
unknown coefficients A and B. 

223,12 =−−=+ BABA  

22)12(312 =−−−⇒−= BBBA  

26,38 −== AB  

 cxxdx
x

dx
x

dx
xx

x +−+−−=
−

+
−

−=
+−

+
∫∫∫ 3ln382ln26

3

38

2

26

65

212
2

 

 
Irrational functions 
Integrals of some simple irrational functions can be transformed to the integrals of 
rational functions with the substitution method, choosing a suitable substitution. 

Integrals, in which the formula 0, ≠+ abaxn  appears, are among the most 
frequent cases. 
 

Examples 

1. =−=
=

+=
=

+ ∫∫ dt
t

t

dxdt

xt
dx

x

x
33

11

1
 

  =+−=









−=










−= ∫∫

−−−
cttdtttdttt 3

2

3

5

3

1

3

2

3

1

3

1
1

2
3

5
3

 

  cxxcxx +−+=++−+= )32()1(
10

3
)1(

2

3
)1(

5

3
3 23 23 5

 

 

2. =++=
=

−=⇒−=
=

−
+−

∫∫ dt
t

tt

dxdt

xtxt
dx

x

xx
3

3333 111

1

1
 

        ( ) =+−−=++= −−−−
∫ ctttdttt 2132

2

1
1  

  
( )

( )
( )

c
x

xx
c

xx
x +

−

−−−−
=+

−
−

−
−−=

3 2

3

3 23
3

12

112)1(2

12

1

1

1
1  
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Other frequently appearing integrals of irrational function are integrals of type  

∫ ++ cbxax

dx
2

,  

where a ≠ 0 and cbxax ++2  is positive on an interval, while the case of 
polynomials with double roots can be excluded. Using factorisation by  

0,
1

or ,0,
1 <

−
> a

a
a

a
  

this integral can be transformed to one of integrals in the form 

∫ ++ qpxx

dx
2

, or ∫ ++− qpxx

dx
2

,  

i.e. integrals leading after substitution to the integrals  

∫ +±+=
±

ckxx
kx

dx 22

22
ln , or 

∫ +=
−

c
k

x

xk

dx
arcsin

22
, respectively. 

 
Examples 

1. =
−+⋅+

=
−+

=
−+ ∫∫∫

36

73

36

25

6

5
2

3

1

3

4

3

53

1

453 22
2

xx

dx

xx

dx

xx

dx
 

 =









−

=
=

+==

−






 +

= ∫∫ 2

2

2

6

733

1
6

5

36

73

6

53

1

t

dt

dxdt

xt

x

dx
 

cxxxctt +−+++=+







−+=

3

4

3

5

6

5
ln

3

1

6

73
ln

3

1 2

2

2  

2. =







 +−−
=

− ∫∫
2

2

2

2

1

2
x

x

dx
dx

xx

dx
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 =
−

−=
−=

−==

+






 −−

= ∫∫
2

2

16

12

1
4
1

16

1

4

12

1

t

dt

dxdt

xt

x

dx
 

 cxc
t +−−=+−= )41arcsin(

2

1

4

1
arcsin

2

1
 

 
Trigonometric functions 

Integrals of the form ∫ dxxxR )cos,(sin , where the integrand is a rational function 

in terms of trigonometric functions sin x and cos x, can be transformed by 

substitution tx
x

t arctan2
2

tan =⇒=  to integrals of rational functions. Then it 

holds that 

2

2

22 1

1
cos,

1

2
sin,

1

2

t

t
x

t

t
x

t

dt
dx

+
−=

+
=

+
=  

This substitution is generally convenient for the computation of integrals in the form  

∫ ++ cxbxa

dx

sincos
.  

 
Examples 

1. c
x

ctdt
t

t

dt
dx

t

t
x

x

dx +=+==

+
=

+
=

= ∫∫ 2
tanlnln

1

1

2
1

2
sin

sin
2

2
 

2. =
+

⋅

+
−+

=

+
=

+
−=

=
+ ∫∫ dt

t

dt

t

t
t

dt
dx

t

t
x

x

dx
2

2

2

2

2

2

1

2

1

1
23

1

1

2
1
1

cos

cos23
 

  =
−++

=
−++

= ∫∫ )1(2)1(3
2

)1(2)1(3
2

2222 tt

dt

tt

dt
 

  c

x

c
t

t

dt +=+=
+

= ∫ 5
2

tan
arctan

5

2

5
arctan

5

2
5

2
2
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3. =
−+

=
+

⋅

+
−

=

+
=

+
=

=
− ∫∫∫ tt

dt
dt

t

dt

t

t
t

dt
dx

t

t
x

x

dx

2)1(3

2

1

2

1

2
1

1

1

2
1

2
sin

sin1 22

22

2
 

  =
++−

=
+−

=
+−

= ∫∫∫
9

8

9

1

3

23

2

1
3

23

2

323

2

22
2

tt

dt

tt

dt

tt

dt
 

  =
+

=
=

−==
+







 −
= ∫∫

9
83

2
3

1

9
8

3
13

2

2
2

u

du

dtdu

tu

t

dt
 

 c

x

c
t

c
u +

−
=+−=+=

8

1
2

tan3
arctan

3

2

8

13
arctan

3

2

8

3
arctan

3

2
 

 

If the integrand can be reduced to the form f(sin x)cos x or f(cos x)sin x, where f is an 
easily integrable function, then it is advantageous to use other simplier substitution 
t = sin x, or t = cos x, respectively.  

 
Examples 

1. cxcttdt
xdxdt

xt
xdxxxdx +=+==

=
=

== ∫∫∫
22 sin2

cos

sin
cossin22sin  

2. cxctdtt
xdxdt

xt
xdxx +−=+−=−=

−=
=

= ∫∫
3322 cos3

sin

cos
sincos3  

3. 
( ) =

+
−−=

−=
=

=
+

−=
+ ∫∫∫ dt

t

t

xdxdt

xt
dx

x

xx
dx

x

x

1
1

sin

cos

1cos
sin)cos1(

1cos
sin

2

2

2

2

2

3

 

  =
+

−=
+

−+=
+
−= ∫∫∫∫ 1

2
1

21
1
1

22

2

2

2

t

dt
dtdt

t

t
dt

t

t
 

  cxxctt +−=+−= )arctan(cos2cosarctan2  

4. =−=
=
=

=−= ∫∫∫ dtt
xdxdt

xt
xdxxxdx )1(

cos

sin
cos)sin1(cos 223  
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 cxxctt +−=+−= 33 sin
3

1
sin

3

1
 

5. =
++

=
=
=

=
++ ∫∫ dt

tt

t

xdxdt

xt
dx

xx

xx

32cos

sin

3sin2sin

cossin
22  

 =
+
−=

=
+=

=
++

= ∫∫ du
u

u

dtdu

tu
dt

t

t

2

11

2)1( 22  

 =
+

−
+

=
+

−
+

= ∫∫∫∫ du
u

du
u

u
du

u
du

u

u

2

1

2

2

2

1

2

1

2 2222
 

 =+−+= c
u

u
2

arctan
2

1
2ln

2

1 2  

 =++−++= c
t

t
2

1
arctan

2

1
2)1(ln

2

1 2  

 c
x

xx ++−++=
2

1sin
arctan

2

1
3sin2sinln

2

1 2  

 
If function f(x) is continuous, then the antiderivative F(x) = ∫f(x)dx exists, but no 
general method is known to determine it. Integration of an elementary function does 
not always lead to an elementary function, which is not the case of differentiation. It 
can be proved that elementary functions exist whose integrals are inexpressible in 
terms of elementary functions. For instance, the following integrals 

∫ ∫∫ ∫∫ ∫
−

+
dxe

x

dx
dx

x

x
dx

x

x
dx

x

e

x

dx x
x

2

,
ln

,
cos

,
sin

,,
1 3

 

cannot be represented with any elementary functions. However, it is necessary to 
distinguish between the question of existence of a desired antiderivative and the 
possibility of expressing it with the aid of elementary functions. The integrals 
written above exist, but the class of all elementary functions which we use is 
insufficient for expressing these integrals. To find and represent analytically these 
integrals it is necessary to extend the class of used functions. This is precisely one of 
the tasks solved in mathematical analysis. The non-elementary functions determined 
by the most important integrals inexpressible in terms of elementary functions are 
thoroughly investigated and tabulated (elliptic, or hyper-elliptic integrals). 

Antiderivatives as functions of x defined on certain intervals can also be 
approximately represented, for instance using methods of numerical analysis, while 
some important ones are included in special integral tables.  
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4.5  Definite integrals  
 
Various practical technical problems are leading to the concept of definite integral. 
One such problem with geometric background is the determination of an area of a 
specific plane figure, generally called curvilinear trapezoid, see in fig. 4.4. It is 
bounded by coordinate axis x, by vertical lines with equations x = a, x = b, where 
a, b ∈ R, a < b, and by graph G(f) of a continuous function f(x) such that for each 
x ∈ 〈a, b〉 is f(x) > 0. 

