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1 Introduction

1.1 Basic conceptsfrom mathematical logic

Mathematical logic deals with statements and theth values. A proposition is any
statement expressed in written or oral form, whogh value can be evaluated. Any
proposition is either true or false, and we caateeh certain truth value to it, which
can be symbolically denoted as 1 or 0. More comptarpound statements can be
formed as compositions of two or more sentencesgusbgical connectives.
Corresponding semantics of logical connectivestarh functions, whose values
are expressed in the form of truth tables. The rmostmon logical connectives are
binary connectives (also called dyadic connectitkaj join two sentences which
can be thought of as the function's operands. Neg& considered to be a unary
connective.

Examples

Any positive number is greater than zero.

Any parallelogram is a square.

There exist at least three divisors of number 21.
No equilateral triangle is a right triangle.
Bratislava is the largest city in the world.

It is Sunday today.

3+7=10

Propositions 1., 4. and 7. are true, while propmsst 2., 3. and 5. are false. Truth
value of the proposition 6. is sometimes 0 and s$iones it is 1, with respect to what
day it is today.

Propositions will be denoted by small letterg, ... . In case of a true propositipn
we say thap truth value is 1. Truth value of a false proposip is zero.

Any propositionp can be changed to a proposition negatincglled negation of
propositionp, which can be read as "it is not the case phatnot thatp”, or more
simply (though not fully grammatically correct) deot p*. Truth value of
proposition negation is opposite to the truth vabfethe original proposition.
Negation is denoted by logical operator - with timeaning non, ifp is a
proposition, then its negation isp-

NoakwdhpE

Examples
1. p: Any parallelogram is a square.

= p: "It is not the case that any parallelogram igjasse.", or “There exists a
parallelogram, which is not a square."

2. p: ltis raining in Bratislava now. p: It is not raining in Bratislava now.
3. p: Number 25 is not a prime numberp-Number 25 is a prime number.
4. p: All people are polite. p: Not all people are polite.
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If proposition q is negation of propositiop, then negation of propositiog is
propositionp. The following two logical rules are true for négas of propositions.

Principle of contradiction consists of a logical incompatibility between
propositiongy and —-p, which cannot have the same truth value.

Principle of bivalence states that every declarative sentence expresaing
proposition has exactly one truth value, eithee tan false. There exists no third
possibility. A logic satisfying this principle isted a two-valued or bivalent logic.
Simple propositions can be combined to more comples by means of several
logical connectives. Logical connectives are- or (disjunction, alternation),] —
and (conjunction)> — if, then (implication, conditional)= — if and only if
(equivalence, bi-conditional).

Disjunction of propositions (alternation) is a logi sum of propositionp andq,
with the meaning that at least one of the two psdfmms is true. Disjunction is
denoted by signl, disjunction of propositionp andq is p g (p or g). Connective
or — [0 does not have the meaning of exclusion, theretfogepossibility that both
propositionsp and q are true is not excluded. Disjunction is a trueppsition,
provided at least one of the propositignandq is true, and it is false only in the
case that botp andq are false propositions.

Examples

1. Number 7 is odd, or any multiple of number 7 is.odd

2. Each parallelogram has an even number of verticesen number of sides.
3. This triangle has a right angle or it is equilatera

4. Any integer is either positive or negative.

Conjunction of propositions is a logical productwbpositionsp and g, with the
meaning that both propositiopsandq are true. Conjunction is denoted by the sign
A, conjunction of propositionp andq is p 0 g (p andq). Conjunction is a true
proposition only for both trup andq, and it is false in all other instances, when one
or both from propositiong andq are false.

Examples

1. Number 2 is even and any multiple of number 2 Enev

2. Right-angled triangle has two equal angles #mdet exists an isosceles right-
angled triangle.

3. Any rectangular has equal diagonals and theristsexa rectangular with
perpendicular diagonals.

4. Any positive number is greater than zero andragative number.

Implication of propositions is a proposition comedsf propositiong andq, with

the meaning that propositiqgmis true only if propositiorg is true. Implication is
denoted by the sigs, implication of propositionp andq isp = q (p impliesq, or

if pthenq).



Examples

1. If at least two axes of symmetry of a polygon exisen its centre of symmetry
in the common point of the two axes of symmetry alsists.

If an even number is divisible by five, then idigisible by ten.
If a triangle has a right angle, then it is notikdaral.

Any natural number is an integer.

If it rains today, then it is Wednesday tomorrow.

o s wN

Equivalence of propositions is a proposition congglosf propositiong andq, with
the meaning that one of them is true only if tHeeone is true.

Equivalence is denoted by the sign equivalence of propositiogsandqisp = q
(p is equivalent ta, orp if and only ifq, orpiff q).

Examples
1. A number is divisible by six if and only if it is\dsible by two and three.

2. Two triangles are congruent if they have two egidgs and angle formed by
them.

3. Quadrilateral is a square if and only it has fayuad sides and its diagonals are
perpendicular to each other.

4. Sum of two non-zero integers is zero, if the twanbers are opposite numbers.

P 9 | -p | pCqg | pCg|p=0d|p=g(
1 1 0 1 1 1 1
1 0 0 1 0 0 0
0 1 1 1 0 1 0
0 0 1 0 0 1 1

Table 1.1. Table of truth values

Composed propositions, which are true not dependimdhe truth values of the
elementary propositions of which they are compoaszicalled tautologies.

Examples
1. pUO-p (principle of bivalence)
2. = (pO=-p) (principle of contradiction)

3. (P=09 < (-pUa),~P=09 < (pU-0)
4. [(pOqg) Or] = [pO(gOr)] (associativity of disjunction)

Propositional function is a functioi(x) that may be true or false depending on the
values of its variable. A set of &l for whichV(X) is a proposition, is called domain
of definition of the propositional function. A set all x, for which V(x) is a true
proposition, is called the truth domain of the mrsifional function. HereY(x) is
referred to as the predicate, anthe subject of the proposition, as each choice of
produces a proposition.
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Examples

1. V(n): Any regulam-gon has a centre of symmetry.

2. If it rains on the Medards’s name day, then it waih for the following 40 days.
V(X): If it rains on the 8 of Junex, then it will also rain for the following 39 days
in a given yeax, therefore betweed” of Junex — 17" of Julyx, x O N.

3. V(X): {x: xis a positive integer less than 4} is the setZ13}.

4. V(n): Any regulam-gon has a centre of symmetry.

Quantifiers
Proposition ,,For any from the seMM statemenp(x) is true.” can be symbolically

written asC] x O M: p(x). The symboll (any) is called general quantifier.

Examples

1. For any non-negative numbaiolds §| =a.
2. OxOR¥>0

3. All even numbers are divisible by 2.

Proposition,, There exists anx from the setM such thatp(x) is true.” can be
symbolically written as1x 0O M: p(x). The symbolC (exists) is called existential
quantifier.

Examples
1. There exists a triangle with one acute angle.

2. OxORX¥-1=0
3. There exists at least one equilateral triangle.

The negation of propositionV(x) is true for any." is a proposition ,, There exists
suchx, for whichV(x) is false." Symbolically this can be written as
= (0x V(X)) = Ox: = V(X).

1.2 Elementsof set theory

A set is a well defined collection of distinct otfg which are called elements of the
set. The elements or members of a set can be napietters of the alphabet, other
sets, points, geometric figures or transformatidoagctions, and so on. Sets are
conventionally denoted with capital letters.

If X is an element of the skt, this can be symbolically denotedxasl M, if x is not

a member oM, we use the denotatiori] M.

The set can be described in two ways:
« Dby a list of all elements written in curly brackets

» by determining the characteristic property satikfig all set elements.
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Examples
1. M={3, 6, 11, 107,5}
2. e={XOE?% [FX| + FX| = 22,a> 0, F1F,| < 23}

A set with a finite number of elements is callefirite set. A set with infinitely
many elements is called an infinite set. A set withelements is called an empty set
and it is denotedl. SetsA andB are equalA = B, if and only if they have precisely
the same elements. Any element of Aeis also an element of s& and any
member of seB is also a member of sat

SetAis a part (a subset) of 98t A 0 B, if any element of seA is also element of
setB.

AlOB - OxxOA=x0B

Alternatively the presented relation can be desdribsing the concept of superset.
SetB is superset of s&, B I A, if any member of sei is simultaneously a member
of setB.

Fig. 1.1. Subset and superset Fig. 1.2. Unicsetf

For any two set#, B holds:

ATA, OO0A
A=B - [(AOB)O®BOA).

The union of set® andB, denoted byA [1 B, is the set of all objects which are
members of eitheh or B.

AOB={x (xOA) OxOB)}

Some basic properties of union

AOB=BUOA AOBOC)=(AOB)OC
AO(ADOB)

AOBifand only ifACD B=B

AOA=A AOO=A
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Intersection of set8, B denoted byA N B is set of all objects which are members of
both A andB.

ANB={x xOA) OX0OB)}

(2

Fig. 1.3. Intersection of sets Fig. 1.4. Subtoacof sets

If AN B =0, thenA andB are said to be disjoint.
Some basic properties of intersections:

ANB=BNA, ANBNC) =ANB)NC
ANBCA
ANA=A ANDO =0

AOB ifandonly ifANB=A

Subtraction of seté, B is a set denoted — B that consists of all objects which are
members of seh but they are not members of 8et

A-B={x xOA) OxOB)}

If B O A, then subtractio® — B is said to be the complement of &in setA.
Complement of seA in some basic s is denotedh®, whereas\® = C - A.

G

Fig. 1.5. Complement of set Fig. 1.6. Symmalifference of sets
12
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Symmetric difference of set&, B denotedA A B is a set of all objects that are
members of seh or setB, but they are not members of their intersecAdn B.

AAB=(A-B)O(B-A)=(AOB)-(ANB)
AAB={x xOA-BOxOB-A={x xOAOB)OXOANB)}

System of sets is a set consisting of sets asdisbars.

Examples
1. Set of all subsets of sétis denoted 2 If P = {0, 1}, then Z = {0, {0}, {1},
{0,1}}.

2. System of set! = {p = AB, q = CD} is a set containing lin@ = AB and line
g = CD that are infinite sets of points.

deMorgan rules

~(pOg) = ~pO-q (AOB)=A"NB°
~(pOg) = =pVv-q (ANB)°=A°0B°

1.3 Relationsand mappings

Relation is an association between two or moreobhjdt can be represented by a
formula, a table or a diagram, gtaph or a mapping. Symbols #, represent
relations of equality or inequality between mathtoah expressions, order of the
number set is represented by relatiens<, =, >, while symbols], O, n define
relations between sets.

A binary relation can be written as ordered pajibj, in which the objects occur in
a particular order.

Examples

1. Parity is a relation between a pair of integer&aith integers are odd, or both are
even, they have the same parity; if one is odd thedother is even they have
different parity.

2. Transitivity is a relation between three elementshsthat if it holds between the
first and the second one and it holds also betwleersecond and the third one,
then it must necessarily hold between the first tedthird one. For any three
real numbers it holds: H< b andb < c, thena<c.

3. Reflexiveness, reflexivity is such relation that holds between an element and
itself.

4. Cartesian product of sefs B denotedA x B is set of all ordered pairg,(b) such
thata is a member of andb is a member oB.

AxB={[a bl:alAObOB}
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Fig. 1.7. Ordered pair — Cartesian product of sets

Ordered pairsd, b] and [c, d] are considered equal, if the following holds: ¢ and
simultaneousiy = d.

[a,b]=[c,d] = a=cOb=d

Mapping is an association between two getmdB such that each element Afis
associated with a unique elemenof

¢g:A- B
OaldA[DbOB:b=¢(a)

Fig. 1.8. Mappings between sét@ndB: a) surjective, b) injective, c) bijective

Mapping ¢ is said to be surjective, if the image of setinder¢ equals toB,
@(A) = B, therefore

ObOB, (a0 A:b=¢(a).

Mapping ¢ is said to be injective, if it maps distinct argemts to distinct images,
therefore

Day,a, DA ¢(a) =¢(a,) = a =4a,.

Mapping ¢ is said to be bijective, if it is both surjectigad injective, therefore

Uay,a,UA 8 #a, = ¢(a) # ¢(a,).
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For a bijective mapping from A to B holds
Da, 8,0 A:(8)=¢(a) = 3= &
1.4 Noteson number sets

The concept of a number is one of the basic coscepimathematics, whereas
several different types of numbers are recognized.

Natural numbers are used to define a number of solopects in a group, or a
number of elements of a finite set. Sums and prsdoichatural numbers are again
natural numbers, and these two operations are edkfin the set of all natural
numbers. The difference of two natural numbersisnecessarily a natural number;
the operation of subtraction is not always posdibkbe set of all natural numbers.
Set of all natural numbers is closed with respecbperations of summation and
multiplication and it is denoted = {1, 2, 3, ...n, ...}.

Extension of the set of all natural numbers by zrd negative nhumbers is set of
numbers closed with respect to operation of sutitrac while summing up,
multiplying and subtracting two integers we receiggin an integer. Ratio of two
integers is generally not an integer.

Set of all integers is closed with respect to ofgema of summation, multiplication
and subtraction, and it is denotgé {..., -2, -1, 0, 1, 2, ...}.

By extension of this set by all fractions we camagbaset of numbers with defined
operation of division of an integer by integer eiffint from zero, the set of all
rational number€). Rational number is any such number that can pesented in
the form of a fractiomp/q, wherep andg have no common divisors ands a natural
number. The set of all rational numberQis {p/q: p € Z, g € N}.

Set of all natural numbers is a subset of a satlghtional numbers, as any integer
can be represented in the fopi, whileq = 1.

All four basic operations — summation, subtractiomjltiplication, division of
numbers are possible in the set of all rational mens. Nevertheless, an easy
equation in the form e.gé =2 does not have a solution in this set. No ratio
numberx exists such that it satisfies this equation. Ohe¢he solutions of this
equation we denote as the numis2y which is not a rational number, as it cannot be
represented in the form of a fraction, and we itah irrational number. There are
infinitely many irrational numbers that appear whimding square roots, for
instance/3, V5, in calculation of logarithms, finding valuesgafniometric functions
or solving algebraic equations.

The discovery of irrational numbers dates backnoiemt Greek geometers, who
were able to represent irrational numbers geonadyjcout they could not manage
their mathematical symbolical denotation. Theyvstli to denote all numbers as
ratios of lengths of some line segments, i. ehénform of a fraction. These numbers
were called commensurable. Nevertheless, someséigments, whose length could
be measured, were not able to be represented snwy, which was not well
understood and such line segments were denotegd@minensurable.
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Fig. 1.9. Irrational numbers Fig. 1.10. Ratio wtemference and radius of circle -

Transcendent numbers are such numbers that aresohaions of an algebraic
equation.
The best known transcendent number is Ludolf's rermbprepresenting the ratio of
a circle circumference and its radius. This numdzenot be written as a fraction,
but for practical calculations it is often approxired by 22/7.
Rational and irrational numbers together form aofetal numbers denoted Rs
The following basic rules are valid for operatiavith real numbers.
Rules for relation of equality

1.vaOR: a=a (reflexiveness)

2.Va,bOR:a=b= b=a(symmetry)

Rules for summation
1.va, bOR: a+b=b+a(commutativity)
2.Va,b,cOR: (a+b)+c=a+ (b +c) (associativity)

3.va, bOROxOR: a+ x =D, difference of numbers=b —a

Rules for multiplication
1.va, b 0 R: ab = ba (commutativity)
2.Va, b, c 0 R: (ab)c = a(bc) (associativity)
3.va,bOR,a#00x 0R: ax=Db, ratio of numbers = b/a
4.va, b,c0R: (a+ b) c=ac+ bc (distributivity)
Real numbers are ordered with respect to theireyaiymbols
< - lesser than

> — greater than
are used for this relation with the following proiies.

16



1. Any given two real numbegs b satisfy precisely one from the three relations
a<b,a=b,a>Db (trichotomy)

2.Va,b,cOR: a<bOb<c= a<c((transitivity)

3.Va, b,c0R:a<b= a+c<b+c(monotonicity with respect to summation)

4.va,bOR: 0 <aO0 <b= 0 <ab (monotonicity of multiplication)

Any real numbera corresponds exactly to one non-negative real nurabeally
denotedd| - absolute value of numbar

laj =afora=0, pj=-afora<0

Absolute value of a real number represents itstiposon the real axis, distance
from the originO.

|-a | la|
I t {

-a 0 a

Yy

A

Fig. 1.11. Absolute value of a real number

Rules for calculation with absolute values

1. Bl ==
2.ta<|q
3. bl = flb]

4. p/b| = p|/p|, forb+# 0

5.p+bl<fal +pl, p+bl=al - pl

6. f<K,K>0=>-K<asK
Let a, b be arbitrary real numbers, such that b. Then, the following subsets can
be generated of the set of all real numbers

(a,b) ={x0O R a<x<b}-open interval

(a,b) ={x0 R a< x< b} — left-closed, right-open interval

(a, by ={x0O R a<x< b} — left-open, right-closed interval

(a, by ={x0O R a< x< b} — closed interval
Numbersa, b are boundary points of the interval, numlber a is the interval

length. All above intervals have a finite lengthroother words they are bounded.
Set of all real numbers can be denoted also@asoy-

17



Unbounded subsets of the set of real numbers ingenunbounded intervals.
(a, ©) = {x O R x >a} — left open, right unbounded interval
(a,0) = {x U R x= a} — left closed, right unbounded interval
(=00, @) = {x O R x < a} — left unbounded, right open interval

(-, @) ={x 0 R x < a} — left unbounded, right closed interval

Neighbourhood of a real numbais an open intervdD,(a) = (@ - ¢, a. &).

Left neighbourhood of a real numteeis an open intervaD,- (a) = (a —«, a).

Right neighbourhood of a real numlzeis an open intervdD,. () = (a, a +¢).

Any real number can be written as a rational numhging its decimal
representation, which can be finite, infinite angtipdic (in thecase of rational
numbers), or infinite (for irrational and transcentdnumbers).

r=a,10™+ a,,10™ + ...+a,+ b,10* + b,10% + ...,n O N,

while numbers, b; are integers from the set {0, 1, 2, 3, 4, 5, @,8}.

The maximum (minimum) of a non-empty $&tis such numbea 00 M, that for any
x O M it holds thata = x (a< X); it is the greatest (least) number from thehdet

Any non-empty finite set has its maximum and mimimunfinite sets of humbers
may not have a maximum or a minimum.

Non-empty set of numbeM is said to be

1. bounded above, if such real numbegxists (upper bound of skt), that
forallxOMisx<h

2. bounded below, if such real numizkexists (lower bound of séf), that
forallxOMisx=d

3. bounded if it is both bounded above and beldhwemwise it is said to be
unbounded.