{ }[ , ] : ,0 ( )L x y a x b y f x= ≤ ≤ ≤ ≤  

Let us divide interval 〈a, b〉 into n subintervals by means of points  

bxxxxxa nn =<<<<<= −1210 ...  

and denote ∆xi = xi − xi-1 for i = 1, 2, ..., n. Then let us choose an arbitrary point from 
each subinterval  

nixx iii ,...,2,1,,1 =∈ −ξ . 

Finally, let us compute the sum  

∑
=

∆
n

i
ii xf

1

)(ξ  

that equals to the area of a step-like figure bounded from above by a broken line, see 
fig. 4.5. Depending on the choice of points xi  and ξi we can consider this sum to be 
an approximation of the area of curvilinear trapezoid, which is better and more 
accurate with increasing value of n, which means with decreasing length ∆xi of the 
division subintervals.  

    
Fig. 4.4. Curvilinear trapezoid  Fig. 4.5. Step-like figure 

 
For any function f defined and bounded on a closed interval 〈a, b〉, the above sum is 
called the integral sum. If a limit of integral sums exists as the length of the greatest 
subinterval approaches zero, then it is called the definite integral of f on (or over) 
interval 〈a, b〉, and it is denoted as  
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∑∫
=→∆

∆=
n

i
ii

x

b

a

xfdxxf
i 1

0max
)(lim)( ξ , 

while function f is then said to be integrable on 〈a, b〉. 
 
Sufficient condition for integrability 
If a bounded function f possesses only a finite number of points of discontinuity on 
an interval 〈a, b〉, then it is integrable on this interval.  
Every function continuous on a closed interval 〈a, b〉 is integrable on this interval. 
 
Basic properties of definite integrals 

1. Linearity: If functions f1 and f2 are integrable on an interval 〈a, b〉 and c1, c2 ∈ R 
are arbitrary constants, then  

( ) ∫∫∫ +=+
b

a

b

a

b

a

dxxfcdxxfcdxxfcxfc )()()()( 22112211 . 

2. Aditivity: If a function f is integrable on an  interval 〈a, b〉 and c ∈ 〈a, b〉, then 

∫∫∫ +=
b

c

c

a

b

a

dxxfdxxfdxxf )()()( . 

Defining ∫∫∫ −==
a

b

b

a

a

a

dxxfdxxfdxxf )()(,0)( , the above equality is valid 

for any triplet of numbers a, b, c, provided all the included integrals exist. 

3. Monotonicity: If functions f1 and f2 are integrable on an interval 〈a, b〉 and 
f1(x) ≤ f2(x) for all x ∈ R, then 

∫∫ ≤
b

a

b

a

dxxfdxxf )()( 21 . 

4. Positivity: If function f is integrable on an interval 〈a, b〉 and f(x) ≥ 0 for all 
x ∈ 〈a, b〉, then 

0)( ≥∫
b

a

dxxf . 

Geometric interpretation 
An area of a curvilinear trapezoid with sides formed by a graph of function f(x) on a 
closed interval 〈a, b〉 and by line segments in lines with equations x = a, x = b and 
coordinate axis x is  

∫=
b

a

dxxfP )( . 



116 

 

The definite integral is a measure, function attaching positive number – an area to 
geometric figures (trapezoids), with the following properties. 

1. Number P is non-negative and it is uniquely determined by given trapezoid L. 
 

  
  Fig. 4.6. Property 2   Fig. 4.7. Property 3 

 

2. Aditivity: Dividing interval 〈a, b〉 by point c (a < c < b) to two intervals 〈a, c〉 and 
〈c, b〉, the area P of a given curvilinear trapezoid L equals to sum of areas P1, P2 
of curvilinear trapezoids L1, L2 defined over intervals 〈a, c〉 and 〈c, b〉.  

3. Provided curvilinear trapezoid L3 is subset of curvilinear trapezoid L, for its area 
P3 the inequality P3 ≦ P holds.  

4. If for all x ∈ 〈a, b〉 holds f(x) = k > 0, where k is constant, then 

)( abkkdxP
b

a

−== ∫  

is a rectangular area known from elementary geometry. 
 
Physical interpretation 
Let a force F be acting at all points of the coordinate axis x in the same direction and 
orientation as this axis. Let the value of the force F depend on the coordinate x of its 
position, and this dependence be defined by function f, therefore F = f(x).  

Then ∫
b

a

dxxf )(  determines the work that was done by this force, if a mass point is 

displaced from position x = a to position x = b, it means it is moving on trajectory in 
line segment that is geometrically represented as closed interval 〈a, b〉 on the 
coordinates axis x. 
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Connection between the definite and indefinite integrals  
Newton - Leibniz Formula (The evaluation theorem) 
If f is a function continuous on an interval 〈a, b〉 and F is any antiderivative of f on 
〈a, b〉, then 

[ ] )()()()( aFbFxFdxxf b
a

b

a

−==∫ . 

 
Examples 

1. [ ] 2110cosπcoscossin π

0

π

0

=+=+−=−=∫ xxdx  

2. [ ]
1

1

2 1
1

π π π
arctan arctan1 arctan( 1)

1 4 4 2

dx
x

x −
−

= = − − = + =
+∫  

3. [ ] ( )10ln17ln
2

1
22ln

2

1

22

22

2

1

22

1 3

1

2
3

1
2

3

1
2

−=++=
++

+=
++

+
∫∫ xxdx

xx

x
dx

xx

x
 

 
4.6 Integration methods for definite integrals  
 
Integration by parts 
Let u(x) and v(x) be functions having continuous derivatives on 〈a, b〉, then 

[ ]( ) ( ) ( ) ( ) ( ) ( ) .
b b

b

a
a a

u x v x dx u x v x u x v x dx′ ′= −∫ ∫  

 
Examples. 

1. [ ] [ ] 1sin0coscossin 2

π

0

2

π

0

2

π

0

2

π

0

=+=+−= ∫∫ xxdxxxxdxx  

2. [ ] [ ]
e

eeeedxeexdxex xxxx 1
22)1()1( 21

1
2

1

1

1

1

1

1

+−=−=−+=+ −
−

−
−

∫∫  

 
The substitution method (change of variables)  
Let a function f(x) be continuous on an interval 〈a, b〉, and let functions ϕ(t) and 
ϕ ′(t) be continuous on an interval 〈α, β〉, and moreover let for each t ∈ 〈α, β〉 be 
ϕ(t) ∈ 〈a, b〉, while ϕ(α) = a, ϕ(β) = b. Then the composite function f(ϕ(t)) is 
continuous on 〈α, β〉 and 

∫∫ ′=
β

α

ϕϕ dtttfdxxf
b

a

)())(()( . 



118 

 

Examples. 

1. =−=

=

=⇒=
=⇒=

=

=− ∫∫
2

π

0

2
2

0

2 cos2sin44

cos2
2

π
2

00

sin2

4 tdtt

tdtdx

tx

tx

tx

dxx  

  πcossin
2

1

2
4cos4

2

π

0

2

π

0

2 =




 +== ∫ tt
t

tdt  

2. [ ] =+=






 +=+=

=
+=⇒=

=⇒=
+=

=
+

+
++

∫∫∫
1

2

1

2

1

2

1

0

ln
1

1
1

11

20

1

1
e

ee

x

x

x

x

ttdt
t

dt
t

t

dxedt

etx

tx

et

dx
e

e
 

  
2

1
ln12ln2)1ln(1

++−=−−+++= e
eee  

3. 
2

3

2
)1(

1
1

01

ln

ln1
1

0

21

01

=







+=+=

=
=⇒=
=⇒=

=

=+
∫∫

t
tdtt

dx
x

dt

tex

tx

xt

dx
x

xe

 

 
If a ∈ R and f is an even function integrable on the interval 〈−a, a〉, then  

∫∫ =
−

aa

a

dxxfdxxf
0

)(2)(  . 

If a ∈ R and f is an odd function integrable on the interval 〈−a, a〉, then 

0)( =∫
−

a

a

dxxf . 

 

Examples 

1. 0
5

5

5 2

=∫
−

dxex x  
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2. ∫∫ ==
−

1

0

1

1

arctan2arctan xdxxxdxx  

  
1 12 2

12
2 20

0 0

π 1 1
arctan

1 4 1

x x
x x dx dx

x x

+ −
 = − = − =  + +∫ ∫  

  [ ] [ ] 1
2

π
arctan1

4

π

1

1

4

π 1
0

1

0
2

1
0 −=+−=

+
+−= ∫ xdx

x
x  

 
The mean value  
Let f  be a function integrable on an interval 〈a, b〉. Then the number  

∫−
=

b

a

dxxf
ab

)(
1µ  

is called the mean value (the average value) of the function f on the interval 〈a, b〉. 
If the function f is continuous on 〈a, b〉, then at least one point ξ ∈ (a, b) exists such 
that  

1
( ) ( ) .

b

a

f f x dx
b a

ξ =
− ∫  

In the case of a non-negative function f the last equality provides a geometric 
interpretation of f as the height that can be used to construct a rectangle whose base 
is the interval 〈a, b〉 and whose area equals the area of a given curvilinear trapezoid. 
 
Examples 

1. Mean value of function f: y = x2 on interval 〈0, 1〉 is 

3

1

301

1
1

0

31

0

2 =







=

−
= ∫

x
dxxµ , 

and the point, in which function attains this value is ξ ∈ 〈0, 1〉 

3

1
3
1

3
1

)( 2 =⇒=⇒= ξξξf . 

Mean value of function f can be geometrically interpreted as the height of 
rectangle with the base of size 1, whose area equals to the area of the curvilinear 
trapezoid determined by the graph of function f, interval 〈0, 1〉 on coordinate axis 
x and line segment on line x = 1, see fig. 4.8. 
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Fig. 4.8. Geometric interpretation of function mean value on interval 

 

2. Mean value of function f: y = 1 + 2cos x on interval 〈−π, π〉 is 

[ ]
π

π

π

π

1
(1 2cos ) 2sin

π π

π 2sinπ ( π) 2sin( p)
1,

2π

x dx x xµ
−

−

= + = + =
+
+ − − − −= =

∫
 

and because 
2

π
0cos1cos211)( ±=⇔=⇔=+⇔= ξξξξf , two points 

exist in the interval 〈−π, π〉, in which function value equals to the average of 
function values on this interval, see in fig. 4.9. 
 

 
Fig. 4.9. Mean value of function 
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4.7 Applications of definite integrals 
 
Geometric applications 

The area of a plane figure 
Let f  and g be functions continuous on an interval 〈a, b〉 and such that for each 
x ∈ 〈a, b〉 it holds that g(x) ≤ f(x). The plane region  

[ ]{ })()(,:, xfyxgbxayxR ≤≤≤≤=  

is said to be a regular region and its area A(R) is computed by means of the formula 

( )∫ −=
b

a

dxxgxfRA )()()( . 

 

 
Fig. 4.10. Area of a regular region 

 
Volume of a solid of revolution  
Let us consider a solid generated by the revolution about coordinate axis x of a 
regular region  

[ ]{ }, : , ( ) ( ) .R x y a x b g x y f x= ≤ ≤ ≤ ≤  

Then the volume V of this solid can be calculated by the formula 

( ) .)()(π
22∫ −=

b

a

dxxgxfV  
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 Fig. 4.11. Solid of revolution   Fig. 4.12. Simple plane curve 
 

Length of a simple plane curve  
Let a simple curve be the graph of a continuous function f whose derivative is also 
continuous on an interval 〈a, b〉. Then it can be shown that the length L of the 
smooth curve given by the graph of f between lines x = a and x = b is determined by 
the formula 

[ ]∫ ′+=
b

a

dxxfL 2)(1 . 

 
The area of a surface of revolution 
Let function f and its derivative be continuous on an interval 〈a, b〉. Let us consider a 
surface generated by revolving the curve that is graph of function y = f(x), x ∈ 〈a, b〉 
about coordinate axis x. It can be proved that the area of this surface can be 
determined by the formula  

[ ]∫ ′+=
b

a

dxxfxfS 2)(1)( . 

 
Examples 

1. Area of a region bounded by graphs of functions f(x) = ln x, g(x) = ln2x can be 
calculated as definite integral with boundaries in points a, b, for which it holds 
that f(a) = g(a), f(b) = g(b), which means 

exxxxxx =∨=⇔=∨=⇔= 11ln0lnlnln 2  

( )2 2

1
1

( ) ln( ) ln ( ) 3 3 ln ln 3 .
e

e
A R x x dx x x x x x e = − = − + − = − ∫  
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Fig. 4.13. Area of plane region 

 

2. Area of a plane region [ ]

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


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xx ee
yxyxR  is 

e

eee
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ee
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22
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Fig. 4.14. Region R and surface of revolution 

 

3. Volume of a solid of revolution generated by revolving plane region  

[ ]






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2
0,10:,

xx ee
yxyxR  
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about coordinate axis x is calculated by formula 

( ) ( ) ( )4
8

π
4

8

1
π

4
π

22
1

0

22
1

0

2

++=




 +−=+= −−
−

∫ eexeedx
ee

V xx
xx

. 

4. Length of a segment of plane curve catenary, which is the graph of function 

2
)(

xx ee
xf

−+=  on interval 〈0, 1〉 in fig. 4.14, left, can be calculated as follows 
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( ) e
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5. Surface area of a surface of revolution generated by the revolving segment of a 
catenary about coordinate axis x, illustrated in fig. 4.14 right, is calculated as the 
definite integral 

( )

( )
( )

2
1

0

1
4 2 2 2 2 2

2

0

1
2 4

4 1 2 1
.

88 1

x xx x

x x x x
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e ee e
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e xe e e e e

e e

−−

− −

−+= + =
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 

∫
 

 
Physical applications 

Mass of a thin plane region (plate) 
Let f be a positive continuous function on interval 〈a, b〉, and let the area of regular 
plane region  

{ })(0,:],[ xfybxayxR ≤≤≤≤=   

be determined as ∫=
b

a

dxxfRA )()( , while the specific density of the plate material 

is ρ. Mass m of this plate can be then calculated by means of the formula 

∫=⋅=
b

a

dxxfRARm )()()( ρρ . 

Let f be a continuous and positive function on an interval 〈a, b〉, and let the volume 
of a solid of revolution S generated by the revolving curvilinear trapezoid 

{ })(0,:],[ xfybxayxT ≤≤≤≤=  

about axis x be ∫=
b

a

dxxfSV )(π)( 2 , and the specific density of solid material is ρ.  
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Let S be revolving about the coordinate axis x with the angular velocity ω. Then the 
following physical characteristics can be calculated for the solid of revolution S by 
means of definite integrals: 

Mass     ∫=⋅=
b

a

dxxfSVSm )(π)()( 2ρρ  

Static moment   ∫ ⋅=
b

a

dxxfxSx )(π
2ρ  

Centre of gravity   T = [xT, 0, 0], 

∫

∫ ⋅
==

b

a

b

a
T

dxxf

dxxfx

m

Sx
x

)(

)(

2

2

 

Moment of inertia   ∫=
b

a

dxxfJ )(
2

π 4ρ
 

Kinetic energy   ∫=
b

a

dxxfJ )(
4

π 4
2ρω

 

 
Examples 

1. Let a thin plate made from a material with specific density ρ be determined as 













−≤≤≤≤= 2
2

2
20,0:],[ x

a

b
byaxyxR . Then the area and mass of this 

plate are 

=−=−= ∫∫
aa

dxxa
a

b
dxx

a

b
bRA

0

22

0

2
2

2
2)(  

 ab
xa

x
axax

a

b
a

π
4

1
arctan

2
0

22

222 =








−
+−=  

abRARm ρρ π
4

1
)()( =⋅= . 

2. Let the solid of revolution S be a part of a paraboloid of revolution determined by 

the revolving parabolic region bounded by parabola pxy 2= , p > 0, 

coordinate axis x and line segments on lines x = 0, x = h > 0. The volume and 
mass of solid S made from the material with specific density ρ is 
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22

0

π)(,π2π)( phVSmphpxdxSV
h

ρρ =⋅=== ∫ , 

while the surface area of a part of the parabolic surface of revolution is 

( )( )23

0

2

0

2π
3

2
162π2

8
12π2 pphpdxppxdx

x

p
pxS

hh

−+=+=+= ∫∫ . 

The static moment is 3

0

3

0

2
π

3

2

3
π22π ph

x
pdxpxSx

hh

ρρρ =







== ∫ , and the 

centre of gravity is in the point T = [xT, 0, 0], h
ph

ph

m

Sx
xT 3

2

π

π
3

2

2

3

===
ρ

ρ
. 

The moment of inertia of solid S revolving about the coordinate axis x with 
angular velocity ω is 

32

0

3
2

0

22
π

3

2

3
π24

2

π
hp

x
pdxxpJ

hh

ρρρ =







== ∫ , 

while its kinetic energy is 322
π

3

1

2

1
hpJE ρωω == . The solid is presented in 

fig. 4.15. 

 

 
Fig. 4.15. Solid of revolution bounded by part of paraboloid of revolution and disc 
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4.8 Improper integrals 

 
Integrals on unbounded intervals  
Let a function f be defined on an interval 〈a, ∞) and integrable on any interval 〈a, b〉, 

b > a. If a proper limit ∫∞→

b

a
b

dxxf )(lim  exists, then it is called the improper integral of 

f on 〈a, ∞) and it is denoted by ∫
∞

a

dxxf )( . Thus 

∫∫ ∞→

∞

=
b

a
b

a

dxxfdxxf )(lim)( . 

  
Fig. 4.16. Improper integrals 

 
In this case it is said that this improper integral exists or converges, and in the 
opposite case if a proper limit does not exist this integral does not exist or diverge. 
Improper integrals on other types of unbounded intervals are defined similarly. 