The number seil is bounded if and only if such numbi€r> 0 exists that for all
x O M holds | < K.
Any bounded set has an infinite quantity of uppet Bbwer bounds.

a=inf M=min M b=sup M=max M

ra ] 1 | il 1
T~ T

d d, d, M hyhy h R

Y

Fig. 1.12. Bounded set
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Let M be a non-empty number set.

1. The least upper bound of 3dt(if it exists) is called supremum of Jeit
and is denoted suy.

2. The greatest bottom bound of Be(if it exists) is called infimum of seil
and it is denoted in¥1.

Properties of supremuiof a non-empty setl
1. for anyx € M it holds thax = S

2. at least ong € M exists in arbitrary left neighbourhood $f (S-¢, S).

Properties of infimuns of a non-empty se¥!
1. for anyx € M it holds thaix = s

2. at least ong € M exists in arbitrary right neighbourhood®f (s, s +¢).

The minimum (maximum) of sédl (if it exists), equals to the infimum (supremum)
of M.

Many mathematical problems have no solution indéeof real numbers. Simple
quadratic equatio®” + 1 = 0 has no solution in real numbers, as #sriinant is
negative,D = —4. Set of all real numbers must be therefotereded to such set of
numbers, in which all quadratic equations havelatiso.

Complex numbers are all the numbers in the forra + bi, wherea, be Rand i is
an imaginary unit, a number, for which equalftygi-1 is true.

Powers of imaginary unit i are

i2=-1,f=-i,i*=1,P=i,i#=-1, ...

Numbera is the real part of the complex number denoted Bisg), numberb is the
imaginary part of the complex number also denote@)!

Any real number is a member of a set of all complembers, while its imaginary
part isb = 0. Complex numbers with real part= 0 are said to be pure imaginary
numbers. The set of all complex numbers is usudhoted a€.

Any complex number can have its complex conjugatabrer attachedz =a—bi .
The rules for summation and subtraction, multigiaa and division of complex
numbers are
l.@+h)x(c+d)=(axc)+(pzdi
2. @+ bi)(c+di) = (ac—bd) + (ad + bo)i
a+bi _ac+bd bc-ad.
3. = +
c+di a*+b® a’+b’

19



For complex conjugate numbers= a+bi,z=a-bi it holds that
z+z=2a, zZ=a’+b’.

For arbitrary complex numbetzsg z it holds that

2+2=2+3 22= 2%

Im(z)
N b
[z]
Y
A
O a Re(z)

Fig. 1.13. Geometric interpretation of complex nemb

The geometric interpretation of a set of complermbars is a plane. Any complex
numberz = a + bi can be represented as a point in the plane, wkiastesian
coordinates in the determined orthogonal coordigggtem with originO = [0, 0]
are given as ordered pai, p] also called the algebraic form of a complex numbe
Coordinate axig is a real axis; and coordinate ayis an imaginary axis.

Im(z) Im(z)

Q

Z 1 +z 2 z 2 z

o Re(2)
z

o Re(z2) 2

Fig. 1.14. Geometric interpretation of sum andedéhce of two complex numbers

20



Im(z) 212,
Im(z)
b
2
o 22
0, z, Re(z)

2

‘! 1 £
ol 1 Re(z)

Fig. 1.15. Geometric interpretation of product aatib of two complex numbers

Absolute value of complex humbee a + bi is a hon-zero real number
|7 =|a+ |=v &+ B.

Geometric interpretation of the absolute value obmplex number = a + bi is the
distance of point = [a, b] from the originO.
Real numbemp, for which

cosp :Z ,Sing :tz)

is the argument (amplitude) of the complex nundyer’ + bi, denoted also as ary
and it is the size of an angle formed by the liegnsent with end points in origid
and point &, b], and axisx.

argz=¢+ 2k, k=0, £1, £2, ...

Only one of the arguments of complex number0 satisfies condition 8 ¢ < 2n
and this is called the principle argument (ampkudf complex numbez and is
denoted Arg.

If z=0, than4 =0,¢=0.

Complex numbez = a + bi # 0 can be written in the form
z=|Z(cosp + ising)
called the goniometric form of the complex number.
Complex number, whose absolute value equals ondenigted as complex unit

z; =(cosg +ising).

21



Let two complex numbers be given in goniometriarfor
7, =|z/(cosp, +ising,), z, =|z,|(cosp, + ising,).

Then their product and ratio are

22, =|2|7,/(cos@, + ¢,) +isin@, +¢,))
2 _ 2 (cosp, ~,) +ising,~4.).

z, |z
The Moivre formula for powers of complex unit is
(cosp +ising)" =comng +isinng .
For a complex number= [z|(cos¢ + i sin @), n O N it holds that
z" =|2" (cosp + ising)" =|2" (cosng +isinng) .
Exponential form of complex number can be written a

z=|7Z(cosp + ising) =| ze"

where numbere = 2,71828 is a transcendent number called Euletbeuw.

Im(z)

BT 1) (R — olze'?

1 lzlcosp  Re(z)

Fig. 1.16. Exponential form of complex number

The Euler formula is the following relation true fmmplex units
€? =cosp +ising.

One of the most beautiful mathematical equatiangyhich all special mathematical
numbers appear, is the equation

€7+1=0.
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2 Chaptersfrom linear algebra

2.1 Matricesand deter minants

Let mandn be natural numbers. A matrix ofx n typeis a table — rectangular array
consisting of elements;, i = 1, 2, ...m,j = 1, 2, ....n ordered intan rows andn
columns. Matrix is usually written in the form

all a12 a13 e all
a21 a'22 a23

o]
=

Au  Gnz Gpg e Gy
and denoted = (a;) = Anxn, fori=1,2,.mj=1,2, ..n.
The elementsy;, which are most often specific numbers (real, denxjp are called
the entries of the matrix. A matrix of the typex n, wherem # n, is said to be
rectangular matrix, matrix of the typex n is a square matrix of degreeMatrix of
the type 1x n is a row vector, while matrix of the typex 1 is a column vector. A
vector @1, &, ..., 8, iN asquare matrix of degreeis called major (principal,
leading) diagonal, a vectosuf, a -1, ...,an1) is called minor diagonal.
Let A be a matrix of the typm x n, then the matriA" of then x mtype generated
from matrix A exchanging rows and columns (in the given ordsr)said to be
a transpose of the matiix

A square matrix with all zero elements but entdesthe major diagonal that are
equal to number 1 is a unit (identity) matrix dieuE.

Examples
1 580
1. Transpose to the matrif = 72569
9 6 3 7
0O 8 5 4
is the matrix
17 90
AT = 5 2 6 8
8 6 3 5
0 9 7 4



2. Unit matrix of order three is the matrix =

o O B+
o+~ O
— O O

Operations on matrices
LetA = (&), B = (b)), C = (cj) andD = (d;) be matrices of the same typex n.
Then the following relations hold

1. Matrix equality.
MatricesA andB are equalA =B, if g; = foralli=1,2,..mj=1,2,..n

2. Matrix addition.
Matrix C = (c;), wherec; =g; + b foralli =1, 2, ..m,j =1, 2, ..nis called
the sum of matrice& andB, written asC = A + B.

3. Multiplying matrices by numbers.
Letk be a number. Matri® = (d;), whered; =kg; foralli =1, 2, ..m,j =1, 2,
...,nis called a multiple of matriA by numberk, written asD =k.A.

4. Multiplication of matrices.
LetA = (&;) be a matrix of typen x n andB = (b;) a matrix of typen x p. Matrix
C = (cj) of them x p type, such thati = &by + aphy + ... + &by fori =1, 2,
..mj=1,2, ..pis called the product of matricAsandB, written asC = A.B.

Entriesc; of matrix C are obtained as summation of all products of spoading
entries in thd-th row of matrixA and thej-th column of matrixB. Two matrices
can be multiplied only when the number of colunmshie first matrix equals to the
number of rows in the second one.

Multiplication of matrices, in general, is not comtative,A.B # B.A.

Let A be an arbitrary square matrix. For a unit matrixhef same type &s it holds
that

AE=EA=A.

Square matriA™, for whichA™A = E, AA™ = E is called the inverse matrix to
matrix A.
For the matrix transpos®' it holds that AT ™= (A™)".

Examples
2 580 0 580
, 7 3 6 9. . 7 1 6 9.
1. Matrix B = is the sum and matri€¢ = is the
9 6 4 7 9 6 2 7
0O 8 5 5 0 8 5 3

difference of matriced andE from previous examples.
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2. The product of matrice& andA" from previous examples

1 580
|7 2 6 9] .
P=AA = is different from their product
9 6 3 7
0O 8 5 4
1 580
7 2 6 9. T
R = in different orderR = A" .A.
9 6 3 7
0 8 5 4

Determinant of a matrix
A determinant of a matrixA is a number denoted det= |A|, which can be

calculated as follows:
1. For matrixA of degreen = 1, i.e.A = (ay4), it holds that d& = |A| =ay;.
2. For alln = 2 the determinant of matri equals

A Qp Sz ... &,
detA = A Gy Bz - 8y
a'nl a'n2 an3 ann
= all‘All‘ - a12‘A12‘ + 313‘A13‘ et (_1)l+n‘A1n‘

where Ay, j = 1, 2,...,n are the subdeterminants of matrices obtained fitwen

matrix A excluding (deleting!) its first row arjeth column.
The following calculation holds for the determinafih matrix of degree three

a, a, a
D=la, a, a,= al]]A 11—8. 14A 1lz+a 1LA J3:
8 a3 a
8y A3 dy a,
A, 83 iz sy aj "o
=a,(a,An—aa)-afa g ;a g yta (@ 3 pa g,)7
= 8,883 ;8,857 8,8 4 538 8 & 133857 2,8,8,

=a;

aZl aZt:
a'31 a3
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The determinant of a matrix of degree three caw &ls evaluated using the
following easy rule.

Sarusrule

Add the first and second rows of matixunder its third row and sum up the
products of three entries of this new determinarihée direction of major and minor
diagonal, while multiplying the products in theedition of minor diagonal by —1.
The result is the value of the matAxdeterminant.

+

+ a; 3, aj
a a

+ o 22 23

9y Q3 Ay = AA;a@ A ;a g @ Faqds $1a 438, 34 Ay
&, a, a4
Q, Ay Ay

The determinant of a matrix with at least one zew or column equals zero.

Inverse matrix
There exists an inverse matrix* to any square matrid, with a non-zero
determinant dét # 0, which can be calculated as follows

T

Dll D12 Dl3 b Dll
A_lzi Do Dz Dz Dy , Where

D

n3 nn

Dij = (_]-)i)rj

Aylii=12,..n

ElementD; is called the algebraic complement of matAxentry &;, which is
derived from the determinant deexcluding itsi-th row and-th column.

Example
2 4 0
1. Inverse matrix to the matriA =| 3 7 —2| can be determined as follows
3 0 1
2 4 0
Al=0 7 -2=-10
30 1

26



+ 7 - + 0 —2 . 0 7
Dy, = (9™ 11=7,D12=(-1)“3 176D = (D" J:—Zl
|4 P 42
D, =(-D™ j=-4,D22=(-1)“3 j:zsz(—l)“3 j=12
4 0 2 0 2
D31=(_1)3+17 _2J=_8’D32=(_1)3+20 _2=4,D33=(_1)3+30 3‘:14,
7 -6 -21) 7 4 8
At=-1l-4 2 12| =16 -2 -4
10|

10
8 4 14 21 -12 -14

Rank of matrix

A rank of a matrix is a natural number determiniimg number of nozero, linearly
independent rows (columns) of this matrix. A matsiith no zero rows (columns),
i.e. none of its rows (columns) is a multiple ofi@t rows (columns), with a value
equal to the number of its rows (columns) is caledgular matrix. The determinant
of a regular matrix is non-zero. The rank of makiis denoted(A).

Matrix A = (a;) is said to be upper triangular (lower triangulé@rjor all i >j (i <j)
it holds thata; = 0. All entries of a square upper triangular @wriangular) matrix
below (under) major (minor) diagonal are equaldémz

Triangular matrix of type 3 5 has the form

a:l.l a12 a13 al4 a 15
0 a22 a'23 a'24 a 25"
0 0 a33 a34 a35

Equivalent manipulations with matrices are suchraip@ns, which do not change
the rank of the matrix, but are just the following:

1. interchanging of any two rows (columns)

2. multiplying any row (column) by an arbitrary nbberc # 0

3. multiplying any row (column) by a number and iaddthe result to any other row
(column)

4. deleting zero rows (columns) and those, whioh mwltiples of another row
(column).
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Example

1. Inverse matrix to the matriA can also be calculated by means of equivalent
manipulations with the matrix composed of a giveatn® A and a unit matrie
of the same rank. Manipulations with rows (columms)st be carried out so that
the matrixA will be transformed to the unit matri while unit matrixg will be
consequently transformed to the inverse maiix We can calculate the inverse
matrix for the matrix from the previous examplehe following way

0

2.2 Linear systems of equations

A system ofm equationsvith n unknowns

4 0 100 2 4 0 1 0O

7 -2 0100 7 -2 0 1 0|0

0 1 001 0 -12 2 -3 0 2
2 4 0 1 0O 2 4 0 1 O 0
0O -5 0 -31 240 -50 -3 1 2 |0
0 -12 2 -3 0 2 0O 0 10 21 -12 -14
10 0 0 -7 4 8

0 10 0 6 -2 -4|0

0 0 10 21 -12 -14

1 00 -710 410 8/10

01 0 6/10 -2/10 -4/110

0 01 2110 -12/10 -14/10

a X taX,ta X ttagx =b,
a21xl+a22X2+a23(3+"'+a2Xn =b2
a31X1+a32X2+a33X3+“'+a8Xn = b3

B X, + 8y X+ B Xt .t A X, =D,

where coefficients; and absolute coefficienbs are real numbers for= 1, 2,..m,
j =1, 2, ..ncan be written in the matrix form as
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ail a12 a'13 ah Xl bl
a21 a22 a23 aZl X2

By 8 By o @y %) B,

Amxn'x nx1 = Bm><l

Matrix A = (g;),i =1, 2,..m,j =1, 2, ...nis called the matrix of the system, matrix
C in the form
ail a12 a’lS a:h bl
aZl a'22 a23 am b2
Ay 8 @ny - @y by
is called the extended matrix of the system.
The system of equations is said to be
a) homogeneous (without the right sidel, i 0 for alli =1, 2, ....,m

b) non-homogeneous (with the right sidely # O for at least one

The solution of the system af equationswvith n unknowns is any such orderad
tuple of real numberg{ ry, r3, ...,ry), i. €. sucm-dimensional column vector, that
satisfies the system of equations. Insertion ofeator €4,r»,rs, ..., Iy) to the
equations from the given system instead of a vegipx,, X, ..., X,) leads to the true
statements.

Two systems of linear equations with the same nurobenknowns are said to be
equivalent, if any solution of one of them is adssolution of the other one.

To solve linear systems we use the following edemiatransformations:

1. interchanging of any two equations

2. multiplying any equation by an arbitrary number0

3. multiplying any equation by a number and addirgresult to any other equation
4. deleting the equation which is the multiple nbther equation in the system, or 0.

A system, obtained from the original system by gimgl a finite number of the
above elementary transformations, is equivalerthéoprimary system. Equivalent
transformations of a system result in a systemvedgiit to the original one.
Matrices of two equivalent linear systems of equai can be transformed by
equivalent manipulations with rows (columns) fromedo the other. Therefore, the
solution of a linear system of equations can baiobt by performing equivalent
transformations with the extended matrix of theexys
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This method is an universal method for solving eyst of any number of equations
with any number of unknowns, called the Gauss' iglttion method. It consists of
the reduction of a given system to a triangulatesysby means of a finite number of
elementary transformations applied on the extemaittix of the system.

Then, after the triangulation process, we can canghe following possibilities.

A) The new equivalent system has the same number bpfzer@ equations
(extended matrix rows) as is the number of unknowitse system has a unique
solution.

B) There appears an equation in the formd) # 0 — the system has no solution.

C) The resulting triangular system consists of less-zero equations (extended
matrix rows) than is the number of unknowns andiaes not contain any
equation in the form 0 g, ¢ # 0 — the system has infinitely many solutions.

Since homogeneous systems (or systems equivalentheim) never contain
equations in the form O ¢; c # 0, it follows that they always have a solutionlegist
a zero solution called trivial solution (type A}, iofinitely many solutions (type C).
Examples
1. Solution of a linear system with 4 unknowns

X +3X, - X, =4

2X —2X, ¥ X, =2

X +2%,—2%, =0

X +X, +X,+X, =4

can be found by finding an equivalent triangulastegn by means of equivalent
transformations of the extended matrix of the ord¢jsystem

1 3 0 -14 (11 1 1 4 (11 1 1 A4

2—2102D02—1—20D01—1 3 4
1 0 2 -2 0 04 1 2 6 01 0 -5 -4
1 1 1 1 4 01 -1 3 4 0 0 5 -10 -10
111 1 4 11 1 1 4
01 -1 3 4 01 -1 3 4
U U
00 1 -8 -8 00 1 -8 -8

00 1 -2 -2 00 0 1 1

The resulting triangular system has a unique sy, 1, 0, 1) that is also the
solution of the original linear system.
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2. Homogeneous system of linear equations

X +X,+%X,=0

2% =X, +2%,=0

X +2X%, =% =0
can be transformed to the triangular systexpn= 0, X, = 0,X; =0 with a unique
trivial solution (0, 0, 0).

3. Linear system with 3 unknowns

2% =X, + X, =2
X +2X, 2%, =1
3K +X, —% =3

can be transformed

2 -1 1 2 1 2 -21 1 2 -21
1 2 -2 1|00 -5 5 00O 1 -1 0
3 1 -1 3 0 -5 5 0 00 O O

to the triangular system consisting of 2 equations
X +2X, — 2%, =1
X, =%, =0
while it contains no equation in the form Gc= # 0, therefore both systems have

infinitely many solutions represented parametncab (1,p, p), for an arbitrary
numberm.

Geometric interpretation of a system of linear equations
The solution of a system of two linear equationthwivo unknowns

aX+aLy=h, A_X:B’A:[an %ZJ,X:(XJ,B:(Q)
8, X+tay,y =b, & Ay y b,

can be geometrically interpreted as a determinaifamnset of all common points of
two lines in a plane. Each line is representedri®y af the two equations that satisfy
the Cartesian coordinates of its points.

Two lines in a plane can have only one of the tip@ssible superpositions:
a) intersecting lines, the system of equationsahasique solution
b) coinciding lines, the system of equations hésitely many solutions

c) parallel lines, the system of equations hasohatisn.
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If a,a,,—a,a,,# 0, then the system has a unique solution

X = ba,, —bay, y= apb,~ap, )
3,8, " a A, a,;d,;-aqd .,

Denoting
b a a, b
D:|A|:allazz_alza-21D1: Zzb?-zz_bglzDz: H :agz_apl
2 a, b
then, ifD;tO,x:&,y:&.
D D

Analogously we can solve a system of 3 linear eqoatin 3 unknowns:
allx + a12y + al3z = bl
ayX+a,y+a,z=b,
agX+apy+az=>b,

Any equation with three unknowns can be represeasedn equation of a plane in
the three-dimensional space that is satisfied bye€i@an coordinates of its points.
Solutions of the system of three linear equatiarasent the coordinates of all
common points of the three determined planes. Aliogr to a possible
superposition of three planes in the space we rubtai

a) a unique solution, all planes meet in onmaroon point

b) no solution, at least two of the planespallel

c) infinitely many solutions, the planes hawe @ommon line.
Generally, thesystem ofmn linear equations with unknowns can have:

1. a unique solution

2. infinitely many solutions

3. no solution.

Cramer rule
A linear system oi equationsA ,.X, 4 =B, with n unknowns has a unique

solution if the determinant of the matrix of thes®m is nonzero, d&ét=D # 0, and
the solution is

_(b. b, D,
(X, %preeX.,) ( S oD ]

whereDy, D, ...,D, are the determinants of matrices derived frormthag&ix A by
exchanging entries in theh column with absolute coefficierig fori = 1, 2, ...n.
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The linear system can also be solved using ansevaatrix. Multiplying the
equationA.X = C by inverse matriA™" from left, we obtain

ATAX=ATC=2EX=AC=2X=A"lC

Examples

1. Solution of the linear system of equations
X-3y+z=-8
2Xx+y-2z=8
Xx-y-z=0

can be obtained using the Cramer rule, becausgetkeminant of the matrix of
this system is nonzero

1 -3 1
D=2 1 -1=-8%#0.
1 -1 -

For determinant®, D,, D5 it holds that

-8 -3 1 1 -8 1 1 -3 -
D=8 1 -1=-16D,=2 8 -1=-24D,=2 1 8|=8,
0O -1 - 1 0 - 1 -1 0

therefore the unique solution for the system is

=(D1 D, Dy _(-16 =24 8 _ ;5
o) (D'D'D] (—8'—8’—8) (23-1).

2. The above linear system can also be solved tisegpverse matrix to the matrix
A, which is matrixA™

-2 -4 2
At=-1 -2 3|
8
-3 -2 7
-2 -4 2\(-8 -16) (2
X:A‘l.C:—; 1 -2 3| 8 |=-3-24|=| 3
-3 -2 7){ 0 8 ) (-1
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3 Differential calculus of functionswith onereal variable

3.1 Definition of function

The concept of function is a basic concept in natitees used for the description of
dependence of various quantities. In the majorftysimple dependencies certain
value of the investigated variable depends on #ieevof one or more independent
variables. Developments in the understanding of mal world are a direct
consequence of the discoveries made in the unddiata of dependencies that
describe interrelations of phenomena and proc@sske nature and in the society.

Examples

1. The tone height of a guitar string depends diremtlyhe string tension.

2. Newton's law of universal gravitation states thadrg point mass in the universe
attracts every other point mass with a force teadlifectly proportional to the
product of their masses and inversely proportid@aghe square of the distance
between them.

3. The pressure exerted on a container's sides bgleah gas is proportional to its
temperature.

4. Market price of a product is primarily determiney the interaction of supply
and demand.

5. Distance covered by a moving object within a tim&tival is proportional to the
object velocity.

Circumference of a circle is directly related ®riadius.
Area of a parallelogram is determined by the lesgthits sides.

Volume of a solid changes according to its dimemsio

© © N o

Age of a human person influences her/his appearance
10. Mood of a human being is influenced by the levedrdorphins in the blood.

Mathematical models of the above situations desggilproportionality between
changing quantities in various contexts are thetfons with one or more variables.
Italian scientist Galileo Galilei (1564-1642) wasetfirst who used quantitative
methods of investigation of dependencies betweeantifies in his study of
processes in dynamics. The idea to describe tintsedlations among investigated
guantities in an effective and precise way ledhe tlevelopment of many new
mathematical concepts, such as mutual correspoad#mumber sets, mappings of
sets, dependent and independent variables anddnndthey became the primary
subject of study in mathematics for more than twotaries, and culminated in the
establishment of a separate domain of mathematioak as mathematical analysis,
differential and integral calculus.
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The mapping of a number set to another number sseilied function, usually
denoted by letterf g etc.

Let M be a non-empty set of real numbevsz @, M O R. A rule f, that assigns
exactly one element (real numbgi)l R to each element (real numbgi)l M

Mo RX-y=f(X)

is called a real function of a real variable, Hyief functionf(x). The seM is called

the domain of definition of functiohand it is usually denoted Wy(f) and we say
that functionf is defined orD(f). The numbey =f(x) is the value of the functidnat

the pointx 0 M= D(f). The set of real numbers which are the valudaraftionf,

R(f) ={y: Ox O D(f): y =f(xX)}

is called the range of functidny is said to be the dependent arttie independent
variable (or argument).

A function may be written in a roster form (setooflered pairs), in a table form, as
an arrow diagram, in a graph or in an equation f@ommula). If a function is given
by an analytic formula, without specifying its dam®(f), then we are interested in
those realx, for which the formula makes a sense. The setllahase x is then
accepted as the domad(f) of the given function, and it is said to be thetunal
(maximal) domain of definition.

The set

G(f) = {[x, yl: xO D(f), y =f(x)} DRxR

is called the graph of functidn

The graph of a function with one real variable barsketched in the Cartesian plane
with the orthogonal coordinate systédbxy as a set of all points with coordinates
[x, f(X)]. Coordinate axix represents the independent variable and coordindde
the dependent variable. Domdii(f) is the orthogonal projection of the function
graphG(f) onto the coordinate axis while rangeR(f) is the orthogonal projection
of G(f) onto the coordinate axjs

A set of points in the Cartesian plane is the grafpa function, if each straight line
parallel to the coordinate axishas at most one common point with it.
Geometrically the graph of a function interpretsteof important information on the
function behaviour, such as continuity, zero pqintgreasing or decreasing
character of functional dependence, stationarytpppoints of extreme values and
points of inflexion.

Examples

1. Function f is defined by formulaf :y=-/4-x*, therefore its domain of

definition is setD(f) = (-2, 2 and range is sd®¥(f) =0, 2. Function graph is
semicircle with centre in origin and radius 2,im 8.1, left.
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Y=

-2 1 0 1 2

Fig. 3.1. Graphs of functions

2. Functiong is defined orR = (-, «) by the following formulae
g(x) =x+2, x[O(-,0)
g(x) =-x*, xO(0)

g9 =2, xO()
X

while its range is intervaR(f) = (-, 2). The function graph consists of 3
separate parts, see fig. 3.1, right.

3. Graph of function f (X) :\x defined on all real numbeR is a pair of semi-
lines with a common point in the origin, in the.f&2, left.

1004

501

2 1 0 1 2 0 2

Fig. 3.2. Graphs of functions

4. Graf of functionf(x) defined orR = (—x,) in the following way
f(x) = 1 for all rational numbens
f(xX) = -1 for all irrational numbers
can be described into words, but cannot be sketichind Cartesian plane.

36



5. Function defined on s& = {-3, -2, -1, 0, 1, 2, 3} with values correspamglito
arguments in the given ordBr= {-1, 0, 5, -8, 4, 2, 1} can be presented also in
the form of a table, where a series of argumentsnig row corresponds to the
series of respective function values in the second

x| -3| -2| -1] o] 1] 2| 3
y|-1/ 0| 5| -8 4] 2

Table 3.1. Function values

In addition to the case of functions defined oritdéirdiscrete sets, it is sometimes
useful to also use the table form for functions séh@omain of definition is an
infinite number set. Then only important valuesisin that are of interest for specific
reasons, are given in special selected points ftomtion domain. This function
definition is mostly used in natural and technigeiences, where the dependence of
one variable on others is determined experimentallyy investigation. Logarithmic
tables or tables of values of trigonometric funasiavere also prepared in this way,
as these were the most frequently used functiogpdiddencies in different sciences
such as physics, astronomy, chemistry, or techeitgineering sciences.

Sometimes, a function can be described only witihdaioe.g. Euler functiorp is
defined for any natural number so that its value(n) is the number of natural
numbers that are less thaand have no common divisors withfor instance

P2)=1,P4)=2,N5)=4,¢6) =2
and its graph is a set of separate points in thiee€ian plane.

The advantage of an analytic function formula dsvell the fact that strong analytic
methods were developed to analyse function behatguneans of the concept of
function derivatives. Moreover, function values denexpressed in arbitrary points
from its domain and extremal values can be easgtgaed. Certain disadvantage
can be seen with regard to the unsatisfactory ekiration and insight into the
defined dependence, but this can be avoided ugdiegfunction graph in the
Cartesian coordinate system.

3.2 Operations on functions

Let functionf(x) be defined on sé{l.

Absolute value of function
Function h(x), whose domain of definition i and for allx O M it holds that
h(x) =| f(x)| is called the absolute value of functiix),

h:M - Ry, x - y =)
whereR,"is the set of all positive real numbers.
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Product of number and function
Let k be a real number. Functidix), whose domain of definition 81 and for all
x O M it holds that(x) = k ((X) is called the product of numbleand functiorf(x).

Sum, difference, product and quotient of functions
Letf andg be two functions with domairi3(f) andD(g).
* Functionsf andg are equal to one another,Dff) = D(g) and if for eachx
from the domain their values are eqdi&l) = g(x).
e FunctionF defined onD(F) = D(f) n D(g) is called the sum (difference,
product, quotient) of functiofsandg and denotefi+ g (f— g, f [, f/ g), if
for eachx O D(F)

FO) =104 +9(9), (F() =(x) —9(x), F(x) =(x) 0K, F(x) =1(x) / 9(3))-

Apparently, points at which(x) = 0 must be excluded frobx(f) n D(g), to
obtain the domain of the quotigntg.

Composite function

Suppose that the values of a functigrwith the domainD(g) can be used as
arguments of a functioffx) with the domairD(f). It is then possible to blerfcandg
together to form a new functidf(x), whose inputs are arguments of functicand
whose values are numbéfg(x)).

FunctionF(x)

F:M - R x — (f-9)() =f(9(x)
is said to be composite function composed fromtionsf(x) andg(x), if its domain
of definition D(F) is the set of all such numbers from the domaimlefinition of
function g(x), in which the functiong(x) value is a number from the domain of
definition of functionf(x), and for alix O D(F) it holds that=(x) = f(g(x)).
Value of functionF at the poink equals to the value of functidrat the poinu that
is the value of functiog at the poink, u = g(x). Functionf(u) is the major (outside)
part (component) and functian= g(x) is the minor (inside) part (component) of the
composite functiofir(x).

Examples

Jx

1. Function h(x) = 2x(x+5)——3 is the difference of functionsandg. The
X_

domain of definition of functiori(x) = 2x(x + 5) isD(f) = R, as it is the product
of functionsfy(xX) = 2x (product of the real number 2 and functipr x) with
domainD(f;) = R and functionf,(X) = x + 5 that is also defined db(f,) = R,

Ix

x=3
functions g, (x) =-/x with the domairD(gy) = {x O R: x> 0} and gy(x) =X — 3
with the domairD(g,) = R, while the domain of definition of functiogy / g; is
a set of all those points from intersectibg;) n D(g,), for which g,(x) # 0,
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therefore x # 3, which is the sdb(g) =(0, 3)0 (3, «). The definition domain of
functionh(x) is finally setD(h) = D(f) n D(g) that equals t¢0, 3) 0 (3, ©), see
the graph in fig. 3.2, right.

2. FunctionF(x) = sink — 1) is a composite function with a major pdrty = sinx

and a minor parg: y = x — 1t Its value at the point= 0 isF(0) = 0, agy(0) = -,
sin(=m) = 0.

3.3 Some special classes of functions

Bounded functions
Function f(x) defined on seD(f) is called bounded (bounded above, bounded
below), if such a real numb#&rexists that for atk (1 D(f) it holds that

If(|<K (f()<K, F()2K)

It means that a function is bounded (bounded ablowended below), if its range
R(f) is a bounded (bounded above, bounded below)fsetab numbers. Function
that is not bounded is called unbounded.

The property of function to be bounded can be gé&acadly interpreted as follows:

» graph of functiorf(x) bounded from above is under or in the ine K, (see
fig. 3.1, on the right)

e graph of functiorf(x) bounded from below is over or in the lige= K, (see
fig. 3.2, on the left)

» graph of bounded functioffx) is in-between parallel lineg = K, y, = K|
(see fig. 3.1, left).

Functionf is said to be bounded on $&t1 D(f), if and only if numbeK > 0 exists
and such that for a 0 M it holds that f(x)| < K.

Examples

. 1 . . )
1. Function f(X)=—; 4 defined onR is bounded. For any real numbeiit
X

holds that
5 5 1 1
X >0=> X +4>4=> 5 <=
X +4 4
2 2 1 ‘ 1
X*>0=>Xx"+4>0= —; >0=|— =—
X“+4 X +4\ X“+4

and ifK = f(0) = ¥4,/ f(x)| < K. The graph of functiohis sketched in fig. 3.3.

2. Functiong(x) = 2 X is bounded from above, as for &lll D(f) = R it holds that
g(x) < 2. Its graph is a parabola with vertex in the p¥ir [0, 2], fig. 3.4.

3. Functionh(x) =X is bounded from belowy(x) > 0, (fig. 3.2, on the left).
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-0.1 1 -4

Fig. 3.3. Function graph Fig. 3.4. Function graph

Monotone functions

There can be distinguished 4 types of monotonetifums increasing, decreasing,
non-decreasing and non-increasing functions.

A functionf is called increasing (decreasing, non-decreasiogsincreasing), if for
any two pointsq, x, from its domain of definition the following is vdl

X1 <X = f(Xg) <f(x) (F(x1) > F(X2), F(xa) < f(x), f(X1) = f(x2)).

It is clear that any increasing function is nonséasing, and any decreasing
function is non-increasing, but the opposite istn@¢. Constant functions represent
the only possible type of functions, which are mi@treasing and non-increasing
simultaneously. Increasing and decreasing functimesaid to be strictly monotone.

Examples

1. Functiony = X* is not monotone in the above sense, as none ofetigred
conditions are fulfilled for each pair of pointsfin its domain of definition
D(f) = R. Nevertheless, restricting its domain to the $etam-negative numbers,
it is easy to see thétis increasing there, and similaflys decreasing on the set
of non-positive numbers.

, 1 . . : .
2. Function f 1y = Z_T is strictly monotone, as for ad from its domain of
X

definition D(f) = R" (all non-negative real numbers) it holds that
1

1
0<X <X, =X <X, >—> =
2 2 ﬁxl /7X2

1

3. Function h(x) =|X is decreasing on ¢s; 0) and increasing otD, »), (fig. 3.2,
on the left).
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X . . . . . :
4. Function g(x) :U, x # 0 is non-decreasing (non-increasing) on its donoéin
X

definition, see graph on fig. 3.5.

05 ] y =

S B B 3 oo~ ¢

Fig. 3.5. Function graph Fig. 3.6. Function graph

Periodicity of function

A function f is called periodic, if a positive numbprexists such that ifx O D(f),
then alsax = p O D(f), andf(x + p) = f(x) for eachx O D(f). Numberp is called the
period of the functiorf.

All functional values of a periodic function repeaemselves infinitely many times,
which means that the part of graph on any inteofdahe lengthp is also repeated
infinitely many times and the whole graph of fupaticonsists of copies of it.

Example

1. Trigonometric functions are the most frequentlyduperiodic functions. Period
of the functions sine and cosinepis: 2rt, while minimal period of the functions
tangent and cotangentps= T

Parity of functions

Let functionf be defined on séfl such that for eackJ M is also % [0 M. Function
fis said to be even, if for amyd M it holds thatf(—x) = f(x), and it is said to be odd,
if for anyx O M it holds thaff(—x) = —f(x).

Functionf: M - R, x - f(X) is on the sel:
a) even, ifdx O M: —x O M Of(=x) =f(x)
b) odd, iftx O M: =x O M Of(-x) = —f(x).

The graphs of even functions are symmetrical wegpect to the coordinate axis
while the graphs of odd functions are symmetricéhwespect to the origin of the
coordinate system.
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Examples

1. Functiony = cosx is an even function, cos{)-= cosx and the function graph is
symmetric with respect to the coordinate gxis

2. Functiony = sinx is an odd function, sin§ = — sinx and the function graph is
symmetric with respect to the origin of the cooednsystem.

3. Function f (X) _17x is neither odd, nor even, see the function grapkgmted
X

in fig. 3.6, asf (-x) = —1+XX, - f(X) :x;l.

One-to-onefunction

Let f be a function defined ob(f). If for any twox;, X, O D(f), X, # X, implies
f(x1) # f(x2), then the function is said to be one-to-one. Acfion is one-to-one if
each straight line parallel to the coordinate axizas at most one common point
with the function graple(f). Any strictly monotone function is on-to-one.

I nversefunction

Let f be a one-to-one function with the domdi(f) and the rangdr(f) and let
functionf (x) be defined oriR(f) as follows: for eacly, 0 R(f): f (yo) = %o O D(f),

if f(xo) = Yo. Then functiorf *is called the inverse function of functién
Obviously:D(f ) =R(), Rf ) =D, (f ) *=f.

Any inverse function is again one-to-one. The gsapfi two mutually inverse
functionsf andf ™, thereforeG(f) and G{ %) are symmetric with respect to the
straight liney = x.

Examples

1. Functionf(x) = 2x + 3, whose domain and range is a set of all reallbersk is
strictly monotone (increasing) function, as

X <% = 2% < 2%, = 2% +3< 2% +3=> f(x) < f (%)

therefore it is one-to-one, and its inverse functiexists determined by
exchanging depended and independent variabledl@asgo

y=2X+3 y—-3=2X X= y=3

and the inverse functio X)="_ " isdefined oR . T e graphs dfandf”
dthei f 'rli_l()xz3 defined h hs dfandf ™

are in fig. 3.7.
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Fig. 3.7. Graphs of inverse functions

2. Trigonometric functionsy = sinx, y = cosx, y = tanx, y = cotx are periodic, it
means that they acquire each value from their igitely many times, so it
follows that they are not one-to-one and they havéverse functions.

3.4 Elementary functions

A constant or power function with real exponentp@xential and logarithmic
functions, trigopnometric and their inverse cyclorngefunctions or hyperbolic and
hyperbolometric functions are collectively callddreentary functions.

Any function represented by means of a finite nundfeoperations such as sum,
difference, product or quotient on these functiarsany function composed from a
finite number of presented elementary functionglg& considered an elementary
function.