∫∫ −∞→
∞−

=
b

a
a

b

dxxfdxxf )(lim)(  

∫∫∫
∞

∞−

∞

∞−

+=
c

c

dxxfdxxfdxxf )()()(  

If both improper integrals on the right hand side exist, their existence does not 
depend on the choice of c ∈ R, then according to the definition above the integral on 
the left-hand side also exists and equals to their sum, which does not depend on the 
choice of c as well. 
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Fig. 4.17. Improper integral 

 
The geometric meaning of improper integrals is analogical to that of the standard 
definite integrals. We can utilize them for example to calculate areas of unbounded 
curvilinear trapezoids or plane figures determined by the boundaries in graphs of 
continuous functions on intervals (−∞, b〉, 〈a, ∞) or (−∞, ∞). 
 
Integrals of unbounded functions  
Let function  f  be integrable on each interval 〈a, ξ〉, ξ ∈ (a, b), and unbounded in 

some left neighbourhood )(bO−
ε  of point b. If a proper limit ∫−→

ξ

ξ
a

b
dxxf )(lim  (a real 

number) exists, then it is called the improper integral of f on 〈a, b〉. Thus 

∫∫ −→
=

ξ

ξ
a

b

b

a

dxxfdxxf )(lim)( . 

 

 
Fig. 4.18. Integrals of unbounded functions 
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In this case it is said that this improper integral exists or converges, in the opposite 
case this integral does not exist or diverges.  

Analogously if f is integrable on each interval 〈ξ, b〉, ξ ∈ (a, b) and unbounded in a 

right neighbourhood )(aO+
ε  of point a, then 

  ∫∫ +→
=

b

a

b

a

dxxfdxxf
ξ

ξ
)(lim)( . 

 
Examples 

1. Integral 

[ ]
2

π
arctanlimarctanlim

1
lim

1 0

0
2

0
2

===
+

=
+ ∞→∞→

∞

∞→ ∫∫ bx
x

dx

x

dx
b

b

b

b

b
 

represents geometrically the area of unbounded region, curvilinear trapezoid 

below the graph of function 
21

1

x+
 on interval 〈0, ∞), fig. 4.19. 

  

   Fig. 4.19. Unbounded region with area π/2      Fig. 4.20. Unbounded region without area 
 

2. Integral  

lim lim

lim lim lim

c b
x x x

a b
a c

c bx x c a c

a ca b a

e dx e dx e dx

e e e e e

∞

→−∞ →∞
−∞

→−∞ →∞ →−∞

= + =

   = + = + − = ∞   

∫ ∫ ∫
 

is diverging, therefore it does not determine the area of unbounded region, 
illustrated in fig. 4.20.  
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3. Integral  

∞=




−+




−=+=
+−+− →

−
→→

− −
→ ∫∫ ∫

1

0
1

0

1

20

1

1 1
202

1
lim

1
lim

1
lim

1
lim

1

c
c

c
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c xx
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x
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 is diverging because of the integrand function that is unbounded on interval 
〈−1, 1〉, and both improper integrals are diverging, as both one-sided limits are 
improper. Area of unbounded region on fig. 4.21, left, does not exist.  
 

   
Fig. 4.21. Unbounded functions 

 

4. Integral  

[ ] 2)2(limlimlim
4

44

0

=−===
+++ →→→ ∫∫ cx

x

dx

x

dx
Oc

c
Oc

c
Oc

  

is a converging improper integral, determining the area of unbounded curvilinear 
trapezoid in fig. 4.21, right. 

5. Integral  

πlimlim
222

=+= ∫∫ ∫ −

∞→

∞

∞−

−

−∞→

−
b

c

x

c

c

a

x

a

x dxedxedxe ,  

where both improper integrals lead to elliptic integrals that can be evaluated 
numerically, is converging, and its value is the area of unbounded region 
illustrated in fig. 4.22. 

6. Area of a curvilinear trapezoid in fig. 4.23 bounded by the lines x = 0, x = 4, 

y = 0 and the graph of function ( ) 3

1

1 −−= xy  is 
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Fig. 4.22. Unbounded region with area π  

 

 

Fig.4.23. Unbounded region 
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5 Ordinary differential equations  
 
 
5.1  Basic concepts and definitions  
 
Many physical, chemical, biological and various technical problems lead to 
mathematical models dealing with solutions of differential equations.  
An ordinary differential equation is an equation representing the relation between 
independent variable x from some set M ⊂ R, unknown function f(x) and at least one 
of its derivatives f ′(x), f ″(x),..., f 

(n) (x), n ∈ N.  
Denoting f(x) = y, f ′(x) = y ′, ..., f 

(n)(x) = y 
(n), the differential equation can be 

symbolically written in the form 

F(x, y ′, ..., y 
(n)) = 0. 

The order of a differential equation is the order of the highest derivative which 
appears in the formula F. Anyhow, none of the derivatives of function f(x) up to the 
degree (n –1), nor the function f(x) or independent variable x must appear in the 
ordinary differential equation of order n, explicitly.  
The solution of the differential equation of degree n is any function y = f(x), which, 
when substituted together with its derivatives into the given differential equation, 
turns it into an identity on a set M. To solve differential equation means to find all 
the functions satisfying this equation and to determine set M = (a, b) ⊂ R, which is 
the domain of definition of all these solutions, or to show that the respective 
differential equation has no solution. 

The following types of solutions of differential equations can be distinguished: 

1. general solution, in which the number of appearing constants equals to the 
order of the equation 

2. particular solution, which can be derived from the general solution by an 
appropriate choice of constants, or a solution resulting from the given 
initial conditions 

3. singular solution, which cannot be obtained from the general solution and 
is not containing any constant 

Methods used to solve differential equations are called integrations of differential 
equation, function y = f(x), which is the solution of differential equation, is also 
called the integral of the differential equation.  
The graph of a solution is called the integral curve of the given differential equation. 
 
Examples 

1. Equation xy ′ − 2y = 0 is the differential equation of order 1, while its general 
solution is y = cx2, x ∈ R, where c is any real number. The graph of this general 
solution is the system of parabolas with axes in the coordinate axis y for c ≠ 0, 
while one particular solution is the function y = 0, for c = 0, whose graph is the 
coordinate axis x, fig. 5.1. 
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 Fig. 5.1. System of integral curves  Fig. 5.2. Graphs of particular solutions 
 
2. General solution of the second order differential equation y ′′ + y = 0 is system of 

functions  y = c1cos x + c2sin x, x ∈ R, where c1, c2 are arbitrary real constants. 
Substitution of the function y and its second derivative y ′′ = −(c1cos x + c2sin x) 
in the equation yields equality 0 = 0. Particular solutions are functions, e.g. sin x, 
−7cos x, −4sin x + 3cos x, etc. The integral curves are in fig. 5.2.  

3. Second order differential equation (y″)2 + y2 +x2 = 0, has no solution, which can 
be shown easily by contradiction. Let y = f(x) be a solution of this differential 
equation. Then it holds that (f ″(x))2 = − (y2 + x2), which cannot be true for any 
real number.  

 

 

Fig. 5.3. System of integral curves 
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4. General solution of the first order differential equation y ′ y − yex = 0 is one 
parametric system of functions y = ex + c, x ∈ R, c ∈ R. The solution y = 0 is a 
singular solution, which cannot be obtained from the general solution by any 
choice of constant c, fig. 5.3. 
 

Cauchy initial problem for differential equation of order 1 
To find the solution of a given differential equation of order 1 satisfying the initial 
condition y(x0) = y0, while x0, y0 are given numbers, is called Cauchy initial problem. 
This condition can be geometrically interpreted as looking for such particular 
solution, whose integral curve is passing through point Q = [x0, y0] determined by 
initial condition. 
 
Examples 

1. Solution of the Cauchy initial problem y ′ y − yex = 0, y(0) = 0, is the function 
y = ex −1, x ∈ R, whose graph is the integral curve passing through the point 
[0, 0], fig. 5.3. 

2. Solution of Cauchy initial problem y ′ = 2x, y(1) = 0 is the function y = x2 −1, 
whose graph is a parabola with axis in the coordinate axis y passing through point 
[1, 0], i.e. one particular solution obtained from the general solution of a given 
equation in the form y = x2 + c, x ∈ R, c ∈ R, represented geometrically by a 
system of coaxial parabolas in fig. 5.4. 

 

 
Fig. 5.4. Particular solution 
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3. Velocity of radioactive decay of a specific matter is proportional to the amount of 
matter, which is represented as the time function M(t), t ∈ 〈0, ∞). This relation 
can be written as differential equation of order 1 

),0,)( ∞∈<−=′⇔−= tkMtMkM
dt

dM
,  

where k  > 0 is a constant dependent on the radioactive matter and t is time as 
independent variable. The general solution of equation is function M(t) = ce−kt, 
c > 0 , t ∈ 〈0, ∞). Different functions of decay are obtained as particular solutions 
for specific materials, with c characteristic for the particular matter. 

 
Cauchy initial problem for differential equation of order 2 
To find such particular solution of a given differential equation of order 2 that 
satisfies the initial conditions y(x0) = y0, y ′(x0) = y1, while x0, y0 and y1 are given 
numbers, is called Cauchy initial problem for differential equation of order 2. This 
condition can be geometrically interpreted as looking for such particular solution, 
whose integral curve is passing through the determined point Q = (x0, y0), while the 
tangent line to the respective integral curve at this point has the slope k = y ′(x0) = y1. 
 