An elementary function is considered to be defifegdll those values of argument
X, at which the given analytic formula makes seasd, it reaches a real value.
Elementary functions are frequently used in mathmsand its applications. Many
functions (often with rather complicated analyticriulas) describing for example
the dependence of various physical variables, ptiegeand behaviour of complex
systems that are mathematical models of certaiblgms from technical practise, or
determining influence of specific parameters oncfiamality of some technical
devices, are elementary functions. Their propect@s be investigated by means of
differential calculus.

Rational functions
A polynomial function is in x defined orR by the formula
P(X) = & X" +a,1 X"+ .43 X + &

wheren is a non-negative integer and real numlagray,..., a, are its coefficients.
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Polynomial is of degrer if a, # 0. The graph of the polynomial function is a curve
of degreen, which means that it has at mosihtersection points with a straight line
passing not parallel to the coordinate axis

Foras=a = ... =a, = 0 isP(x) = 0 for allx 0 R. This polynomial is called zero
polynomial. Forn = 0, a, # 0 it holds thatP(x) = a, for all x O R, which is a non-
zero constant function with a graph in a straighg ¥ = a, parallel to the coordinate
axisx.

Forn=1,P(x) =a; X + & for all x O R is a polynomial of degree 1, which is a linear
function with a graph in a line, increasing or éaging orR.

Forn=2,P(x) = a,X* +a, X + & for all x 0 R is a polynomial of degree 2, which is
a quadratic function with a graph in a parabolahvaixis parallel to the coordinate
axisy, fig. 3.4.

Forn=3,P(x) =a3 X + a,xX* + a, X + & for all x 0 R is a polynomial of degree 3,
which is a cubic function. The graph of a cubicdtion is a curve of degree three
called a cubic curve.

Let P(x) be an arbitrary polynomiaQ(x) be a non-zero polynomial, and Mtbhe a
set of all those real numbexsfor whichQ(x) # 0. FunctionR(x) defined onM by
the formula

P(x)
Q(x)

is called a rational function. If the degree ofypamial in the enumerator is less
than the degree of polynomial in the denominatentthe function is called purely
rational, otherwise it is called not-purely ratibna

R(x) =

Power functions
Functionf: y =X for x> 0, where is a real number, is a power function.
For natural number = n, functiony = x" is defined orR and it is called a power
function with natural exponent. In the case of aenenumbern, the range is
H =(0, «) and the function is even, increasing on intef@ako) and decreasing on
interval (-0, 0). For all odd numbersa the range of power function with natural
exponent i = R, while the function is odd and increasingrn
If exponentr is a negative integer number, ther X defines a rational function on
the seD = (—0,0) O (00).

1

If r =1,qD N, then functiony=r = x¢ =9/xis defined onR for an oddq,
q

while it is defined on intervgD, «o) for an ever.

The graph of a power functign=x forr = 0,r = 1 is a straight ling = 1,y = x, for

r =% it is a part of parabola with axis in the aioate axisx and vertex in the
origin, fig. 3.8, left.

Hyperbola with equal semi-axes, axes in the coatdimxes and y and the centre
in the origin is the graph of a power function wétkponent = -1,y = x .
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Fig. 3.8. Graphs of power functions

Exponential function
Functionf(x) = &, a>0,a # 1 defined orR is an exponential function increasing for
a > 1 and decreasing for Oax 1, with the rangéi(f) = (0,).

y=a";a<1

Fig. 3.9. Graphs of exponential functions

Exponential function is a constant function &= 1 with the value 1, its graph is a
straight line parallel to coordinate axisThis function is not one-to-one, therefore it
is usually assumed thatt 1, if not stated differently.

Especially important function is the natural expatie functiony = € with the base
equal to the transcendent Euler number2,718281... .

Let x3, X, be two real numbers, then the following holds:

l.a%[@%e =a"™

X
B g
a

3. (aXl )X2 = q"*

X
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L ogarithmic function
Function f(X) =log, X, a>0,a# ldefined on intervaD(f) = (0, ») with range
H(f) = R is a logarithmic function, increasing far> 1 and decreasing for Oa<< 1.

Logarithmic function is an inverse to exponentiaidtion. Its graph is symmetric to
the graph of exponential function with respectne I/ = x.

y = log.r,a > 1

0.5 1

y=log.xr,a <1

Fig. 3.10. Graphs of logarithmic functions

The value of logarithmic function at the poinis logarithm of numbex for the base
a, log, %, i.e. it is the value of the exponent to which éasshould be raised to
obtainx.

The most frequently used logarithms in practicédations are decimal logarithms
with the basea = 10, the decimal logarithmic function is usualienoted
y=Igx=logy X, and natural logarithms with the base in Euler bene, while the
natural logarithmic function is denotgd: In x = log. x.

For anyx> 0,y> 0,a> 0,a+# 1 the following holds:

l.log, xy =log, x+log, y
2. Ioga§ =log, x-log, y

3.log, X" =rlog, x,r IR

4.x = @
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Trigonometric functions

Functions sine, cosine, tangent and cotangent @kectively called trigonometric
functions.

The function sine defined dR, with rangeH =(-1, 1,

sinx: R — (-1, 1: y = sinx

is an odd function, periodic with period,2bounded, and its graph is a sinusoidal
curve in fig. 3.11.

i/ ) ) :2 0 é v é
-1

Fig. 3.11. Graf of function sine — sinusoidal curve

Function cosine defined d® with rangeH = (-1, 1,
cosx: R— (-1, 1): y = cosx

is an even function, periodic with perioda,2bounded, and its graph is a shifted
sinusoidal curve.

SN SINC N

Fig. 3.12. Graf of function cosine — shifted sinidsb curve

Function tangent is defined as the quotient of fione sine and cosine for those

xOR, for which cosx # 0, its domain isD={XD R:x:t(Zk-'-l)n,kDZ},

while its range iR.

sinXx

tanx (tgx):D - R y = < =tanx (= tgx)
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It is an odd function, periodic with periagl unbounded, and increasing on all

interval{—n + kn,E + knj kOZ.
2 2

-8 -6 -4 -2 0 2 4 8
-3

Fig. 3.13. Graf of function tangent

w
s

N
L

=]

-

N

Function cotangent is defined as the quotient otfiens cosine and sine for those
x 0 R, for which sinx # 0, its domain isD ={xOR:x# kr,k 1Z}, while its
range isR.

COSX

—— =cotx (=cotgx)
sinx

cotx D—-R: y=

It is an odd functlon periodic with periodt,2unbounded, and decreasing on all
intervalg(kr, (k + 1)),k 0 Z .

L

Fig. 3.14. Graf of function cotangent
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Cyclometric functions

Trigonometric functions are periodic, it means thiaty assume each value from
their ranges infinitely many times, therefore tlag not one-to-one and they have
no inverse functions. But if these functions aresidered to be defined on those
relevant parts of their natural domains on whickytlre one-to-one, their inverse
functions exist, they are called cyclometric fuans and they are defined as below.

The function arcsine is inverse to function sindrdaarval(—n/2, n/2), its domain is
D =(-1, ) and its range il = (-n/2, /2).

arcsini{-1, 1) - (—n/2,n/2): y = arcsinx

It is increasing, bounded and odd, and foudll (-1, 1) it holds that
vV =arcsinu = u=sinv.

1 y = arcsin x y=a

1.
\ Y= Sill T
0
W N 2 -1 0 1 2 3 \4\
_1-

-2

Fig. 3.15. Graph of function arcsine

The function arccosine is inverse to function cesam intervakO, «t), its domain is
D =(-1, 1) and its range isl =(0, w).
arccosy{-1, 1) » (0, m): y = arccox

It is decreasing and bounded, while forwll (-1, 1) it holds that
V = arccolu <= U= COSV.

Yy =cCos T

T T T

2 3 4

-

Fig. 3.16. Graph of function arccosine
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The function arctangent is inverse to function &mtgon interval (=/2, n/2), its
domain isR and its range isl = (—n/2, n/2).

arctan’R - (-n/2,n/2):y = arctarnx

It is increasing, bounded and odd, while fondll R it holds that
vV = arctaru <= u =tanv.

y=tan x

y==x

/ Y= nl'('tan/
0
/ % / 2 0 2 4

Fig. 3.17. Graph of function arctangent

N
N

|
N
N

The function arccotangent is inverse to functiotangent on interval (Og), its
domain isR and its range isl = (0, n).

arccot:R - (0,x): y = arccotx

It is decreasing and bounded, while forwall R it holds that
V = arccotu < U = cotv.

J 'II B

y=cot x

y = arccot T

Fig. 3.18. Graph of function arccotangent
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Hyperbolic functions
Function sine hyperbolic is defined by floemula

sinhx: R— R: y=sinhx = €-¢

—X

and itis an odd function, increasing.
Function cosine hyperbolic is defined by the foranul

X+ —X
coshx: R — (1,©): y =coshx = €re

and itis an even function, decreasing on intervab,(8) and increasing on interval
(0, ).

6
Fig. 3.19. Sine hyperbolic Fig. 3.20. Codiyperbolic
Function tangent hyperbolic is defined by the faianu

sinhx _e*-¢e™*
coshx e +e*

tanhx: R — (-1,1): y =tanhx =

and it is an odd function, increasing.

14

Fig. 3.21. Tangent hyperbolic
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Function cotangent hyperbolic is defined by theriola

cothx R-{0} > R-(-1,1: y= COthXZ%

e —-e
and it is an odd function, decreasing.

2

Fig. 3.22. Cotangent hyperbolic

I nver se hyperboalic functions (ar ea hyperbalic, hyper bolometric functions)
Hyperbolometric, or area hyperbolic functions, ameerse functions to hyperbolic
functions on intervals, on which these functiore strictly monotone.

Inverse hyperbolic sine

x=sinhy,y O R,y = arcsinhx, x O R.

6 y=sinh(x)

y=X y=arcsinh(x)

-6

Fig. 3.23. Graph of function inverse hyperboligesi
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Inverse hyperbolic cosine

x = coshy, y 0 (0, ), y = arccoshx, x 0 (1, «).

y=cosh(x)

y=x y=arcosh(x)

.24

Fig. 3.24. Graph of function inverse hyperbolicines

Inverse hyperbolic tangent

x =tanhy, y O R,y = arctantk, x I (-1, D).

y=arctanh(x)

24 y=tanh(x)

Fig. 3.25. Graph of function inverse hyperbolicgant

Inverse hyperbolic cotangent

x = cothy, y# 0,y = arccoth, | x| > 1.
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3.5 Sequences

Every functionf defined on the set of all natural numb&€) = N, is called a
sequence. If its range of values is a set of realbersR(f) O R, functionf is called
a numerical or number sequence. The vé{og for n O N is called then-th term
(member) of the sequence, while its usual notaSosy, instead. All terms of the

sequence are referred as}{ or {a,},_,.

Examples
1. The following notations have the same meaning
n-1 n-1 123
f(n)=—=,n0N, =<—>=0=,—,—,...
(m) == {a} { . } >34
2. Arithmetic sequence is defined a& € (n — 1)d}, wherea is the first term and
is the difference, both are real numbers.

3. Geometric sequence with the first teemand quotieng, both real numbers, is
defined by formula, = aq™".

2'3""'n
5. Sequence 2, 3,5, 7, P, ... is the sequence of prime numbers, wingte term
pn is then-th largest prime.

4., Sequence{l} = ],1 1 1|s called harmonic sequence.
n

Sequences are real functions, so they can possessaf the general properties of
real functions.

The graph of a sequence is a set of isolated ppiats [n, a,], n O N, fig. 3.26.

Fig. 3. 26. Graph of a sequence
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The domains of definition disable sequences tovas,.eodd or periodic, but they
can be monotone or bounded. Monotonicity and bodimeles of sequences is
defined in the same way as for real functions oéal variable. The definition of
monotonicity for sequences can be simplified infdllowing way:

A sequence &} is increasing (decreasing, non-decreasing, noregsing), if for
eachnON

ay < A1 (an > An+1, Ay < An+1, 9n 2 an+1)-
Increasing, non-decreasing, decreasing and nomdsttrg sequences are called
monotone sequences, increasing and decreasing reeguare called strictly
monotone sequences.
Examples

1. Arithmetic sequence is increasing for positive efifinced > 0, and decreasing
for negative differenced < 0, while it is stationary fad = O.

2. Geometric sequence is decreasinggferl, and it is increasing far> 1, while it
is stationary foig = 1.

3. Harmonic sequence is decreasing for all natural
4. Sequence of primes is increasing.
Sequencedy} is bounded (bounded below, bounded above) if seahnumber,
L exist that for all natural numbenst holds that
K<a,<L (K<a,a,<L).

y:

Fig. 3.27. Graph of bounded sequence
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NumberK or L is called the lower, or upper bound of sequendepdints on the

graph of bounded sequences are in the layer betpaeatiel lines with equations
y= L,y =K. All points on the graph of a sequence bounderh fadbove or from

below are in one half-plane determined by the With equationy = L.

Examples

1. Arithmetic sequence with positive difference is bded from below; sequence
with negative difference is bounded from above.

. , , 1
2. Harmonic sequence is bounded, as for all natuitaholds thaD < — < 1.
n

Y

1 A,
H !
AZ A 4 O‘ii—n—;l
: o 3 4
PR SR An
L .

0 1 2 3 4 n X

Fig. 3.28. Graph of harmonic sequence
3. Oscillating sequencf -1) "}, = — 11~ 11...is bounded.

Limit of a sequence

The concept of a limit of a sequence is one of ifest important concepts in
mathematics. It describes a special property ofes@@mguences, which can be
represented as the following tendency: with aneasmngn the corresponding

sequence terms assume a value close to a certaibenucalled the limit of a

sequence.

Let us consider a sequence

onj_123
n+l] 234"

that is increasing, bounded, and it has a speiglgpty that ifn tends to infinity, its
n-th term tends to one. For large enoumits terms are very close to number 1. In
geometric interpretation we obtain points on thgusece graph appearing close to
the liney = 1, and their distance is diminishing with an eesingn.

Choosing an arbitrary small positive numtzer 0, such term always exists in the
sequence, from which all consequent terms are distance from 1 that is lesser
then the chosea This leads to the concept of a limit of a seqeenc
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1 y=1
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a[ """" ? H a = <1
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Fig. 3.29. Graph of sequence

Let {a,} be a sequence aradbe a real number. If for arey> 0 such a numbem(e)
exists that for each O N, n > n(e) it holds that| a, - al <e¢, then numbes is
called a (proper) limit of the sequenag}{ the sequence is said to be convergent to
a, and it is written as

lima, =a

Nn- oo

Briefly: lima, =a < O&>0,[ny(¢) :On>ny(e) >|a, —a <&

Nn— oo

A sequence that is not convergent is called diverge

Examples

. n
1. lim——=1
n-o n+1

2. Iim} =0
n-o N

3. Sequencd(-1) "}, has no limit.

4 5 n

(=]
_-
(3%
w

Fig. 3.30. Graph of sequence limit
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Alternatively, the limit of a sequence can alsadetermined as a property of almost
all sequence terms to be in aneighbourhood of the numbarthat is the sequence
limit, see fig. 3.30.

Numbera is called the limit of a sequence}, if for any numbere > 0 and for
almost all sequence terragit holds that b, — a] <e.

In other words:

Numbera is called the limit of a sequenca,], if any neighbourhood®,(a) contains
almost all sequence terms.

For relations between convergence and boundedmessrmtonicity of a sequence,
the following is valid.

1.
2.

Any sequence has at most one limit (i.e. none sirgue).

Sequence .} has a limit if and only if the sequence,{~ a} has a limit
equal to 0.

If lim|a,| =0, then alsdim a, =0and vice versa, ifim a, =0, then also

n-oo n-o

limla,| =0.

Let it hold for all terms of sequence.} that a, < A (a, =2 A) and let
lima, =a. Then it holds thaa< A (a= A).

n-oo
Sandwich theorem: Letima, =a, limc, =a, and let it hold for all
n- o n-oo

naturaln thata, < b, < c,, thenlimb, =a.

n- o

6. Any convergent sequence is bounded. Unbounded segi®divergent.

7. Any sequence that is both monotone and boundezhigecgent.

Let sequencesaf}, { b,} be convergent. Then the following sequences are

convergent: k&,}, kO R, {a, + b.}, { a, b}, {Z"} b, # 0 for alln.

n
n-oo n- o n— o

If lima, =a, limb, =b, then limk (&, =k &, lim(a,+b, )=a+b,

lima, (b, =alb, |im5:%,b¢o.

n- oo n- o b

Examples

1. Let there be two different limite # b of a sequenceaf}. Then almost all
sequence terms are in any neighbourhodd) and alsdO,(b), it means, in their
intersection. Then choosing= (b — a)/3 > 0, we obtairO,(a) n Oy«(b) = O,
which means that almost all sequence terms cannbeio one of the two
neighbourhoods, therefore the sequence does na tvaw different limits.
Property 1 has been proved.
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E|t holds thata, < 1, and
n

Wik

N =

2. For all terms of sequenc{zan}:l

lima, =0<1.

n- oo

3. Sequence {(-1)}is bounded, but not convergent. It is neither wtone.

1\"| _.964 .
4. Sequencej| 1+— = ZZE is increasing and bounded, as h.<< 3,
n

therefore it is convergent and its limit equals feuler number e,

Iim(1+ lj =e.
n- oo n

J
3
te
237 L ] C-'An
228 oo ?A ?A3 :
) [ 04 72 :
- . H ' _ n
n_(l +57)
0 vl ‘l |3 }'Z o

Fig 3.31. Graph of sequence

Improper limit of a sequence

Suppose sequence. is increasing, unbounded, and therefore not coyesmt. For
all terms of such sequence it holds that with ameiasing index the value of the
sequence terms is also increasing without any mutdieans that for any number
A such a numben, must exist that for alh > 0 it isa, > A, i.e. almost all the
sequence terms are in any neighbourh@afio). This leads to the concept of an
improper limiteo of a sequence.

The sequenceaf} has an improper limito, if almost all its terms are in any
neighbourhoodO,(), that is to any numbek such numben,g exists that for all

n>0 it isa, > A, which meanslim a, = . The sequenceaf} has an improper

n-oo
limit —co, if almost all its terms are in any neighbourhdog—«), that is to any
number A such numbemny exists, that for allh > 0 it is a, < A, which means

lima, =—o.
In brief:
lima, = « DA, :On>n,:a, > A, fig. 3.32

n- oo

lima, =- < DA, :On>n,:a, <A, fig. 3.33.

n-oo
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a, A3
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.
n>n,

Fig. 3.32. Graph of a sequence with improper limit

Fig. 3.33. Graph of a sequence with improper liwit

For a sequenceaf}, only one of the following is true:
1. There exists a proper Iimnincl a,=a.

2. There exists an improper Iimninl a, =,

3. There exists an improper linditm a, = —oco .

n-oo

4. There exists no proper or improper limit, thgusnce is oscillating.

Examples
1. Sequencerf} = 1, 4, 9, ... is increasing and unbounded, $®dtivergent and
limn® =oo.