 
Fig. 5.5. Cauchy initial problem of order 2 

 
Examples 

1. Function y = x3 + c1x + c2, c1, c2 ∈ R is the general solution of the second order 
differential equation y ″ = 6x, where x ∈ R. The particular solution satisfying 
Cauchy initial conditions y(0) = 1, y ′(0) = 2 can be obtained from the general 
solution substituting x = 0, y = 1, y ′ = 2, with the result c1 = 2, c2 = 1, so it 
appears in the form y = x3 + 2x + 1, see fig. 5.5. 
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2. The general solution of the second order differential equation 
1

4
sin 2

y y
x

′′ + =  

is 1 2

1
cos2 sin 2 cos2 sin 2 ln sin 2

2 4

x
y c x c x x x x= + − + , where c1, c2 ∈ R 

and  , ( 1) ,
2 2

x k k
π π ∈ + 

 
k ∈ Z. Particular solution satisfying initial conditions 

1,
4 4 4

y y
π π π   ′= =   
     

is function 
1

sin 2 cos2 sin 2 ln sin 2
2 4p

x
y x x x x= − +  

defined for 0,
2

x
π ∈ 

 
 is illustrated is in fig. 5.6.  

 

 
Fig. 5.6. Cauchy initial problem of order 2 

 
While solving differential equations, certain manipulations and transformations must 
be performed, which transform the former equation to a new one. This new 
differential equation can have such solutions, that are not solutions of the former 
differential equation, or some solutions of the former equation are not the solutions 
of the new one anymore. If each solution of one of the two differential equations is 
also the solution of the other one on the same set, the equations are said to be 
equivalent. Such transformation, in which an equivalent equation is obtained from 
the original differential equation, is called equivalent transformation. In the case that 
a non-equivalent transformation is applied to solve a differential equation, the 
resulting differential equation can have more or fewer solutions than the original 
equation, or the domain of definition of the solution can be different. It is therefore 
necessary to analyze and specify all solutions thoroughly. 
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The general solution is not always expressible in an explicit form. Sometimes it can 
be represented as an equation, which is accepted as a solution in an implicit form 

F(x, y) = 0. 

 
5. 2 Equation with separated and separable variables 
 
Let us start our considerations with the most common and easily solvable 
differential equations, in which variables x, y, y ′ are separated or can be easily 
separated. 

The differential equation of the form 

p(x) + q(y)y ′ = 0, 

where p(x) is continuous on (a, b), q(y) is continuous on (c, d) is called differential 
equation of order 1 with separated variables. Any solution of this differential 
equation on J ⊂ (a, b) has the form 

∫ ∫ ∈=+ ,,)()( Rccdyyqdxxp  c = constant. 

If q(y) ≠ 0 on (c, d), then through each point in the region D = (a, b) × (c, d) is 
passing just one integral curve of the given differential equation. 

A special case of the differential equations with separated variables are equations of 
the form 

y ′ = f(x),  

with the general solution  

∫ ∈+= Rccdxxfy ⋯,)( . 

All the integral curves representing general solutions of the above differential 
equations are the curves defined as shifted graphs of one particular integral curve 
that is the graph of one particular solution.  
 
Examples 

1. Solution of differential equation 02 =
′

+
y

y
x  is the solution of equation 

∫ ∫ ∈=+ ,,
1

2 RCCdy
y

xdx  y ≠ 0,  

222

22 lnln

xxCxC ceyeeyey

xCyCyx

−−− =⇒±=⇒=

−=⇒=+
 

which is the function 0,,
2

≠∈= cccey x R . Selected integral curves are 
sketched in fig. 5.7. 
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Fig. 5.7. System of integral curves 

 

 

Fig. 5.8. Particular solution 
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2. Particular solution of the differential equation with separated variables y ′ = 3x2, 
which satisfies the initial condition y = 0 for x = −1 can be derived from the 
general solution 

∫ =+= cdxxy 23 x3 + c, c ∈ R 

by substituting the initial condition, 0 = (−1)3 + c, where the constant is c = 1, so 
it is the following function y = x3 + 1, see fig. 5.8. 

3. Solving differential equation x + yy ′ = 0 we obtain 

∫ ∫ ∈=+ RCCydyxdx ,  

),(,,
22

222
22

ccxcxcycyxC
yx −∈∈−±=⇒=+⇒=+ +R . 

Integral curves are concentric semicircles with centres in the origin and radii √c. 
 

The differential equation of the form 

p1(x) q2(y) + q1(x) p2(y) y′ = 0, 

where p1(x), q1(x) are continuous on (a, b), p2(y), q2(y) are continuous on (c, d) is 
called the differential equation of order 1 with separable variables.  
If q1(x).q2(y) ≠ 0, then this differential equation can be transformed to the differential 
equation with separated variables 

0
)(

)(

)(

)(

2

2

1

1 =′+ y
xq

xp

xq

xp
. 

These two differential equations are not equivalent in general, as the assumption 
q1(x).q2(y) ≠ 0 need not be true on the entire interval (a, b) × (c, d). 
If q2(y) = 0 for yi = bi, while bi ∈ (c, d), i = 1, 2,..., k, k ∈ N, then functions yi = bi are 
the solutions of the original differential equation, but they are not the solutions of the 
transformed differential equation. 

The solutions of differential equation with separable variables are the functions 
yi = bi, i = 1, 2,..., k, k ∈ N, where bi, are the roots of equation q2(y) = 0, and all 
solutions of the transformed differential equation with separated variables in the 
form 

∫∫ ∈=+ Rccdy
yq

yp
dx

xq

xp
,

)(

)(

)(

)(

2

2

1

1  c = constant. 

If q(y) ≠ 0 on (c, d), then through each point in the region D = (a, b) × (c, d) just one 
integral curve of the given differential equation is passing. 
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Examples 

1. Solution of differential equation y – xy ′ = 0 can be found step by step. Function 
y = 0 is one solution of the given differential equation. Transforming this 
equation to differential equation with separated variables we now consider y ≠ 0 
obtaining the equation 

0,0
11 ≠=′− xy
yx

.  

This equation can be solved as follows 

R∈≠=− ∫∫ CxCdy
y

dx
x

,0,
11

 

RR ∈∈=⇒=⇒=⇒=− cxcxy
e

x
y

e

x
yeyx

CC
C ,,lnlnlnlnln . 

Particular solution y = 0 of the original equation with separated variables is 
included in the general solution for value c = 0. Integral curves form a bundle of 
lines with a common point in the origin, fig. 5.9. 
 

 
Fig. 5.9. Integral curves 

 

2. To find the particular solution of differential equation 
21

2

x

xy
y

+
=′  satisfying the 

initial condition y(1) = 1, let us rewrite the given equation in the form 

2

2
0.

1

xy
y

x
′− =

+
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One solution of this equation is the function y = 0.  
For y ≠ 0 we obtain 

( ) RR ∈∈+=⇒
+=⇒

+=

=−+

=−
+

=′−
+

∫∫

cxxcy
e

x
y

e

x
y

eyx

Cdy
y

dx
x

x

y
yx

x

CC

C

,,1
11

lnln

lnln1ln

1

1

2

0
1

1

2

2
22

2

2

2

 

For the particular solution we evaluate  

1 = c(1 + 1) ⇒ c = ½ and R∈+= x
x

y ,
2

1 2

. 

Some of the coaxial parabolas forming the system of integral curves of the general 
solution, including the particular solution, are presented in fig. 5.10. 

 

 
Fig. 5.10. Particular solution 
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5.3  Linear differential equations of the first order  
 
Differential equation 

y ′ + p(x)y = g(x) 

where p(x) and g(x) are continuous on (a, b) is called a linear differential equation of 
the first order (or of order 1). If g(x) is a nonzero function, the equation is called 
non-homogeneous (with a right-hand member). If g(x) = 0 on (a, b), it means the 
equation is in the form 

y ′ + p(x)y = 0, 

then it is called homogeneous (without a right-hand member).  
Homogeneous linear differential equation of the first order is a differential equation 
with separable variables, which can be transformed to the differential equation with 
separated variables in the form  

0,0)(
1 ≠=+′ yxpy
y

. 

Solutions of the original equation on interval (a, b) are: function y = 0 and all 
solutions of the differential equation with separated variables 

  

R

R

∈=⇒−=

−=−

∈=+

∫−
∫

∫

∫∫

cceydxxp
e

y

dxxpey

CCdxxpdy
y

dxxp
C

C

,)(ln

)(lnln

,)(
1

)(

  

The particular solution y = 0 is therefore included in the general solution for a 
specific value of the constant, c = 0.  
There exists exactly one solution y = y(x) of the linear homogeneous differential 
equation of the first order on interval (a, b) satisfying the initial condition y(x0) = y0, 
x0 ∈ (a, b) in the form 

∫=
− dxxp

ecy
)(

0 . 

 
Examples. 