Nn- oo
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2. Sequence {172= -1, -3, -26, ... is decreasing and unboundedt, is divergent
andlim(@—-2") = —oo.

3. Sequence {(1 7)"} =0, 1, -8, 81, ... is unbounded and oscillatisg it has no
limit.

Some properties of the limit of monotone sequences:

1. Let sequenced,} be non-decreasing. If it is not bounded from aothen
lima, =c . If it is bounded from above, then it has a prolmmit a and

Nn-oo

a,< afor alln.

2. Let sequencel} be non-increasing. If it is not bounded from he)ahen
lima, = —co. If it is bounded, it has a proper linsitanda, = a for all n.

n-oo

3. Monotone sequence is convergent if and only & hdéunded.

4. Let sequenced} be bounded and ldim b, = . Then

n- o

lim(a, +b, )= lim(a, —b,) = Iim%:o,bHJtODn.

5. If lima, = andlimb, =, thenlim(a, +b,)=c, lim(a, b,)=co.

n— o n- o n-oo n-ooo

6. If ima, =0 andlimb, = -, then

n- oo n-o

lim(a, -b,)=, lim(a, b,)=-o.
lim(a, [b,)=w,a>0

7. If lima, =a#0 andlimb, =, then""” :
o n-eo lim(a, (b, ) = —c0,a<0
Iim:—:oo,a>0
8. If ima, =a#0 andlimb, =0,b, >0,0n, then " :
n-o n- o
lim & = —0,a<0
n-o bn
Examples

. .1
1. lim 2" = oo, thereforelim — =0.

n-oo nqooz

n-oo n-oo n n3

2. lim(n®*-5n-10) = Iim(l—S2 - lojn3 = because

Iim(l—i—loj:1>0,lim n°=o.
n

n— oo n3 n- oo
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1 + 5 + 2
. 245n+ M nd ot
3. lim 4n 35n % =lim-" N~ N -0, because
nent+4n*+3n° 41 nee, 403 1
n n®> n
Iim(1+4+32+14j:1¢0,lim(12+53+24):0.
n-e n n° n n-o\ n° n° n

3.6 Limit and continuity of function

The concept of a limit of a function is one of thesic concepts in calculus leading
to other important concepts as continuity, derixgtor anti-derivative of a function.
The limit of a function determines the behaviour tfe function in the
neighbourhood of a certain point, while the functitself is defined on a certain

neighbourhood of this point but not necessarilthim point itself.
2

1 defined for all real numbers but 1,

Let us investigate the functiori (x) = X

D(f) = R - {1}, in the neighbourhood of point 1. The functiovalues are
f(0.8) = 1.8,f(0.9) = 1.9f(1.1) = 2.1,f(1.2) = 2.2, therefore the function values are
approaching number 2, and it is said that the lohfunctionf at the point 1 equals
to 2, fig. 3.34.

Y y=re) y
F@)->b

y=5(x)

Fig. 3.34. Limit of function Fig. 3.35.rhit of function — Heine definition

This property can be precisely formulated in thiéofeing Heine definition of the
limit of functionf at the point, wheref is defined on some neighbourhood of point
a, see fig. 3.35.

Let functionf be defined for alk # a from some neighbourhood of poetFunction

f is said to have limib at the point, if for any sequencex{} of points from the
domain of definition of functiori such thai, # a convergent t@ the corresponding
sequence of function value&X,)} has the limitb.
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limf(X)=b < [limx, =a,x OD(f),x, Za=limf(x,) =D

The definition of the limit of function describeket fact that in pointx slightly
different from the point (but different froma) the valued(x) differ only slightly
from b.

Cauchy definition of thelimit of function at the point a

Let functionf be defined for alk # a from some neighbourhood of poimtFunction
f is said to have limitb at the pointa, if to any neighbourhood/b) such
neighbourhood,(a) exists that for alk [ O(a), x # aisf(x) O Ob).

Oe>000>0:0<|x-d<d=|f(X)-h<e

The Cauchy definition oflim f(x) =b can be interpreted geometrically as the

property of the function graph in the neighbourh@yh) of pointa to be located in
the layer between the parallel linesb — & y=b + ¢ see fig. 3.36.

The function has no limit at the poiat if for some (at least one}neighbourhood
of numberb, O,b) = (b — & b + &), there exists n@-neighbourhood of poin,
Os(a@) = (a- 0, a +9), such that for all points from this neighbourhabifferent from
a, X#a, isf(x) 0 O4b), see fig. 3.37.

y =7(x) J =1 (x)
b+e b+e| 1o

o o

}TA_l — — o> N -
ato a a-o 1 ato a a-o x

Fig. 3.36. Limit of function — Cauchy definition Fig. 3.37. Non-existing limit of function

Basic properties of limit of a function

P1. Any functiorf can have at most one limit.
P2.lim f(X)=b = lim(f(x)—-b)=0

X-a X

P3. Let lim f(x) =b and let there exists such neighbourh@@) that for all

x00O(a),x#ais K< f(X)<L (the function is bounded oM(a)), then
K<b<lL.
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Jxp)

all

T O(; ) xul ¥
Fig 3.38. Limit of a function bounded @(a)

P4. If f(x) = ¢, ¢ O R, D(f) = R, then functionf has limit for alla 0 R and
lim f(x)=c.

P5. Limit of three functions: Lelim f(x) =b and lim h(x) =b and let there be

such neighbourhoodO(a) of point a that for all xOO(a),x#a is
f(X) < g(X) < h(x). Then it also holds thdim g(x) =b.

P6. If letrl f(x)=A andlxiirgI g(x) = B andk, | are real numbers, then:
a) Ixi[q[kDf (x) £1 ()] = klim f(x)£11im g(x) = kAxIB
b) lim f () Cy(x) =lim f (x)0im g(x) = A[B
im 10 _ »

¢ If b0 lim ) = - A
2 0o mg() B

d) lim[f(x)] k=[|xir2 f(x)}k: A< KON

. lim f (x)
e) limc'™ =c== " =c* cOR,c20

P7. Limit of a composite function: Ldim g(x) =b, Iing f(u) =B and let there be

such neighbourhoo@®(a) of point a that for all x[(1O(a), X # ait holds that
g(x) = b. Then the composite functiof{g(x)) has the limit at poina and

lim f(g(x) =1im f(u)=B.
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Examples

1. Let function f (x) = xsiné, xUOR, thenling f(x)=0.
X X

301
g7 @ mmmm e

0.8 :

\ e 20 :

0.6 J/ :

\ v/ |

N\ 0.4 |

/ 104 !

0.2 / —_— |

\Ndalt S :
4 08 06 04402 'u%*% 92 /04 06 o8 1 . 0 i i -~
\ / \ / -10 0 10 20 28 3

Vo2 W x
. o1 ; X—28
Fig. 3.39. Graph of (x) = xsin=, xOR Fig. 3.40. Graph qf(x) =

X 3x-1-3

2. Iims(xz+4):Iirr13x2+lirr134:9+4213

H 5
oy Ilnj 2X _
3. limS—=2x"1—=_—“—=-1
x--1x“4+1 limx“+1 2
X--1

4. I|m 22_1 - 2!][“3(2_1] - Z[Liinag_liﬂ]) - 21—1 - 20 =1

X-3
X—28
8x-1-3

thenu+3=3/x-1= x-1=(U+3)*= x-28=(u+3)*-27

5. Iin218 =27, because iti=g(x) =3/x-1-3,

and substitution tof (X) = 3)(_1283 results in
X— —

=u®+9u+27

fg09)= =12 =2

that yields

— 3 —
Iimxi%ﬂimw: Iim(u2 +9u+27)=27
x-283/y—-1-3 u-0 u x-28
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+ +1)"
6. Iirr} x> =1, because il = g(x) = 2x -1, thenx=uzl, f (u) =(uzlj

u limu
. . + . +1 )
and lim x> = Ilm(uzlj = Ilm(“j =1=1
u

X-1 u-1 51 2

Improper limit of afunction
In the definition of a limit of function the letteg, b denote numbers. Exchanging
letterb by symboko or —o, the definition of improper limit of function ate pointa
is defined.
Let functionf be defined for alk # a from some neighbourhood of pomtFunction
f has an improper limib, or —o, at the poing, if from
limx, =a,x, OD(f),x, #a implies

lim f (x,) =lim f (x) = oo, or lim f (x,) =lim f(X) =—co.
Briefly:
lim f(X) =0 < [lim x =a x OD(f), x #a=lim f(x) =oo]

lim f(x) =—0 < [Iimxn:a,quD(f),xnia:Iim f(x) :—00}

The geometric interpretation of the fact that fimref has an improper limito or
—oo at the pointa means that ifx is approachingg, then the values df(x) are
increasing above any bounds.

d y
i fx)
:].ﬂx) ﬁh~“\\\\\
P X->a
i N
3 x
x.->a \
Fig. 3.41. Improper limito of functionf Fig. 3.42. Improper limitos of functionf
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Limit of function at improper point

Exchanging lettea in definition of the limit of function by symbab or —o, the
definition of the limit of function at the impropepintw or —w is defined.

Let functionf be defined on interval ¢s, @) or (a, ). Functionf has limitb at the
improper point = or o, if for any neighbourhoo®(b) such numbeA > 0 exists
that for allx < —A or allx > A it holds thaf(x) [0 O(b), which is denoted as

lim f(x) =b,orlim f(x) =b.

X - —00

y y
J&x) )

. Jeg)l-
| 9@) o(b)
N Xy -A A a X a
x<-A4

< JEU A I a A g x,
x<-A x>A
Fig. 3.45. Improper limito of f at —co Fig. 3.46. Improper limi¢ of f atco
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Improper limit of function at improper point

Let functionf be defined on interval ¢, a) or (a, «). The functionf has improper
limit oo in the improper pointes or o, if for anyK > 0 such numbeh > 0 exists that
for all x < —A orx > A it holds thaf(x) > K.

lim f(x)=o0,0rlim f(x)=co

X — —00
Similarly, the improper limit ee at improper point es or o can be defined.

Properties of improper limit of afunction
P8. If lim f(x) =b#0, limg(x) =0 and for allx # a from some neighbourhood

O(a) it holds that

() f9__
g(x) x-2 g(X) '
f(x) >0, thenlim F(x) =00,
a(x) x-a g(X)

P9. Let functionf(x) be bounded on some neighbourhood of peinand let
lim g(x) =, then

im[f(x)+g(x]=c, lim—>" f) _
~2 ()
P10. If lim f(x) =b# 0 and such numbey > 0 exists that for alk # a from some

X-a

neighbourhood of poira is g(x) > p, thenlim f (X) [ (X) = oo .

Examples
Llim 27X = o, becausdim (1+x) =3, lim(x-2)* —o:>||m£:oo
ﬂz(x—Z) (x 2)
2+1_i
X3 +xE -1 x x2 _2+0-0_2
2. lim 3 =lim = =—
S S O 5-0 5
v2
X

3. lim(x+sinx) =, becausesinx < 1, and lim x = o

X0 X 00

. sinx . . .
4. lim~———= =0, becausdim x = and sirnx is the bounded function.

X — 00 X X -0
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21 0.2
2\ [
RV ENEAYA
X
s -0.21 —
Fig. 3.47. Graph of functiox +sinx Fig. 3.48. Graph of functioi"*
X

k

k
5. im2=lim 220> lim_= (Iim—lj —0* =0,

Xaoox Xa—ooX xﬂoox xﬂoox
k

1 .1

lim —= | lim =| =0"=0

X =0 Y X =0 Y

One sided limits
If we replace neighbourhood;@) of pointa in the definitions of limits by the left
O's(a) or the rightO’; (a) neighbourhood, we obtain definitions of one-sitiaits.

Limit on the right off(x) ata
Xlin; f(x)=b < 0g>0,00>0:x00;(a)= f(x)TO, (b)
Limit on the left off(x) ata
XIirg_ f(X)=b < 0e>0,00>0:x00;(a)= f(x)1O,(b)
If b =00 or -0, functionf has improper limit on the right or on the leftlz¢ pointa.

Theorem. The limit of functionf at the poinia exists if and only if both one-sided
limits exist at the poind and they are equal

lim £ ()= lim () = lim () .

If some of the one-sided function limits does naseat the poing, then the limit of
functionf does not exist at the poiat

All properties P1 — P10 are equally valid for oiged limits.
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Examples

1. Iim+«/x+2 =

X— =2

1 1 1 :
2. lim ==, lim = =—o0, thereforelim = does not exist.
x-0" X x-0" X x-0 ¥

X )
3. Iim*™! M = lim -~ =-1 lim— M = lim = =1, thereforelim
x-0" X x-0 X x-0" X  x-0" X x-0 X

does not exist.

1 .01
4. im==1lim~==0
Xﬂoox Xa—oox

Continuity of function
Functionf(x) is said to be continuous at a parif lim f (x) = f (a), which means:
1.1(x) is defined at (a [0 D(f)),

2. there existdim f (X),
X-a

3. this limit is equal td(a).
It is said that functiofi(x) is continuous a& on the right (on the left) if
lim f(x)=f(a) (or lim f(x)=f(a) .

A functionf(x) is said to be continuous on an intergglb) if it is continuous at each
x O {a, by and moreover, if it is continuousabn the right and dt on the left.

If functionsf(x) andg(x) are continuous at a poiat then the following functions are
also continuous at this point:

1. f(X)xg(x)

2. clf(x),cOR

3. f(X¥)lg(x)

4, E g if g(@#0
5. [f(x)].kON

A function continuous at each point of its domaih definition is said to be
continuous. The graph of a continuous function isaa-interrupted curve. All
elementary functions are continuous at each pdititedr domains of definition.

The points at which functiohis not continuous are called the points of disiciity
of f. Pointa is a point of discontinuity of functiof if the function:
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a) hasnolimit at
b) is not defined aa
C) has a limit af that is not equal to the function valifa).

Properties of functions continuous on a closed interval

T1. Function continuous on a closed interval isrot®a on this interval.

T2. Function continuous on a closed interyal by acquires the greatest value

(maximum) and the least value (minimum) in thiseimal, i.e. such points
¢, ¢ 0(a, b) exist that f (¢,) < f(x) < f(c,), OxO(ab).

Y ¥y

T3.

T4.

T5.

T6.

T7.

f(cl)- ac 02 C‘3 b

Fig. 3.49. Properties T2 and T3 of functions camtis on a closed interval

If functionf is continuous on a closed interval by andf (a) # f (b), then for
arbitraryK such thatf (a) < K < f(b) at least one O (a, b) exists at which
f(o) = K.

If functionf is continuous on a closed interyal by andf (a) CIf (b) <0, then
suchc O (a, by exists thaf(c) = 0.

If functionf is continuous on a closed interval b), then the image of this
interval, seff ((a,b))={f (x): xO(a,b}, is again a closed interval, or a one
point set (in the case of a constant funcfjon

If functionf is increasing (decreasing) and continuous on &dlogervalll R,
then its inverse functioh™ is also increasing (decreasing) and continuous on
the range of functiofy R(f) O R.

If functiong(x) is continuous at the poirg and functiorf(u) is continuous at the
point U= g(Xo), then the composite functidifg(x)) is also continuous at the
point Xo.
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J(®)

Fig. 3.50. Properties T4 and T5 of functions cambins on a closed interval

Asymptotesto graph of function

The behaviour of functions on neighbourhoods ofnfgoiwhich are not in their
domains of definition can be analysed by meansneislknown as asymptotes to
graphs of functions.

Asymptotes are lines coming close to the graphuattion. A straight line is an
asymptote to the graph of a function, if the diseafrom the variable poifil of the
graph to this line approaches zero, as the pditénds to infinity (asymptotes are
tangents at infinity).

Two forms of asymptotes must be distinguished:ie@rtasymptotes (without the
slope) and inclined asymptotes (with the slope).

Asymptotes that are not perpendicular to coordiredis x are called asymptotes
with a slope, asymptotes without slope are perpetali to coordinate axis

Liney =kx + b is called asymptote with slope (inclined asympttdethe graph of
functionf, if

lim[f (x) - (kx+b)] = 0,0r lim [ (x) - (kx+b)] = 0.
Liney =kx + b is asymptote with slope (inclined asymptote) @ ghaph of function

f asx approaches infinityx — oo, or asx approaches minus infinitx,— —o , if and
only if

im X =k lim(f (0 - k) =b, or

X— 00 X X — 00
im ~X 2, fim (f(x)-kx)=b.
X— —00 X X — —00
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y=kx+b

Fig. 3.51. Asymptote to graph of function

In particular, if the functiofi tends to a finite limit as approaches infinity, that is
lim f(x) =b,

X— 00

then obvioushk = 0 andG(f) has a horizontal asymptote (regarded as a spsal
of the inclined asymptote) parallel to the coortinaxisx, hamelyy = b. Similar
relations hold fox — —oo.

The asymptotic behaviour of a function may be different character wher
becomes positively or negatively infinite, and #fere the cases — +w and
X — —oo should be treated separately. If for> +c0 andx — —oo numbersk andb
coincide, then both asymptotes form a common ditdiige.

Line x =a s called asymptote without slope to the grapfunttionf, if at least one
of above relations is true

lim f(x)=c0, lim f(x)=-c0, Ilim f(x)=0c0, Ilim f(x)=-c0.

Examples

1. Linex = 0 is asymptote without slope and Iye 0 is horizontal asymptote to the
: 1 .1 .1
graph of function y==, aslim==cand also lim—==-0, and
X

x-0" X x-0" X
o fx) 1 .1
k:|lm£=|lm—2=|lm—2:0,
X — 00 X X—»OOX X—»—OOX

q:IXiTo(f(x)—k.x):IXiTof(x) = lim f(x) =0.

2. Linesy = x and y = —x are inclined asymptotes to the graph of function

f(X) =-/x*—9. The function is defined on skt = (—w, —=3) [ (3, «) in real
numbers, and the following holds
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k=lim ) :Iimm :nmf;g =\/lim 1—92j =1,
X =e X X0 X X0 X
= 1im( (9~ = lim{ /x? -9 - x)= r,;,(Jﬂ-x)(w*_\gﬂ):

X x= ( x2—9+x)

=lim————=Iim

_9 _
X-o [x2 —Q 4+ x  *oex® - -

and similarly holdsk = lim ——= f(x) =-1q=1lim (f (X) - kx)

X — —00

0.

Fig. 3.52. Graph of functiorf (x) =-/x* -9 with asymptotes
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3.7 Derivative of function

Let f be a function defined on domaib(f), with a graph in a certain curve.
Choosing arbitrary numbess X, O D(f), the differenceAx = x — X, will be called
increment of the argument, therefore x, + Ax. The difference of function values
at pointsx, X, denotedAf = f(x) — f(xo) is called the increment of functidrvalue at
the pointxy, corresponding to the incremefik of the argument, or thiinction f
difference at the poing, while

f(X) =f(xo+ AX) =f(xg) + Af .
Quotient

AF _ f(x +0%)= f(x,)
AX AX

is called the differential quotient of functionat the pointx,, or the relative
increment of the functiohvalue at the point,.