1. Equation y ′ − 2xy = 0 is a homogeneous differential equation of order 1, and its 

general solution is 
22 xxdx

cecey =∫= , x ∈ R, where c is any real number. The 

graph of this general solution is a system of exponential curves for c ≠ 0, while 
one particular solution is the function y = 0, for c = 0, whose graph is the 
coordinate axis x, fig. 5.11. 
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Fig. 5.11. System of integral curves 

 
2. Solution of the first order homogeneous differential equation y ′ y − yex = 0 

consists of a singular solution y = 0 and a general solution of equation y′ − ex = 0, 
which is y ′ = ex , therefore y = ex + c, x ∈ R, c ∈ R, see fig. 5.3. 
 

 
Fig. 5.12. System of integral curves 

 
3. A particular solution of the homogeneous liner differential equation in the form 

0cot =−′ xyy  is the function y = sin x, while the general solution is 

determined as y = c.sin x, c ∈ R , x ≠ kπ, k ∈ Z , see fig. 5.12. The function y = 0 
is one particular solution for the constant c = 0, its graph is the coordinate axis x. 
Other particular solution y(x) = 5sin x is a solution of Cauchy problem y(π/2) = 5. 
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The Cauchy initial condition in the form y(π) = k ≠ 0 has no solution, as cot x 
from the equation is not defined at x = π (there exists no solution passing through 
the point [π, k], but all solutions are passing for instance through the point [π, 0]).  

 
A non-homogeneous linear differential equation y ′ + p(x)y = g(x) can be solved by 
the method of variation of a constant. First we find the general solution of the 
homogeneous linear differential equation (without the right hand member)  

),(,
)(

baxcey
dxxp

∈∫=
−

. 

Then we look for a solution of the non-homogeneous differential equation in the 
form  

),(,)()(
)(

baxexcxy
dxxp

∈∫=
−

 

where c(x) inserted into the general solution of the homogeneous differential 
equation instead of the constant c is such function defined on (a, b) that y(x) satisfies 
the original equation. 
Then, there must exist a derivative of the function y(x) on (a, b) 

∫−∫′=′ −− dxxpdxxp
excxpexcxy

)()(
)()()()( . 

Substitution to the original differential equation gives 

.,)()(

)()()()(

)()()()()()(

)(

)()(

)()()(

R∈+∫=

∫=′⇒=∫′

=∫+∫−∫′

∫

−

−−−

ccdxexgxc

exgxcxgexc

xgexcxpexcxpexc

dxxp

dxxpdxxp

dxxpdxxpdxxp

 

Inserting the obtained form of function c(x) to the general solution y(x) yields 

).,(,)()(

)()(

)()()(

)()(

baxdxexgecexy

ecdxexgxy

dxxpdxxpdxxp

dxxpdxxp

∈∫∫+∫=

∫







 +∫=

∫

∫
−−−

−

 

This proves that the general solution of a non-homogeneous linear differential 
equation of the first order consists of a general solution for the corresponding 
homogeneous linear differential equation of the first order 

R∈∈∫=
−

cbaxcey
dxxp

H ),,(,
)(

,  

and one arbitrary particular solution of the original non-homogeneous linear 
differential equation of the first order in the form 

),(,)(
)()(

baxdxexgey
dxxpdxxp

P ∈∫∫= ∫
−−

, y = yH + yP. 
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Exactly one solution of a linear differential equation of the first order on interval 
(a, b) exists and such, that it satisfies the initial condition 

y(x0) = y0, x0 ∈ (a, b). 
 
Examples 

1. General solution for the non-homogeneous differential equation y ′ + y = 2x can 
be composed from the general solution of the homogeneous differential equation 
y ′ + y = 0, and one particular solution of the original non-homogeneous 
differential equation. The homogeneous equation can be transformed to the 

differential equation with separated variables 011 =+′− yy , with the solution

RR ∈∈= − cxcey x
H ,, . The particular solution of the original non-

homogeneous equation can be then represented as the function

R∈= − xexcy x
P ,)(  with the derivative xx

P excexcy −− −′=′ )()( , where c(x) is 
an unknown function. Inserting it to the original equation yields the equation

xexc x 2)( =′ − , from which follows )1(2)(2)( −=⇒=′ xexcxexc xx , and 

)1(2 −= xyP . Finally, the general solution of the original non-homogeneous 

differential equation is y = yH + yP, RR ∈∈−+= − cxxcey x ,),1(2 . Several 
integral curves are illustrated in fig. 5.13. 
 

 
Fig. 5.13. System of integral curves 

2. Solution of the initial Cauchy problem y ′ + y = 2x, y(0) = −2, can be obtained 
from the general solution of this differential equation from the previous example. 
The specific value of the constant c is the solution for the equation −2 = c − 2, 
therefore c = 0, and the requested particular solution is the linear function 

R∈−= xxy ),1(2 , while its graph is a line in fig. 5.13. 
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5.4  Linear differential equations of the second order  
 
Differential equation of the form 

y ′′ + p1y ′ + p2y = g(x), 

where p1 and p2 are real numbers and g(x) is a continuous function on interval (a, b), 
g(x) ≠ 0, is called a non-homogeneous liner differential equation of the second order 
with constant coefficients. A special form of this differential equations for g(x) ≡ 0 
on (a, b)  

y ′′ + p1y ′ + p2y = 0, 

is the homogeneous linear differential equation of the second order with constant 
coefficients.  
If a0, a1 are arbitrary real numbers, it can be proved that there exists just one solution 
of the non-homogeneous (or homogeneous) liner differential equation of the second 
order with constant coefficients satisfying the initial conditions 

y(x0) = a0, y ′(x0) = a1, x0 ∈ (a, b) (x0 ∈ R). 

Let y1, y2 be two arbitrary solutions of the homogeneous differential equation, then 
any linear combination  c1y1 + c2y2, c1, c2 ∈ R, is also the solution of this equation. 
 
Linear dependence and independence of solutions 
Two solutions y1, y2 of the homogeneous differential equation are linearly dependent 
on R, if such a number k exists, that for all x ∈ R it holds that 

y1 = k y2 ⇔ y1 − k y2 = 0. 

If the two solutions y1, y2 of the homogeneous differential equation are not linearly 
dependent on R, then they are called linearly independent. 

Let y1, y2 be two arbitrary functions differentiable on an interval J. The determinant 

)()(

)()(
)(

21

21

xyxy

xyxy
xW

′′
=  

is called Wronskian, or Wronski determinant of functions y1, y2 on J. 

The functions y1, y2 are linearly independent on J, if their Wronskian is non-zero for 
each x ∈ J. 
Any pair of two linearly independent solutions of the homogeneous linear 
differential equation of the second order is called the fundamental system of 
solutions of this differential equation.  
If y1, y2 form the fundamental system of solutions of the homogeneous linear 
differential equation of the second order, then the general solution of this differential 
equation is  

c1y1 + c2y2,  

where c1, c2 ∈ R are arbitrary constants. 
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Examples 

1. Functions y1 = ex, y2 = 1 form the fundamental system of solutions of the 
differential equation y ′′ − y ′ = 0, as they are both solutions of this equation, and 
their Wronskian is 

0
0

1
)( ≠−== x

x

x

e
e

e
xW  for all x ∈ R.  

The general solution of the respective differential equation is  

y = c1e
x + c2, x ∈ R. 

2. Functions y1 = ex, y2 = xex form the fundamental system of solutions of the 
differential equation y ′′ − y ′ = 0, as they are both solutions of this equation, and 
their Wronskian is 

0
0

1
)( ≠−== x

x

x

e
e

e
xW  for all x ∈ R.  

The general solution is  

y = c1e
x + c2, x ∈ R. 

Suppose that one particular solution of the homogeneous liner differential equation 
of the second order with constant coefficients is a function y = erx, r is a real 
constant. Then it holds that  

rxrx eryrey 2, =′′=′ , which means yryryy 2, =′′=′ . 

Inserting function y and its derivatives to the differential equation we obtain 

0)(

0

21
2

21
2

=++

=++

prpre

epreper
rx

rxrxrx

 

and because erx ≠ 0 for all x ∈ R, the above equation is true if and only if 

021
2 =++ prpr . 

Therefore, the function y = erx, r ∈ R is the solution of the homogeneous liner 
differential equation of the second order with constant coefficients, only if r is the 
root of the above quadratic equation called the characteristic equation of the 
respective differential equation. 

There are the following three possibilities for the roots of the characteristic equation  

a) two distinct real roots exist 

b) a double real root exists 

c) a couple of complex conjugate roots exist. 
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Case a)  

The discriminant of the characteristic equation is positive, 04 2
2
1 >−= ppD , and 

the equation has two distinct real roots r1 ≠ r2. Then it can be proved that the 

functions xrxr eyey 21
21 , ==  are both solutions of the respective differential 

equation, their Wronskian is  

0)()( )(
12

21

21

21

21

≠−== + xrr

xrxr

xrxr

err
erer

ee
xW  for all x ∈ R,  

hence y1 and y2 are linearly independent and thus they form a fundamental system of 
solutions, it means 

R∈+= 2121 ,,21 ccececy xrxr . 

Case b)  

The discriminant of the characteristic equation equals zero, 04 2
2
1 =−= ppD , and 

the equation has one double root 
2

1p
r

−= . Then it can be proved that the functions 

rxrx xeyey == 21 ,  are both solutions of the respective differential equation, their 
Wronskian is  

0
)1(

)( 2 ≠=
+

= rx

rxrx

rxrx

e
xere

xee
xW  for all x ∈ R,  

hence y1 and y2 are linearly independent and thus they form a fundamental system of 
solutions, it means 

R∈+= 2121 ,, ccxececy rxrx . 

Case c)  

The discriminant of the characteristic equation is negative, 04 2
2
1 <−= ppD , and 

the equation has two conjugate complex roots r1 = a + ib, r2 = a − ib. Then the 
complex function  

bxiebxeeey axaxbxaxxr sincosi1 +=== +   

satisfies the respective differential equation on R. It can be proved that both the real 
and the imaginary part of this complex function y, it means functions  

bxeybxey axax sin,cos 21 ==   

are real solutions of the respective differential equation.  
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Wronskian of the two functions is non-zero 

0
)cossin()sincos(

sincos
)( 2 ≠=

+−
= ax

axax

axax

be
bxbbxaebxbbxae

bxebxe
xW  

for all x ∈ R, hence y1 and y2 are linearly independent and form a fundamental 
system of solutions, therefore the general solution is 

R∈+= 2121 ,,sincos ccbxecbxecy axax . 
 
Examples 

1. General solution of the equation y ′′ − 4y ′ + 3y = 0, will have one of the forms 
that are described in a) - c), depending on the roots of its characteristic equation 

0342 =+− rr . The discriminant is 0434)4( 2 >=⋅−−=D , the equation 
has two real roots r1 = 3, r2 = 1, and the general solution of the differential 

equation is RR ∈∈+= 212
3

1 ,,, ccxececy xx . Some integral curves are 
illustrated in the fig. 5.14. 
 

 
Fig. 5.14. System of integral curves 

 

2. Equation y ′′ + 6y ′ + 9y = 0, with the characteristic equation 0962 =++ rr  has 

two solutions xx xeyey 3
2

3
1 , −− == , as the discriminant is 094)6( 2 =⋅−=D , 

and the equation has one double real root r = −3, and the general solution of this 

differential equation is RR ∈∈+= −−
21

3
2

3
1 ,,, ccxxececy xx . An illustration 

of several integral curves is in fig. 5.15. 
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Fig. 5.15. Integral curves of general solution 

 

3. Characteristic equation 01362 =+− rr  of the second order differential 

equation y ′′ − 6y ′ + 13y = 0 has the discriminant 16134)6( 2 −=⋅−−=D , 

therefore its two conjugate roots in the form i232,1 ±=r  exist. The general 

solution of the respective differential equation is then in the form 

RR ∈∈+= 21
3

2
3

1 ,,,2sin2cos ccxxecxecy xx ,  

see the graphs in fig. 5.16. 
 

 
Fig. 5.16. System of integral curves 
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Fig. 5.17. Particular solution 
 

4. Particular solution of the differential equation y ′′ + 4y = 0 satisfying the initial 
condition y(π) = 1, y ′(π) = 0, is the function that can be obtained from the general 
solution specifying the coefficients c1 and c2. The characteristic quadratic 
equation is  r2 + 4 = 0, it has two complex conjugate roots i22,1 ±=r , therefore the 

general solution of the differential equation has the form 

RR ∈∈+= 2121 ,,,2sin2cos ccxxcxcy ,  

with the first derivative 

xcxcy 2cos22sin2 21 +−=′ . 

Solving the equations 

π2cos2π2sin20 21 cc +−=   

π2sinπ2cos1 21 cc +=   

we obtain 220 c=  and 11 c= , from which the particular solution can be 

determined as function R∈= xxy ,2cos . The integral curve of this particular 
solution is presented in the fig. 5.17. 
 

Vibrations problem plays an important role in modern engineering and physics. 
There are many cases when vibrations are described with linear differential 
equations of the second order, having constant coefficients. These equations are used 
as mathematical models of harmonic motions. The next example is related to the 
frequently appearing problem on description of a simple harmonic motion.  
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Example 

1.  Suppose that a moving body of the mass m is under the action of a force directed 
toward the state of equilibrium, the magnitude of the force being proportional to 
the deviation of the state. If we neglect the resistance of the medium, this motion 
is said to be a simple harmonic motion. To find its law, let us denote the distance 
from the body to the state of its equilibrium by s, then the force is F = −as, a 
being a positive constant. According to the Newton's 2nd law of motion it holds 
that 

 )0(0
2

2

2

2

=+′′=+⇒−= assmas
dt

sd
mas

dt

sd
m . 

Denoting  
m

a
k =2 , we obtain the equation 02 =+′′ sks . 

From this it follows that R∈+= 2121 ,,sincos ccktcktcs , which means that s 

is a periodic function of time t with the period 
k

T
π2= . 

 

Non-homogeneous linear differential equation of the second order  

y ′′ + p1y ′ + p2y = g(x), 

can be solved by means of the associated homogeneous linear differential equation  

y ′′ + p1y ′ + p2y = 0. 

Let Y = c1y1 + c2y2, where c1, c2 ∈ R, be the general solution of the associated 
homogeneous differential equation on R, and yP be the arbitrary solution of the 
original non-homogeneous differential equation, then  

y = Y + yP = c1y1 + c2y2 + yP 

is the general solution of the original non-homogeneous differential equation. 

There are two methods for finding the particular solution of a non-homogeneous 
differential equation of the second order. 

1. The method of variation of constants 
Let Y = c1y1 + c2y2, where c1, c2 ∈ R, be the general solution of the associated 
homogeneous differential equation on R, then the particular solution of the non-
homogeneous equation can be found in the form  

2211 )()( yxcyxcyP += . 

Constants c1 and c2 are replaced by the unknown functions c1(x) and c2(x) such, that 
yP satisfies the non-homogeneous equation. Functions c1(x), c2(x) must have 
derivatives on some interval (a, b), as then  

22221111 )()()()( yxcyxcyxcyxcyP ′+′+′+′=′  
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while we will assume that 0)()( 2211 =′+′ yxcyxc , from which it follows 

2211 )()( yxcyxcyP ′+′=′ . 

For the second derivative it holds that 

22221111 )()()()( yxcyxcyxcyxcyP ′′+′′+′′+′′=′′ . 

Substituting yP and its derivatives to the non-homogeneous differential equation and 
after some transformations we receive equation  

( ) ( ) )()()()()( 2211222122121111 xgyxcyxcypypyxcypypyxc =′′+′′++′+′′++′+′′ . 

Because y1 and y2 are the solutions of the associated homogeneous differential 
equation, we obtain  

)()()( 2211 xgyxcyxc =′′+′′ . 

The solution of the system of two equations  

)()()(

0)()(

2211

2211

xgyxcyxc

yxcyxc

=′′+′′
=′+′

 

with unknown functions )(),( 21 xcxc ′′ always exists, as the determinant of the system 
is the Wronskian  

0
)()(

)()(
)(

21

21 ≠
′′

=
xyxy

xyxy
xW  for all x ∈ R.  

Using the Cramer rule we obtain the unique solution in the form  

)(

)(
)(,

)(

)(
)( 2

2
1

1 xW

xW
xc

xW

xW
xc =′=′ , 

where the determinants Wi (x) are derived from the determinant W(x) exchanging its 

i-th column by 








)(

0

xg
for i =1, 2.  

Then the functions c1(x) and c2(x) can be determined by simple integration 

∫∫ == dx
xW

xW
xcdx

xW

xW
xc

)(

)(
)(,

)(

)(
)( 2

2
1

1 . 

Particular solution of the non-homogeneous differential equation therefore appears 
in the following form 

∫∫ += dx
xW

xW
ydx

xW

xW
yyP )(

)(

)(

)( 2
2

1
1 . 
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Examples 

1. Let us find one particular solution of the differential equation y ′′ – y ′ = x +1. 
From the characteristic equation r2 – r = 0 of the associated homogeneous 

differential equation we can find its general solution xeccY 21 += . Exchanging 
the constants c1, c2 with the functions we get the particular solution of the 

original non-homogeneous differential equation x
P excxcy )()( 21 += , while the 

functions c1(x), c2(x) can be calculated as follows 

1
10

01
),1(

1

0
,

0

1
21 +=

+
=+−=

+
=== x

x
Wxe

ex

e
We

e

e
W x

x

x
x

x

x

 

x
x

exdx
e

x
dx

W

W
xc

x
x

dxxdx
W

W
xc

−+−=+==

−−=+−==

∫∫

∫∫

)2(
1

)(

,
2

)1()(

2
2

2
1

1

 

The particular solution is then in the form 22
2

2

−−−= x
x

yP , x ∈ R.  

The integral curve is in fig. 5.18. 
 