The differential quotient of functiohcharacterises relative change of the function
values with respect to the change of its argument.

JectAx)

Jxp)

Fig. 3.53. Differential quotient 6f  Fig. 3.54.Geometric interpretation of derivative

The differential quotient of functiohat the point, can be geometrically interpreted
as a slope of line passing through the pafats [X,, f(X0)], B = [Xo + AX, f(Xo + AX)]
on the functiorf graph, which intersects cur@ff) in these points
Af
tana =—.
Ax

Let functionf be defined at the poirg and on some neighbourhood of this point. If
limit (the proper limit)

jm & = jim {06 8%~ 1)
M&x-0 AX  Ax-0 AX
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exists, then this limit is said to be the derivatof functionf at the point, and it is
denoted f'(X,)
)= fim 1097 106) _ oy F06 89~ 1)
X% X=X, £x-0 Ax

JAX = X=X,

If real numberf'(X,) exists, functiorf is called differentiable ag,.

The derivative of a function at the poix4 therefore determines the slope of the
curve that is the graph of functidnso it is the slope of a line, which is the limit
position of the line intersecting the graph andspasthrough point#\ andB - a
tangent to the function graph at the poigt f(xo)]-

To denote derivative of function=f(x) at the poink, various symbols are used

! —if - g =V = d7y
/()= () [ deo Y (%) [ deo'

Examples
1. Derivative of functiorf(x) = x* at the poink, can be determined as

(x) = fim T G TAX) = (%) _
Flo)=lim =2 =
2 _ 2 _
= fim (o ATTX _ iy BX(@% 28 _ 5
Mx-0 AX Mx-0 AX

2. Function f (X) =|X has no derivative at the poi= 0, as

lim T - 1(%) :Iimwzlimﬁ
X=X X=X, x-0 X x-0 X

does not exist.

If the derivative of functioffi exists at all points of some set, then the fumci$osaid
to have derivative on this set and it is callededéntiable on this set. The set of
points, on which derivative of functionf exists, is a number set

M :{XD D(f):C f'(X)}. Numberf'(x,) can be attached to any numbgi] M,
thus a new function is defined on the Betalled the derivative of functidnthat is
denotedf ', or f'(X,) and the following holds

f':M - Rx > y=f'(X).

Necessary condition of differentiability: If a fuian f(X) is differentiable at a point
X, it IS continuous at this point:

X=X

i . f(x)—f
im (4 = nm((xi_x(fx‘))(x—xo% f(me = £(%,).
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Continuity is not a sufficient condition of differgability.

Improper derivative

If lim 09~ 100) =400, Or—oo, it is said thaf has an improper derivative at
X=X X=X

the pointx, (but functionf is not differentiable at the poirg).

One-sided derivatives

If limit lim 109 = 106) , orlim 109 = 106)
X=X X=X, X=X X=X,

of functionf at the pointg on the right, or on the left, and denoted by syimbo

f(%),0r (%)

If these limits are improper, we speak about impragerivative of functiori at the

point x, on the right, or on the left.

Functionf is said to have derivative on a closed intetaab), if it has derivative at

all pointsx I (a, b), and a derivative on the left at the pairdnd a derivative on the

right at the poinb.

exists, it is called the derivative

Geometric meaning of derivative
If the value of the derivative of a functid(x) at a pointx, is f'(X,), then the

straight line y = f(x,) = f'(X,)(X—%,) is the tangent to the grapB(f) of
functionf at the point o, f(xo)]. Hence f'(X,) is the slope of the tangent &ff) at
the point ko, f(x)]-

d y=jx)

y =F gl - xp) + 7
feegy | ;

xn X

Fig. 3.55. Graph of functiohand its tangent
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Physical meaning of derivative
If a point moves along a straight line and its @wnotion iss = f(t), where variable

f (1) - f(t)

t means time, then the ratreit is an average velocity of the motion,
0
corresponding to the time intendst =t — to,. Then
f(t)— f(t,
v(t,) = ' (to)—|mM
-l t _t
is called the velocity of the rectilinear motiss f(t), at the given moment=t,.

Examples

1. Functionf(x) = ¥* has a derivative at all points of its domain ofimiéon,
x O (—o0, o0), andf (X) = 2x. The graph of functiohtherefore has a tangent line at

any point[xo, x§] , and it is determined by the equatign- x2 = 2X, (X — X,) -
The tangent at the point [-1, 1] has the equatioh 2+ 1 = 0, fig. 3.56.

Fig. 3.56. Tangent to the graph of function Fig.73 Graph of function

2. Function f(x) = 3/x has an improper derivative at the point 0, as

f X . 1

f' (0)—I|m——I|m — =lim

x-0 || X3 x-03/y2

Because it is continuous at the point 0, at thatg@i, 0] its graph has a tangent
line with the equatiox = 0, fig. 3.57.

3. Graph of function f (X) ZM has no tangent line at the point [0, 0], as no

derivative defined at the point 0, nor improperivive at this point exist, see
fig. 3.1, right.

78



4. Function f(x) =~/1-x* defined for all reak such thatX < 1 has a derivative

at all interior points of its domain, interval (=1), and it has improper one-sided
derivatives in the points 1 and -1, as the follayolds

1 = 2 2
f(=0 = lim 27X =, f;(l):nmﬂ:_oo,
x--I  X+1 x-1" x—-1

and the tangent line equations at these pointgs arel,x = 1, see fig. 3.58.

14 y=kr+gq

0.5 1 0

Fig. 3.58. Graph of function Fig. 3.59. GrapHuwfction

5. Functionf(x) = kx + q, for arbitrary constant& g0 R has a constant
derivative equal tk at all points of its domain of definitioR, while the
graph of function coincides with the tangent e kx + g, fig. 3.59.

6. Function has no derivative at any point of its dondd definitionR.

Basic properties of differentiation
If function f(x) andg(x) are differentiable on the sbt, then also functions((x),

f(x) £ a(x), f(x)LO(X), % JAf o X #£0 Oxd M,are differentiable oM, while

[cOF (9)] = cOf (3
[f(0+ (%] = F(RO(
[f(0B(Y] = F(ROL 3+ (30K X

{f(x)]: £ Lo~ (3 0d( 3
9(x) (%
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Chain rule

If function g(x) has a derivative at the poixf and functionf(x) has a derivative at
the pointuy = g(Xo), then the composite functidf(x) = f(g(x)) also has a derivative
at the poini, and it holds that

F'(%) = f'(Uy)g' (%), Uy = 9(X%,) ,
which can also be written for all suitabas

dF(x) _ df(g(x)) _ df (u) dg(x) _ _
dx  dx  du Epldx = 90%). foru=g(x),

and denoting = f(u) we receiveﬂ = ﬂ Bd—u .
dx du dx

-4

_41

Fig. 3.60. Inverse functions

Derivative of inverse function

Let function f be one-to-one and continuous on intereabjf, and let there exist a
non-zero derivativé ' of this function on the interval. Then the invefgactionf ™
also has a derivative on its domain of definititmaf is the range of functidi, and
for all x O (a, b) it holds that

' 1
f'(X)| =————.
[1700)] (%)
Logarithmic differentiation
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If functionf has a derivativé’ oninterval @, b) andf(x) > 0 on this interval, then
for all x [ (a, b) it holds that

_ (%)
[In f(x)] "0

The derivatives of elementary functions can bewvaerifrom the definition of
derivative and from the rules on differentiatioon® of these are presented in the
following.

Derivatives of basic elementary function
1. Power function

[x']'=nx™, nON, R,

and generally x* | =ax** aOR x0 (G

2. Rational function

U

{ P(x)} = PRI =PRI 5y Ry 20
Q) Q' |

3. Exponential function

[aX]’: a‘lna alR, a0, a% 1, XIR,

while particularly[eX] =¢
4. Logarithmic function

1
[log, X] :m,am R,a> 0,az 1,xJ (O ),

while particularly[ Inx| -1
X

5. Goniometric functions
[sinx] = cosx xOR

[cosx] '= sinx XOR

1 T
[tanx] = gy &1 kOZ
[cotx]'= —% X# kt, kKOZ

Sin” X
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6. Cyclometric functions

[arcsinx]Eﬁ xO € 1,1)
[arccosx]’:— — xO € 1,1
[arctan] = 7 ¥OR
[arccotx]':—l:x2 XOR

Examples
1. Derivative of functiory = sinhx is
, |- | _e—-(-De* e +e”
e
and in a similar way it can be shown that

=coshx,

! . ! 1 ! 1
coshx| = sinhx |, tankx| = , COtR =—
| ) | tan cosH x [ H sinf x
2. Derivative of functiony = x> cosxis y' = 5x”* cosx — x> sinx.
. : , 4x
3. Derivative of functiony = 3/2x? - 5isfunctiony’ = ——.
3 (2x2 - 5)

4. Derivative of composite functioty = &™™

y=¢e", u=sinvv=x° .

Then we can write

y = dy _ dy ﬁ ﬂ andy' = e [tosx® (Bx?.
dx du dv dx

5. For functiony = In(X +-/x* -a’ ) it holds that

y = 1 [1+ 2X ]:
X+~ X — & 2% - &
1 E?<+\/x2—a2_ 1

= = ,x2¢a2.
x+ - Jx-a& x-&
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— AXxInx

6. Looking for the derivative of functioy = x* we can wriIQ/=e'”xx =e

hence denotingy = €', u= Xn Xwe receive
ﬂ=ﬂ[-|@= e’ (1Eln X+ X%J = X(1+In Y.
dx du dx

7. Another possibility is to use the logarithmic difetiation and write

Iny=Inx*=xInx, while

[In y]':[xln x]':ln X+ x§:1+ In x
Then from|[In y] Y —14mnxit follows y' = y(1+In x) = x*(1+Inx).
y

3.8 Basic theorems of calculus

Fermat theorem
If function f attains minimal or maximal value at the poihtand a derivative of
function exists at this point, théf{&) = 0.

The geometric interpretation of this theorem isn&mple:

if function f is differentiable at the poird in which it attains maximal or minimal
value, then the tangent line to the graph of fumcfi at the pointT = [, f(&)] is
parallel to the coordinate axis

N

L) Free Objects X Co '
P f(x)=sin(2x-4)y° '
L) Dependent Objects
& MAX = (-0.348, 1)
& MIN = (1.218, -1)
2 biy=-1
) g(x) =6 cos(2x-4)sin(2x-4)*
2 h(x) =sin(2 x - 4)°
d i:x=-0.348
Jjy=1
J kix=1218
d p(x)=6cos(2x-4)sin(2x-4);

Fig. 3.61. Fermat theorem
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Rolle theorem
Let the following properties hold for functidn

1. it is continuous on closed interval b)
2. it is differentiable at each point of the opeteival @, b)
3.f(a) =f(b).
Then in the intervalg, b) at least one pointexists such, thdt'(¢) = 0.

J Free Objects X
J f(x)=sin(2x-4)y
J Dependent Objects
J A=(0,-0.207)
J B =(-1.458,-0.207)
2 C=(0.746,-0.207)
2 D =(1.683,-0.207)
2 E=(3.887,-0.207)
2 F=(-2.396, -0.207)

J G=(4.825,-0.207)

J a:y=-0.207

J b:x=-1458

J c:x=0.746 N,

J d:x=1.683 3
J e:x=3.887

J g(x)=6cos(2x-4)sin(2x-4)
J h:x=-2396

J iix=4.825

i |
Fig. 3.62. Rolle theorem

Lagrange theorem(on function increment)
Let the following properties be true for functibn

1. it is continuous on closed interval b)
2. itis differentiable at each point from operemal @, b).
Then at least one poititexists in the interval (a, b) such, that
f(b)-f(a)
b-a
The theorem can be interpreted geometrically dsvist
GraphG(f) of such functiorf that satisfies all of the above properties, htengent
line at all points but the end points= [a, f(a)], B = [b, f(b)]. There exists at least

one pointT = [, f(&] on the graph(f) such that the tangent to the graph at this

point is parallel to the line segme&B, and its slopé '(£) equals to the slope of this

line segment, i.e.0=1@)

f'($) =
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If f'(x) =0 for allx O (a, b), then the functiorf(x) is constant on entire interval
(a, b), thereforef(x) = ¢, Ox O (a, b).

If £/(X) —g'(x) = 0 for allx I (a, b), then the functiof(x) — g(x) is constant ong, b),
therefore

f(x) =g(x) + ¢, Ox O (a, b).

Physical interpretation of Lagrange theorem:

Let functions = f(t) represent the trajectory of a point moving ortraight line, and
its derivativef '(t) determine the velocity of a point in tirheThe average velocity of
this rectilinear motion in the time interv, t,) is determined by the quotient

f(t,)-f(t)
t,-t

and such momentexists in this time interval at which instantanewvekcity equals
to the average (mean) velocity,

Lagrange theorens therefore sometimes denoted the theorem aboan redue.

L Free Objects x
P f(x) =sin(2 x - 4)°
L Dependent Objects
2 A =(-0.906, 0.094)
2 B=(-0.173,0.814)
& T=(-0.434,0.964)
» a (-0.
& b=(0.173,0)
2 c:x=-0.906
9 d:x=-0.173
J e=0.733
S g=1.028
2 h:y=0.905x + 1.357
P iix=-0.434
2 £=(-0.434,0)

Fig. 3.63. Lagrange theorem
3.9 Higher order derivatives, differential, Taylor polynomial

Let functionf(x) be differentiable on a sht. If its derivativef(x) has a derivative at

each poink O M, then this derivative is called the second deirreadf functionf(x)
2
onM and it is denotedf "(x) = C(;Z .
X
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The third derivative and derivatives of higher asdean be defined analogously.

If for all pointsx O M the functionf ®Y(x) (the derivative of f — 1)-th order) is

differentiable, then its derivative is called theh derivative, or derivative of the
order n of the functionf, it means thatf ¥(x) = [f “(x)]’, forn =2, 3, 4, ... .

Another notation of the-th derivative isf ™ (x) = d]:j(nx) :
X
Examples

: 1 o _—
1. Function f (X) = arctan- has the following first three derivatives:
X

f'(x):i -1_ 1 £7(x) = 2X f'"(X)zz(l_sxz)_
(1+x2)

14+ L X 1ax® L)
2. The tenth derivative of functioff (X) = € is f19(x) = 5%>.

nl
Xn+1 !

3. The nth derivative of function f(x)=1,x¢0 is fO(x)=(-1)"
X

6
a4

n=2, f"(x)=£, n=3 f"(x)=-

1
thereforen=1, f'(x) = - 3
X X

NG
and so on.

Differential and its meaning

Fig. 3.64. Geometric interpretation of differential
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Suppose functiori(x) is defined on a neighbourhoddl(x,) and differentiable at
pointX,. The expressiorf '(X,) [(X— XO) is called the differential dfat the pointx,
and it is denoted

df, = f'(x) fx~x,).

The differentialdfxo of a functionf(x) at a point, is equal to the increment of tie
coordinate of points on the tangent line to thectiom graphG(f) at the point
[xo, f(xo)] . I differencex — x, approaches 0, theAAf equals approximatelgf,

thus

()= (%) = F'(%) [(x=X,).

For the functionf: y = x, we havedf = dx = Ax, that is why the differential at an
arbitrary point is denotedf = f'(X)dx.

Examples
1. Differential of functionf(x) = arctanx) at the point = 2, is df,(X) = X;z and
its value at the point = -3 equals -1.

2. Approximate value of sim, a = 6018' can be calculated using differential of
function sinx, x 0 R.

203t
60°——— 18'———Ax X= % +AX=——

% 200 b 600
f(x)—smx,f (x)=cosx,f (4 +AxF f(yr f(¥)A:
sin@= sin(£+ij= Sint+ cod 3™ =

600 3 200 3 3 200

:§+4ioo =0,8660254 0,0078539 0,9738793

3. The radius of a circle is to be increased fromittigal value ofr, = 10 by an
amountdr = 0.1. An estimation of the corresponding incremsthe circle area
A= nr® can be obtained by calculating the differenti, which can be
compared with the true changd.

r, =10, dr = 0.LA(r) = mr?, A(r) = 2ar

dA= A(r,) dr —ry) = A(r,) ldr =22 1001=2x

AA= A(r, +Ar) — A(r,) = AQO0+ 0.1) - AQ0) = 101°n —10°n =
= (101> -10")n = (101- 10)(L01+10)x = 01[201x = 201xn
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Exploring the behaviour of functions in the neightfmod of some point is often
rather difficult in the case of functions with colicpted formulas. It is therefore
better to consider some easier function insteadiclwhis a good enough
approximation of the original one. Functions aresmfsequently substituted by
polynomials. These are infinitely times differebtim and their derivatives of any
order are again polynomials.

In order to substitute the functidn differentiable up to ordem, n O N, by linear
polynomials, we can at first substitute the functipaph by a line, while it is natural
to choose here the tangent to the function grappoatt [a, f(a)], the graph of
function Ty(x) = f(a) + f (@)(x — a). It holds thafT,(a) = f(a), T:'(a) =f'(a). A better
approximation can be obtained by polynomials ohbigdegrees, while it is required
that the values of their higher derivatives areadédo the values of the respective
derivatives of functioff at the point.

There exists exactly one polynomial in the form

T.(X) = f(a)+@(x—a)+@(x—a)2 +...+M(x—a)n
1 2 nl

whose coefficients are uniquely determined by thkier of functionf and by the
values of its firsin derivatives at the point = a. It is called the Taylor polynomial
of functionf at the point.

An approximation of functiori by the Taylor polynomial leads to a certain error.
This can be estimated as the differef(a® — T.(X), which is denoted biR,(X) and
called the radical of functiohby then-th Taylor polynomial

Ra(x) =f(x) = Tn(X).

Taylor theorem
Let a, x be two different numbers, = 0 is the integer and is the closed interval
with end points, x. Letf be a function differentiable on intervaith continuous
derivatives on the interior af up to ordem + 1. Then such poinf existsinside J,
&0 (a, x) that

f(x)= f(a)+f]ga)(x—a)+fz(la)(x—a)2 +..+

f (n)

@)y yn g FOE) oyt
nl (x=a)"+ (n+1)! (x=2)

+

i.e. f(x) = To(X) + R\(X), whereT,(X) is then-th Taylor polynomial of at the point.
and

U9 gy

R.(x) = (n+1)

is the radical of functiohafter then-th member of Taylor polynomial.

88



Fora = 0 the form of Taylor formula is

" (n) (n+1)
Oy 00 ., FO0)
2! nl (n+1)!

f(x):f(0)+f'l(|0)x

where 0 < <x (orx<¢<0), and it is called the MacLaurin formula.