 
Fig. 5.18. Particular solution   Fig. 5.19. Particular solution 
 

2. To solve the differential equation 
x

yy
cos

1=+′′  for all 






−∈
2

,
2

π π
x  let us 

find first the general solution Y = c1y1 + c2y2 of the associated homogeneous 
differential equation 0=+′′ yy . Its characteristic equation is  r2 +1 = 0 and it 

has the complex conjugate roots i2,1 ±=r , therefore xcxcY sincos 21 += . 
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Exchanging the constants c1, c2 with functions we get the form of the particular 
solution of the original non-homogeneous differential equation  

xxcxxcyP sin)(cos)( 21 += .  

Then we calculate the functions c1(x), c2(x) 

1
cos

1
sin

0cos
,tancos

cos

1
sin0

1
cossin

sincos

21 =−===

=
−

=

x
x

x
Wxx

x

x
W

xx

xx
W

 

xdxdx
W

W
xcxdxxdx

W

W
xc ===−=== ∫∫∫∫ 1)(,coslntan)( 2

2
1

1  

and determine xxxxyP sincoslncos +−= , see fig. 5.19. 

The general solution of the non-homogeneous differential equation is  

RR ∈∈−++= xccxxxxxcxcy ,,,coslncossinsincos 2121 . 

2. The method of undetermined coefficients 
The method is suitable for solving non-homogeneous differential equations with 
special form of the right-hand terms.  

A) If the right-hand member is )()( xPexg x ⋅= α , where α ∈ R and P(x) is an 
polynomial of degree m, then a particular solution of the equation exists 

)(* xPexy xk
P ⋅= α , 

where k is the multiplicity of α considered as a root of the characteristic 

equation and m
m xbxbbxP +++= ...)( 10

*  is an unknown polynomial of the 

same degree as P(x). Coefficients b0, b1, ..., bm are found by the method of the 
undetermined coefficients. 

B) If the right-hand member is ( )xxQxxPexg x ββα sin)(cos)()( +⋅= , where 

α, β ∈ R and P(x), Q(x) are polynomials, then a particular solution of the 
equation exists 

( )xxQxxPexy xk
P ββα sin)(cos)( ** +⋅= , 

where k is the multiplicity of α + iβ considered as a root of the characteristic 

equation and )(),( ** xQxP  are unknown polynomials of the same degree 
identical with the greater degrees of the polynomials P(x) and Q(x). The 

coefficients of the polynomials )(),( ** xQxP  are found by the method of the 
undetermined coefficients. 
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Examples 

1. The right-hand term of the equation xeyyy =+′−′′ 2  is in the form A), while 

α = 1, and the polynomial P(x) = 1 has just the absolute member. The 
characteristic equation of the associated homogeneous differential equation is  
r2 – 2r + 1 = 0, it has one double root r = 1, therefore k = 2 and the particular 

solution of the equation is  Aexy x
P ⋅= 2 , with the first two derivatives 

)2( 2 xxAey x
P +=′  and )24( 2 ++=′′ xxAey x

P .  

After substitution to the differential equation we obtain 

2

1
12

)2(2)24( 222

=⇒=

=++−++

AA

exAexxAexxAe xxxx

 

and x
P exy 2

2

1= , see fig. 5.20. The general solution of the associated 

homogeneous differential equation is in the form  

R∈+= 2121 ,, ccxececY xx ,  

and the general solution of the non-homogeneous equation is 

RR ∈∈++=+= xccexxececyYy xxx
P ,,,

2

1
21

2
21 . 

 

 
Fig. 5.20. Particular solution 
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2. Differential equation xyy 2sin4 =+′′  has the right-hand term in the form B). 
By solving the characteristic equation r2 + 4 = 0 of the associated homogeneous 
differential equation we obtain the roots i22,1 ±=r , which yields the general 

solution of this differential equation R∈+= 2121 ,,2sin2cos ccxcxcY . The 
special form of the particular solution of the non-homogeneous differential 
equation can be determined as  

)2sin2cos()2sin2cos(01 xBxAxxBxAexy x
P +=+= ,  

according to α = 0, β = 2 in the root r1 of the characteristic equation with 
multiplicity k = 1, and both P(x), Q(x) are the polynomials of degree 0. Then the 
first two derivatives of the function yP are  

xBxAxAxBy

xAxBxBxAy

P

P

2sin)(42cos)(4

,2sin)2(2cos)2(

+−−=′′
−++=′

,  

whereas inserting these to the equation we obtain coefficients A and B 

4

1
14,0

2sin2sin42cos4

−=⇒=−=

=−

AAB

xxAxB
. 

Particular solution is xxyP 2cos
4

1−= , the integral curve is in fig. 5.21. 

Finally, the general solution of the non-homogeneous differential equation 
appears in the form  

RR ∈∈−+=+= xccxxxcxcyYy P ,,,2cos
4

1
2sin2cos 2121 . 
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Fig. 5.21. Particular solution 
The advantage of the method of the undetermined coefficients is that this method 
does not require integration and its application (in the case of the special form of the 
right-hand member) is mostly considerably simpler than the method of the variation 
of constants. The disadvantage is that this method is restricted to the case of the 
special form of the right-hand members; hence it is not always possible to use it, 
contrary to the method of the variation of the constants that is general, and can be 
used in the case of any form of the right-hand term of the respective differential 
equation. 
 
Example 

1. Particular solution of the differential equation xxeyyy x cos22 =+′−′′  

satisfying the initial conditions ( ) ( ) 10,10 =′= yy  can be obtained with the 
method of the undetermined coefficients, as the right-hand term has the special 
form B). The characteristic equation r2 – 2r + 2 = 0 of the associated 
homogeneous differential equation has the roots r1,2 = 1 ± i, therefore the general 

solution of the homogeneous equation is R∈+= 2121 ,,sincos ccxecxecY xx . 
One solution of the non-homogeneous equation can be found according to B) for 
α = 1, β = 1 in the root r1 of the characteristic equation with multiplicity k = 1, 
while the degree of the polynomial P(x) is 1, and the degree of Q(x) is 0, so  

[ ])sin)(cos)( xDCxxBAxxey x
P +++= .  

Then inserting the first two derivatives  

[ ]
[ ]

[ ]
[ ] 











++−++−−+−+
+++++++

=′′













+−++−+
++++++

=′

xDCBxCBAAx

xCBAxDCACx
ey

xDxBDCxAC

xBxDBAxCA
ey

x
P

x
P

sin)(2)424(2

cos)(2)244(2

sin)2()(

cos)2()(

2

2

2

2

 

to the non-homogeneous differential equation we obtain the equation  

[ ] xxexAxCBxCxDAe xx cossin)2(cos)2(2 =−+−+++  

with solutions in coefficients A, B, C, D 

0,
4

1
,

4

1
,0

04,0)(2,14,0)(2

====

=−=+−==+

DCBA

ACBCDA
, 

from which one solution of the non-homogeneous equation can be represented as  
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)sincos(
4

1 2 xxxxey x
P += . 

The general solution of the non-homogeneous equation is  

R∈+++= 21
2

21 ,),sincos(
4

1
sincos ccxxxxexecxecy xxx  

and the particular solution satisfying the initial conditions has the coefficients 
c1 = 1, c2 = –1/4, 

R∈






 ++−= xxxxxxxey x
B ,sin

4

1
cos

4

1
sin

4

1
cos 2 . 

Applying the method of variation of constants we estimate the solution of the 
non-homogeneous equation according to A) as  

xexcxexcy xx
P sin)(cos)( 21 +=   

and calculate the functions c1(x), c2(x) using Wronskian  

x

xx

xx

e
xxexxe

xexe
W 2

)cos(sin)sin(cos

sincos
=

+−
=   

and the determinants 

2
1

2 2
2

0 sin
sin cos ,

cos (sin cos )

cos 0
cos

(cos sin ) cos

x
x

x x

x
x

x x

e x
W e x x x

e x x e x x

e x
W e x x

e x x e x x

= = −
+

= =
−

 

The resulting functions 

1
1

2
22

2

1 1
( ) sin cos cos2 sin 2 ,

4 8

1 1
( ) cos cos2 sin 2

4 8 4

W
c x dx x x xdx x x x

W

W x
c x dx x dx x x x

W

= = − = −

= = = + +

∫ ∫

∫ ∫

 

inserted to the particular solution give one solution of the non-homogeneous 
equation 
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







+++

+






 −=

xxx
x

xe

xxxxey

x

x
P

2sin
4

1
2cos

8

1

4
sin

2sin
8

1
2cos

4

1
cos

2
 

and the final general solution of the non-homogeneous equation is   









++++

+






 −+=

xxx
x

cxe

xxxcxey

x

x

2sin
4

1
2cos

8

1

4
sin

2sin
8

1
2cos

4

1
cos

2

2

1

. 

For the particular solution determined by the initial conditions we obtain the 
values of both constants by substitution into y and y ′, c1 = 1, c2 = –1/8, and the 
particular solution illustrated in fig. 5.22 is 









+++−+

+






 −+=

xxx
x

xe

xxxxey

x

x
A

2sin
4

1
2cos

8

1

48

1
sin

2sin
8

1
2cos

4

1
1cos

2
. 

 

 
Fig. 5.22. Graph of particular solution 
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