Fig. 3.65. Geometric interpretation of Taylor pajymials

The following rule can be used for the evaluatibthe limits leading to one of the
undetermined expressions of the type

Qoo -0 0° 1° oo

olo

818

L"Hospital rule
Suppose

a) lim f(x) =lim o(® =0, or lim| f(x|= IimJ o Y =co
b) there exists (proper or impropdin f’(x) .
xa g'(x)
f(x)

Thenlim ——Z also exists, antim ) =lim f’(x) )
x-a g(X) x-a g(x) x-ag'(x)

This rule is also valid for the limits at improgmwints and for one-sided limits.
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Examples

1. Approximation of functiorf(x) = sinx at the pointa = 0 by Taylor polynomial of
order 4 is
smO

sinx =sin0+° ( -0)+ (x=0)* +
_ 3
N (:3030()(_0)3 smo(x 0)* = x
sinl= 1—} = § =0,83333
6 6
3 /
.//
2 -
2
J/

\ L
N

Fig. 3.66. Taylor polynomials for function s

2. By means of L"Hospital rule we can evaluate thi¥aihg limits

. 3-1 . 3FIn3
a) lim———==1im =In3
x-0 SinX  x-0 COSX

. X-=sinx . 1-cosx ., sinx ,. cosx 1
b) lim 5 =lim > =lim =lim ==
x-0 X x-0  3x x-0 BX x-0 6 6

1

tanx =lim COSZX =1

c) Im
1+tanx X”Lzz

cos X
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. 1 1
sin— —— COS™
d) lim xsin==1im =lim =limcos—=1
X — 00 X X — 00 l X = 00 l X — 00 X
X X2
1
e) lim xInx = lim —= = lim —% - = lim (-x) =0
x-0* x-0* X 1 0"
o T2
X X
1
.1 Inx . x . 1
f) lim——Inx=lim—= =lim-X =lim| -= | =1
x-11—X x-1I'1—X x-1 =1 x-1 X

3.10 Function monotonicity and extrema

The application of the differential calculus in tineestigation of functions is based
on a simple relationship between the behaviourfahation and the properties of its
derivatives, and particularly of the first derivati An increase is associated with
positive derivatives and a decrease with negatvivatives.

Suppose that a functid(x) is differentiable at every pointof an intervall. Then

1. fisincreasing odif f'(X)>0,00xJ
2. fis decreasing odif f'(X)<0,00xJ
3. fis non-decreasing ahif f'(X)=0,0x0J
4. fis non-increasing odif f'(X)<0,0x0J.

In geometric terms it appears clearly evident tifi¢rentiable functions increase on
intervals where their graphs have positive slopeb @decrease on intervals where
their graphs have negative slopes. It is evideat ihthe derivative of a function

takes zero values at some isolated points buttdin® constant sign at all other
points, this function is strictly monotone (incris or decreasing) in the given
interval.

Examples

1. Functionf(x) = x° — 3x is strictly monotone on its domain of definiti@ Its first
derivativef’' (X) = 30¢ — 1) equals zero at pointd and 1, and af(x) < 0 for all
points from interval €1, 1), functionf is decreasing on this interval. It is
increasing on< «, —1) and (1), asf’(x) > 0 on these intervals, fig. 3.67.

2. Functionf(x) = x — sinx is increasing ok, wheread '(x) = 1 — cosx = 0 and
f'(2km) =0,0k=0,%1,+1, ..., fig. 3.68.
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4 44
G(f)
2.42 G(f)
i ] G(f)  ?
: 1 4.4
o 0 .
/2 -1 ? 2 3 ) 2 4
1; 1
-24 ;
-2.68
Fig. 3.67. Function monotonicity Fig. 3.68. Stsianonotone function

Local (relative) extrema

Many application problems require the determinatiérihose arguments from the
function domain of definition, in which functiontains its maximal or minimal
value with respect to the whole function range oraocertain interval called the
function extrema, maximum or minimum.

Let f be a function defined on a neighbourhood of pgjnThe valud(Xy) is said to
be a local maximum of functidix) if such neighbourhoo®/x,) exists that

f(X) < (%), OxUO,(X,) -

Pointx, is called the point of local maximum.
The valuef(Xy) is said to be a local minimum of functié) if such neighbourhood

O4Xo) exists that
F(X) 2 f(%,),0x00, (%)

Pointx, is called the point of local minimum.

If
£(X) < £ (%),.0X00, (%, ),0r f (%) > f (%,),0x00, (%),

the valuef(xo) is called the strict local maximum or minimumspectively.

When speaking of maximum or minimum at a point, ugeially mean a strict
extremum.

If %ois a point of local extremum of a functibdifferentiable ak,, thenf'(xy) = 0.

From this assumption it follows that a function gqawssess local extrema at the
points at which the derivative is equal to zer@¢thare called the stationary points)
or at points at which the derivative does not exist
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Points at which the function derivativée is zero or it fails to exist are called the
critical points of functiorf (for the first derivative). Existence of a locattrema at
the pointx, means that tangent line to the function grapheaipointT = [Xo, f(Xo)] is
parallel to the coordinate axis with equationy = f(xy), or it is parallel to the
coordinate axiy with equatiorx =X, or no tangent line exists at this point.

\ ., |

G(f)

' -2 -1 0 1 2

-1

I \

Fig. 3.69. Tangents and points of extrema Figo.3.8cal minimum of function

Examples

1. Functionf(x) = x* - 3x with the first derivative (x) = 3(¢ - 1) equal to zero at
points—1 and 1 attains the local maximum-dt, f(-1) = 2, and local minimum at
1, f(1) = -2. The tangent lines to function graph at poirtk, 2] and [1,-2] are
parallel to the coordinate axisfig. 3.69.

2. Function f(x) =2%/x? is defined onR, whereas its non-zero first derivative

' 2 . , . o
f'(X) =——=is not defined at the point= 0. The range of the function is the

3/x
interval (0, o), while the minimum 0 is the function value at ff@intx = 0. The
tangent line to the function graph at the point]),s the linex = 0, fig. 3.70.

The first derivative test

Let a functionf be differentiable at each poirtO OJxg), X # X, andf'(xy) > 0
(f'(Xg) < 0) for all points from intervalx§ — & Xo) andf'(x) < 0 §'(Xy) > 0) for all
points from intervalXy, %o + &). Thenf(xy) is the strict local maximum (minimum).
It means that to attain the local maximiipx,) the functionf(x) must be increasing
on O, (X)) and decreasing 00," (xy), while for a local minimunf(x,) the function
f(x) is decreasing 00, (X;) and increasing 00," (xo).
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The second derivative test

If f'(xo) = 0 andf"(Xy) # 0, thenx, is a point of local extremum. ff'(x,) < 0, then
f(xo) is the strict local maximum of functidrand iff"(x,) > 0, therf(xo) is the strict
local minimum of functiori.

Examples

1. Functionf(x) = x* - 3x second derivativé'(X) = 6 is negative at the poirt. and
it is positive at the point 1, fig. 3.69.

2. Suppose we have to make a can in the shape ohidirgular cylinder with a
given volumeV > 0. To find its dimensions that will use the minim material
we can consider the formula for calculation of tiynder areaA = 2r(xy + x°),
and its volumey = ¢y, wherex > 0 is the cylinder radius aryd> 0 is its height.

Vv , , :
From y =— defined for all reak > 0 we obtain the function
X

A(X) = Zn(xv2 + xzj = Zn(v + XZJ :
X X

The first derivativeA' (X) = 4nx —

- is defined for alk > 0, wherea#\’(x) = 0
X

at the point X, =3./;/ The second derivative &'(X) = 4n+4v, and its
T x*

n V . .
value at the poink is A (3 ZJ =12n >0, therefore the functioA(x) attains
T

local minimum at this point. The related height dfe cylinder is

2
7[3L
| 4n®

2
the area function, which i&\(x,) = 27:[3 ;Vz
T

/ , While the minimal material consumption is theueabf

2
v 2J=&3/2nV2 .
47

Global (absolute) extrema

Let a functionf(x) be defined on a s&t and let x0 M. The valud(xo) is said to be
a global (absolute) maximum 6bnM, if for all x O M it holds thaf(x) < f(xo). The
valuef(xo) is said to be a global (absolute) minimumf @i M, if for all x O M it
holds thatf(x) = f(x,). Therefore the global maximum is the greatest thedglobal
minimum is the least value assumed by the fundtmmsetM.

Without specifying the seM, the least or the greatest value of functioms
considered to ben the function domain of definitidn(f).
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A problem often appearing in technical applicatioiss to find the greatest
(maximum) and the least (minimum) values of a camius function on a closed
interval(a, b). Here we first specify all critical points in th@en interval 4, b), then
calculate the function values at these points &edvalues at the end poirf(g),
f(b), and finally determine the greatest and the leashber among these values,
which are the global extrema of the function ondlused intervafa, b).

Examples

1. Functionf(x) = 2 - 3 - 12x + 1 defined orR has two critical points, the roots
of quadratic equatiof’'(x) = 6x2 — 6x — 12 = 0,x, = -1, X, = 2, while for the
function second derivativé'(x) = 12x — 6 it holds thatf"(-1) = -18, and
f"(2) = 6, therefore the function attains local maximf(-1) = 8 and local
minimum f(2) = -19. To determine the function global extrema on thsed
interval (-2, 4, we must consider the fact that both points ofldoal extrema
are in the open interval2, 4), and the function values at the endpoints are
f(-2) =-3 and f(4) = 33. Therefore on intervdr2, 4 the function attains its
global maximum 33 at the point 4 and global minimub® at the point 2. The
function graph is in fig. 3.71.

2. A rectangle is to be inscribed in a semicircle wiklius 2. What is the largest
area the rectangle can have and what are its diomx?sThe problem can be
analysed for example by means of its visualisaitiofig. 3.72. Considering the
coordinates of one rectangle vertex located ons#maicircle,A = [, V], the
rectangle are® equals 2y, while from the circle equation in the simple form

x*+y? = 4 we obtairy =+/4—x? . Looking for the local maximum of function
P(x) = 2x/4 - x* , whose first derivative can be determined in thvenf

2 2
P'(x) =2 A—x? - 2X :4(2 X )’
Ja-xz Ja-x?
stationary points can be calculated as the roatiseoéquatioP’(x) = 0, therefore
2-x*=0andx,, =%-/2, while y =+/2 . Because

—8x\/4-x? + 4x(2-x?)
(1-x)a-x*

is negative in the poimhax, =./2, the area function has its maximum at this

P"(x) =

point, P(-/2) = 4. One vertex of the obtained rectangle locatechersemicircle
is the pointY = [ﬁﬁ] while the rectangle dimensions e&e@ﬁ
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Fig. 3.71. Function global extrema on closed irdérv Fig. 3.72. Inscribed rectangle

In the case that functiohfails to be continuous on s#&t, or M is not a closed
interval, then the minimum and maximumfafn M can be, but need not be reached.

3.11 Convexity, concavity and points of inflexion

Let f be a function differentiable on intervdl Functionf is said to be convex
(concave) on interval, if all points on its graph lie above (below) amapngent line

of the function graph on this interval, with thecegtion of the tangent point.

Let functionf be continuous on intervdland let its second derivative exist at each
interior point of this interval. If for all point&/ithin the interior of the interval it
holds that

fr(x)>0f"(x) <0),
then functiorf is convex (concave) on intenval

Suppose functioi be continuous at the poirg. If such neighbourhoo®@/x,) of
this point existsthat functionf is concave (convex) of/(x,) and it is convex
(concave) onO,"(xy), then the point, is called the point of inflection (inflexion
point) of functionf.

If X, is the point of inflection of functiofy then pointy = [xq, o] is called the point

of inflection of the function grapie(f). The tangent line t&(f) at the point of

inflection intersects the graph, which means it esnfrom one half-plane
determined by a common boundary line in the respgetangent line to the other,
see fig. 3.73.
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Fig. 3.73. Geometric interpretation of convexitylamoncavity

Let the third derivative of functiohexists at the point, , and letf "(xy) = 0, while
" (xo) # 0. Thenx, is the point of inflection of the functioih Moreover, ifx, is the
point of inflection of a functioff, then eithef"(xy) = 0, orf”(X;) does not exist.

Letf'(x0) =f"(X) = ... =F ™ V(xo) = 0, butf ¥(x;) # 0. If n is an even number, then
functionf attains a local extrema at the poigt which is

a strict local maximum if ®(x,) < 0,
a strict local minimum if ®(xo) > 0.
If nis an odd number, then the paigis the point of inflection of the functidn

Examples

1. To find intervals of convex and concave behaviolufunctionf(x) = x* -
means to find the zero points of its second dexigdt"(x) = 6%, which is the
pointx = 0. The function is concave on intervafdo 0), because on this interval
isf”(x) <0, and it is convex on interval @), as on this interval holds’(x) > 0.
Pointx = 0 is the point of inflection, &s"(x) = 6# 0, fig.3.69.

. 1+x . , : : L
2. Function y:Inl— is defined on interval (-1, 1), its derivativese ar
- X

ax o, _12x*+4 o
)3 . The second derivative equals zero

' = 2 - =
ST 0 g

at the pointx = 0, while the third derivative is non-zero at tipisint, which is
therefore the point of inflection of this function.
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Function behaviour

To investigate the function behaviour means tordate the following:

1.

L O

domain of definition, points of discontinuity anera points

parity or periodicity

intervals of strict monotonicity, and points of éb¢global) extrema
points of inflection and intervals of convex andcave behaviour
equations of asymptotes to the function graph

coordinates of some points on the function grapthe-table of function
values

sketch the graph of function

Example

The behaviour of functiori(x) = x> — 3x has been investigated in the previous
examples.

1.

2.
3.

D(f) = R, the function is continuous d® the zero points are /3,0, /3.
Function is odd, ak—x) = —f(X).

Function is increasing on intervalse{, —1) and (1,«), decreasing on
(-1, 1), and it has the local maximum at the pgiat-1, f(-1) = 2, the local
maximum at the point = 1, (1) = -2, the function does not have a global
extrema.

Pointx = 0 is the point of inflection, the function isrmave on interval
(=0, 0), convex on interval (©9).

No asymptotes to the graph of function exist.

Function values at selected points

X -./3 -1 0 1

° |w

f(x) 0 2 0 -2

Table 3.2. Function values

Function graph is in fig. 3.69.
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4 |Integral calculusof functionswith onereal variable

4.1 Indefiniteintegral

An inverse problem to differentiation often appearsnany scientific and technical
applications, which can be formulated as followisd ffunction F(x) to a given
function f(x) such, thatF'(x) = f(x). If such intervalJ exists that for each

xOJ:F'(x) = f(X), then the functiorf(x) is said to be antiderivative of function
f(x) on intervald. The set of all antiderivatives of functiéx) on intervall is called

the indefinite integral of onJ and the notation i§ f (Xdx.
If formula F(x) + C gives all antiderivatives, we indicate this wiktte texpression
j f(Xdx=F(x)+C,Ox0J.

To integrate a function means to find all its aatidatives, thus its indefinite
integral. Operations of differentiation and inté@ra are inverse to each other

[fooa=f3+C [[ (3 af= T x

If the function f(x) find is continuous on an open interv@l then it possesses
antiderivative onJ, or it is said to be integrable dn

Let F; be an antiderivative of a functidnon an open intervalfor alli = 1, 2, ...n.
Then functionF = k;F; + koF, +...+ k,F,, wherek; are constants, is antiderivative of
functionf = kif; + kf, +...+k.f, on intervall, therefore

[ B+, B9 +...+ k £(R) dx

=k [ 09 dx+ k[ £ de...+ k[ (X dx
In particular

j[f(x)ig(x)]dx=j f(x)dxij'g(x)dx

J'kEf(x)dx:k[j' f(Xdx.

Examples

1. Antiderivative of functiorf(x) = 1 — 3¢ is the functiorF(x) = x —x’, but also any
functionF(x) + C, C O R, because for its derivative it holds that

[FO) +CI' =[x—xX+C]' =1 -3¢
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The antiderivative whose graph is passing throbghpbint [1, 2] is a particular
function F,(x) = F(x) + C, with a specific value of the consta@} such that
Fo(1) = 2, it mean€, = 2,Fy(X) = X —x2 + 2. The graph is in fig. 4.1.

. FunctionF(x) = € — sinx whose graph is passing through the point [0, Hnis
antiderivative of functiorf(x) = € — cosx, while this integral curve is one of a
system of parallel curves representing the systdmfuactions that are
antiderivatives of functiof(x). These can be determined as the indefinite iategr
of functionf(x), which is denoted as

J'(ex —cosx)dx:ex—sinx+C,CDR.

The system of curves is presented in fig. 4.2.

. Indefinite integral of functionf (x) = 1 +

1
X COS X

is the system of functions

f(X) =In|X+tanx+ C,

which is formally denoted as

J'(l+ ! )dx=ln|>1+tanx+ C

X COoS X

and defined for allx # k%, kOZ,x#0. Some integral curves are illustrated in

fig. 4.3.

6<
I, 3 ¢
\ y=x—2"+2
0
25 2 R\

T~——_05— |0 05

25

Fig. 4.1. Graphs of antiderivatives
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4

Fig. 4.2. System of antiderivative graphs

vy

Fig. 4.3. Graphs of system of antiderivatives

o

IS

N

y=Ilnzx+tgx

4.2 Integration of elementary functions

The formulas for antiderivatives of elementary fiimes are valid on any open
intervals that are parts of the domains of definitof corresponding antiderivatives
on the right side.
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Basic integration formulae

n+l

1. Ix“dx= X

+c,nz-1
n+1

2. J')l<dx=lnx+c

X

3. Iaxdx: a

+c,0<azl
Ina

4. J'exdx=ex+c
5. J'sinxdx=—cosx+c

6. Icosxdx= sinx+c

1
7. I dx=tanx+c
cos? X

8. j 1 dx=-cotx+c

sin? x
9. j dx= arcsmx+c_[ dx arc5|r¢+ca>0
NE'G AJa
1 1 1 X
10.[ > dx=arctarx +c, fﬁdx=—arctam+c,a>0
1+x a‘+Xx a a

‘x+ x*+a%,a>0

1
11, |————dx=I
I /XZiaZ X n

dx=Inf(x) +c

f()

To integrate a function means to calculate its finde integral using the basic
integration formulas and properties of indefiniteegrals.

Examples.

6 4

1. .[(2x5 -x° +5)dx:x§—xj+5x+c
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3/y2 _ 93 2_
2. Jdeﬁ[(ﬁ 4—2x'1+3x"‘jdx:
X

_EJ.'.]_

_10 1 B X 3 X
:Ix 3dx—2.[;dx+3j‘x *dx = _%)ﬂ ~2Inx+3

-4+1
+Cc=
1

1 1
~+c

=_—3 +In—=-
Bx X X

3.I X dx:J.XZ;r4;4dx:Idx—IX22:dx:x—arctan)z—(+c

X2 +4 X2 + 2
4. J.XEEZdX:gJ.XZZ-)I-(dezglnxz-ka-'-C:In V(X2+2)3 +C
5. J.(S’;x —tanx)dx:J'3xdx+I;§?Xde:h::’XSanosx +c

6. Let the velocity of a rectilinear motion be givey the relationv(t) = t, wheret
is the time of motion. To find the law of the matiave are looking for the
function s(t) representing the trajectory of this motion undlee condition
s(0) = 1, which is a particular antiderivative ohfitionv(t). Therefore

t3
t)=|[t’dt="+c,
() = [ tdt="

3

from whichs(0) =c =1, s(t) = t3 +1.

4.3 Basic integration methods

Integration by parts
This method is most frequently used for integratibisuch expressions that may be
represented in the form of a product of two funwdia(x) andv(x) in such a way,

that the finding of the function(x) and the evaluation of the integrﬁu O/dx is a

simpler problem than the direct evaluation of thginal integraIJ.u' [vdx.
Let u(x) andv(x) be functions possessing continuous derivativeenT

JuCImR d= @ X0¢ x| )¢ xc
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Examples
1. Ixexdx= Xe" —J'exdx= e*(x-1+c
2. _[xz cosxdx= xzsinx—j2xsinxdx=
= x*sinx— (— 2XCOSX — .[— 2005xdx)+
= X? sinX + 2XC0SX — 2SinX+C
3. _[sinz xdx= _[sinxsinxdx= —sinxcos.x—_[—cos2 xdx=
= —sinxcosx + j(l—sinz x)dx:
= —sinxcosx+.|'1dx—f:~:in2 xdx=

= —sinxcosx + x—J.sin2 xdx+C

Zfsin2 xdx= x—sinxcosx+C:>.|'sin2 xdx= SinXcosx+c

x_ 1
2 2
1
4, J‘Inxdxzfllnxdx:xInx—Ix—dx:xInx—x+c:x(—1+Inx)+c
X

5. Ilnxdx=J'1In xdx=|n2x—j1InXdX+C

fln—xdx In? x+C:>.[|nde-;ln X+cC

6. J'arctanxdx I larctanxdx= xarctanx — J' dx—

:xarctanx—iln‘xz+]4+c:xarctanx+ln +C

1
X +1
7. Iex sinxdx= €* sinx —Iex cosxdx= € sinx — (eX cosx+jeX sin xdx)+ C

« of - « 1./

2[ &*sinxdx= €*(sinx - cosx) + C = [ e sinxdx= € (sinx—cosx)+c
Substitution integration method
A change of variable can often transform an unfamihtegral into one which can

be evaluated directly or by another known methobis Tmethod is called the
substitution method, while it is mostly used if theegrand is a function of the form

f(4(x)) Tp* ().
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Let .[ f(u)du=F(u)+C on (a, /. Then

[ £(8()¢'(Wdx=F(#(x) +C on @ b),

which is in short

[ f(#(9)¢'(Ydx = du“: ;,’((ﬁ))dJ = [ f(u)du=F(u)+C =F($(x)) +C.
Examples
u=x>+1

1. _[2xcos(x2 +1dx= )J: J'cosudu: sinu+c=sin(x* +1) +c

du=2xd

u=>5x
2. IsinSxdx: =}J'sinudu:—}cosu+c:—}co§5x+c
du= 5 5 5
U = CcOSX
3. J.co§ xsinxdx= _ =—J'u7du=—}u8+c:—}coss X+C
du=-sinxd 8 8
[ u=inx I T T
4, J'—x dx= du=1d —J.u dU—gu +C—gln X+cC
X
i u=2+cosx
S.I Sinx = . :—J‘Edu:—ln\uhc:
2+ Ccosx du=-sinxd u
1
=-In2+cosx+c=In————+c
2+cosx
I—
6. ISxeXde: u=x :§Je”du=§e“+c=§exz+c
du=2xdx 2 2 2
u = arctarx
7. Im =, _ 1 :J.uzdu:}u3+c:1arctaﬁx+c
1+ X2 du=_zd 3 3

Another form of possible substitution is to takas a function of, i.e. x = @(u).
In this case a suitable functigh should be chosen so that one can evaluate the
obtained indefinite integral and determine the isgefunctiong ™.
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o890

=F(W)+C=F(¢()+C

Examples
1. J.sinfxdx—
dx=2udu

=-2./xcos/x + 2sin-/x +¢

2. J\/ x2dx=X=asinu=u= arcgm jx/a —a’sin? uacosudu=

dx=acosudu

j'2usmudu— —-2ucosu+ 2sinu+c=

=a _[co§udu+c a (2+ ;smucosuj+c:

2

a
?(u+smucosu)+c— u+«/1 sin usmu) +c=

2

2
_a x

{ar05|m+ 1—2]

2
=1 =1
3. J.izsinédx: X U = —[sinudu= cosu+c =cos- +¢
X du=-1 dx X
2

X

Generally, the integration process consists ofsfaming the given integral by
means of algebraic transformation of the integremén integral already known,
which can be evaluated by means of integrationdsisor by change of variable.

Examples

2
I X=Uu"=u=
1.je dx=

X = [ue'du=2¢"(u-1 +c=2e%(/x-1)+c
dx = 2udx

u=Inx= x=¢"
1
du=—dx
X

2. Iln(l)r(] X ix = =I'n“dU: u(-1+Inu)+c=

=Inx(-1+In(Inx))+c
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u=Inx= x=¢" i
3. Icos(lnx)dx— duzédx —J'e cosudu=u(-1+Inu)+c=
X

=In x(—1+ In(In x))+ c

) u=sinx 2 .
4, J.smxcosxdx= =Judu:u—+c=lsm2x+c
du=cosxd 2 2

U =CosX

jsinxcosxdx: ]
du=-sinxd

2
- —Judu= U e —}cos2 X+C
2 2

where according to trigonometric identity it hottist

1sin2 x=1—lcos2 X
2 2 2

4.4 Integration of special functions

Rational functions

One of the most important classes of elementargtioms whose antiderivatives are
elementary functions that can be found in a redffivsimple way, are rational
functions.

Consider integrals of the type

I&dx
X2+ px+q

whereP(x) is a polynomialp, g O R.
If the degree of the polynomi&l(x) is greater than 1, then the divisionR{) by
X2 + px + g results in a polynomiaD(x) and a polynomiadix + b, as the remainder.
Consequently
P(x ax+b

P g+ 2D

X"+ px+q X"+ px+q
The integration of the polynomi&)(x) can be performed without any difficulties,
and hence the problem is reduced to the integrafianfraction

+

T I

X~ + px+q

Each integral of that type can be transformed ®airthe following basic types:

dx 1 X . .
l. J.ﬁ = —arctan— + C, a > 0 (basic integration formula)
x“+a° a a
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dx 1 dx dx
1. =— - +C=
J.xz—az Za[ X—a J‘x+a)

:?2(|n\x—eq—|n\x+eq)+c:?z|n

X—a
X+a

+C

M. jxdx=lj2de=;lnx2 J_raz‘ +C

x? + a2 27 x?+a?

Vo el ¥ e af ¥ pezal

=Inx+a+

+C
Xxa

If two different real numbers,, X, exist, such that® + px+ g = (x — X,)(X — %), then
constant® andB exist such that

ax+b A B
= +

X*+pX+q X—-X X=X,

The two partial fractions can be easily integratetd] the unknown constamsand
B can be determined by the method of the indefinitefficients based on the
comparison of the coefficients of two polynomialghee same degree.

Examples
X _1,2x+1-1 2x+1 1 1 _
Feateal e et ot
X“+x+1 29 X +x+1 X2 +x+1 29 X+ x+1

:;In + X+ ]4 J' dx= InA/x +x+ (arctan—+c

Ty

4
2. jxi(+1dx: I(xz —1)dx+j x21+
X-3

3.1 de _1 2dx :1D1(I dx _I dx]zlln
X =-27 3 x-9 3 23B\'x-3 x+3/) 18

X3
dx="—x+arctarx+c
1 3

+cC
X+3

12x+2 L : : .
4. To calculatejm dx it is suitable to reduce the given fraction totigdr
X X

fractions with linear denominators, such théx—2)(x—3)=x*—5x+6.
Basically we have to solve the following equation.
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12x+2 _ A N B
x> =5x+6 x-2 x-3
12x+2= A(x-3) + B(x-2) = 12x+ 2= (A+ B)x—3A— 2B

Comparing coefficients of the polynomials we reeetystem of 2 equations with
unknown coefficient#\ andB.

A+B=12-3A-2B=2
A=12-B= -3(2-B)-2B=2
B=38A=-

J' 12x+2

——=d =-26In/x—2 +38Inx-3 +c
X°—5X+6

Irrational functions
Integrals of some simple irrational functions cantktansformed to the integrals of
rational functions with the substitution methodoegking a suitable substitution.

Integrals, in which the formuld/ax+b,a#0 appears, are among the most
frequent cases.

Examples

X

1. | -—=dx=
I%x+1
E! 2 5 g2

:j(tlS—t 3]dt:I(t3 ~t 3]dt:§t3—§t3+c:

3J(x+1) J(x+1) o= 13/(x+1)2(2x—3)+c

dt=

3y —
2. Iﬁdx:

x—1 dt = dx t3

t=3x-1=1t° =X_w_.[t+t3+l

:j(1+t‘2 +t3dt=t —t‘l—;t’z re=

ﬁ_ 1 2(X 1) 2«/‘ 1) 1
V12«/x1 es 23/(x-1)
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Other frequently appearing integrals of irratiofuaiction are integrals of type

J' dx

Jax +bx+c

where a z 0 and ax’ +bx+c is positive on an interval, while thease of
polynomials with double roots can be excluded. Ysactorisation by

i a>00ri a<o0
\/a! ) \/jal

this integral can be transformed to one of integrakhe form

dx dx
Ix/><2+ pX+q ’Orjw/—x2+ pX+q

i.e. integrals leading after substitution to theegnals

In‘x+«/x + k2

+C,or

R

—arCSIrF+C respectively.

I«/k2 - x?

Examples

1 dx _ 1 dx _ 1 dx

' '[«/3x2+5x—4_ﬁj. 5 4 _ﬁj 25 73
x? "3 \/x +2£x+

+-X
3 36 36

zij‘ dx :t:x+2:1J‘dt:
3 (“5]2-73 d=ax B3 |, (73]
36 6

6
5 5 4
x++x+x—
3 3

2 J‘idxzijL_
o x=2x? 2 _(_X+ij
2
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=1 dx - 411 f

(el e B L
4 16 16

=—iarcsiri+c:—i

P R
4

arcsinl—4x) +c

Trigonometric functions
Integrals of the formj R(sinx cosx)dx, where the integrand is a rational function
in terms of trigonometric functions sinand cox, can be transformed by

I X . . . .
substitutiont = tan5:> X = 2arctant to integrals of rational functions. Then it

holds that

s | S _1-t?
dx=——,sinX=—,COSX=
1+t? 1+t? 1+t?

This substitution is generally convenient for tlenputation of integrals in the form

J' dx
acosx+bsinx+c

Examples

1 RRETTCI Int|+ ¢ = Intan
= =|=dt=Int +c=Intan= +c
J‘smx _2dt It 2
C1+t2
_t2
COSX=—"——
2. jidx = 1+t2 :I 1 5 DZdtZ dt=
3+ 2cosx dx = 2dt 1-t° 1+t
X=_"— +2
1+t 1+t2
_J' 2dt _J' 2dt _
3A+t%) +2(1-t?) I 31+t +2(1-t?)
tan®
I 2t _ 2 arctar&+c- 2 arctanﬁ+c
t2+5 /5 /5 /5 /5
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3 J' dx sinx:1+t2 :J- 1 2dt dt:J‘ 2dt

= O =
1-sinx | gy 20t 2t 1+4¢? 31+t2) -2t
- 2 2
1+t 1+t
_,f 2dt 2 dt 2 dt _
=, == =< =
3t--2t+3 3 tz—gt'i'l 3 tz_gt+}+§
3 3 9 9
*J. _u= _;_ZI du _
( j +§ du=dt 3 u2+§
3 9 9
3t nx—l
—garctang+c—garctan3t—_1 +c—garctana7§+c
8 3 /8 3 8

If the integrand can be reduced to the fésim x)cosx or f(cosx)sin x, wheref is an
easily integrable function, then it is advantagetmusse other simplier substitution
t = sinx, ort = cosx, respectively.

Examples
t =sinx

1. jsiandx:J. 2sinxcosxdx=
dt = cosxd

>L:‘[tht:t2+c:sin2x+c

= COsX

2. J.3cos2 xsinxdx= _
dt =-sinxd

>l=f—3t2dt=—t3+c:—co§x+c

sin® x (1-cog x)sinx
3. dx=
Ico§x+1 I cog x+1

dt = -sinxd t2+1

t = cosx >J:j_(l_tz)dF

t? -1 t?+1-2
:jt2+1oI =] tJZr+

=t —2arctart +c=cosx— 2arctan(cos) +cC

t_ sinx l J-(l )it =

dt=

4. |cos xdx= | (L-sin® x) cosxdx=
J J @=sinx) i
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=t—1t3+c=sinx—13in3x+c
3 3

5 _[ SiNXCcosx
sin® x+ 2sinx+3

t =sinx
= :J.%dt:
dt =cosxd t°+2t+3

u=t+ u-1
=J.72 = :J.Zidu:
(t+D°+2 du=dt ‘u +2
u 1
= du- = du=
-[u2+2 ju +2 -[u +2 ju2+2
1 1 u
=ZInu®*+2-——arctan——+c=
" 2= Farcan
1 1 t+1
=ZIn|(t+1)?+2 -—arctan——+c=
N 2= areten
sinx+1
—Insm X+ 2sinx+ arctan——-+c¢
| -y

If function f(x) is continuous, then the antiderivati#x) = [f(x)dx exists, but no
general method is known to determine it. Integratban elementary function does
not always lead to an elementary function, whichasthe case of differentiation. It
can be proved that elementary functions exist whiosgrals are inexpressible in
terms of elementary functions. For instance, tleviong integrals

sinx COSX 2
j d j dx, j me e dx

I dx
DG

cannot be represented with any elementary functiblosvever, it is necessary to
distinguish between the question of existence ofesired antiderivative and the
possibility of expressing it with the aid of elenemy functions. The integrals
written above exist, but the class of all elemgntamctions which we use is
insufficient for expressing these integrals. Tadfind represent analytically these
integrals it is necessary to extend the class @dl @isnctions. This is precisebne of
the tasks solved in mathematical analysis. Theatementary functions determined
by the most important integrals inexpressible mmte of elementary functions are
thoroughly investigated and tabulated (elliptichgper-elliptic integrals).

Antiderivatives as functions ok defined on certain intervals can also be
approximately represented, for instance using nusttud numerical analysis, while
some important ones are included in special integbdes.
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4.5 Definiteintegrals

Various practical technical problems are leadinght® concept of definite integral.
One such problem with geometric background is tterdhination of an area of a
specific plane figure, generally called curvilindaapezoid, see in fig. 4.4. It is
bounded by coordinate axxs by vertical lines with equations= a, x = b, where
a, b 0R, a<b, and by graplG(f) of a continuous functiof(x) such that for each
x O<(a, by isf(x) > 0.

L={[x yl:asx<bO0<y< f(x)}
Let us divide intervada, b) into n subintervals by means of points
a=X, <X <X, <..<X, <X, =b

and denotédyx =x, — %1 fori =1, 2, ...n. Then let us choose an arbitrary point from
each subinterval

& 00X, %), =12,...,n.

Finally, let us compute the sum
> F(&)Dx
i=1

that equals to the area of a step-like figure bedrfidom above by a broken line, see
fig. 4.5. Depending on the choice of poirtsand &§ we can consider this sum to be
an approximation of the area of curvilinear trapgzevhich is better and more
accurate with increasing value mf which means with decreasing lendtk of the
division subintervals.

y=fe)
R

L P

X

A=Xg Xy Xyl Xg Xy X5 Xg DI

a b X 1 % %3 %4 S5 %6 %7

Fig. 4.4. Curvilinear trapezoid Fig. 4.5. Stepelfigure

For any functiorf defined and bounded on a closed intefaab), the above sum is
called the integral sum. If a limit of integral ssi@xists as the length of the greatest
subinterval approaches zero, then it is calleddisfinite integral off on (or over)
interval(a, b), and it is denoted as
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! f(gdx=_ J;Arym; f(&)Dx

while functionf is then said to be integrable @ b).

Sufficient condition for integrability

If a bounded functioi possesses only a finite number of points of disnaity on
an intervaka, by, then it is integrable on this interval.

Every function continuous on a closed inter&lb) is integrable on this interval.

Basic properties of definite integrals

1. Linearity: If functionsf; andf, are integrable on an interva, b) andc;, c; O R

are arbitrary constants, then
b

Jleuh, 00+ e, 1,00)oc= 6 1,090 £, 00

a

2. Aditivity: If a functionf is integrable on an intervéd, b) andc [ (a, b), then

T f(X)dx = i f (x)dx+J12 f(X)dx.

a b a
Defining J. f(X)dx =0, I f(X)dx = —J. f (X)dx, the above equality is valid
a a b

for any triplet of numbera, b, c, provided all the included integrals exist.

3. Monotonicity: If functions f; andf, are integrable on an intervé, b) and
fi(x) < f(x) for all x O R, then

T f,(x)dx < _tf f,(x)dx.

4. Positivity: If function f is integrable on an intervah, by andf(x) = 0 for all
x O {a, by, then

b

j f(x)dx = 0.

a
Geometric inter pretation
An area of a curvilinear trapezoid with sides fodny a graph of functiof(x) on a
closed intervala, b) and by line segments in lines with equatiansa, x = b and
coordinate axix is

P:Tf(x)dx.
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The definite integral is a measure, function afitagtpositive humber — an area to
geometric figures (trapezoids), with the followipigpperties.

1. NumberP is non-negative and it is uniquely determined ivgg trapezoid..

Fig. 4.6. Property 2 Fig. 4.7. Property 3

2. Aditivity: Dividing interval(a, b) by pointc (a < ¢ <b) to two intervalga, ¢) and
(c, b), the ared of agiven curvilinear trapezoit equals to sum of are&s, P,
of curvilinear trapezoidk,, L, defined over interval&, c) and(c, b).

3. Provided curvilinear trapezold is subset of curvilinear trapezdid for its area
Ps the inequalityP; = P holds.

4. If for all x O (a, by holdsf(x) =k > 0, wherek is constant, then
b
P:.[kdx: k(b-a)
a

is a rectangular area known from elementary gegmetr

Physical inter pretation
Let a forceF be acting at all points of the coordinate axis the same direction and
orientation as this axis. Let the value of the édfadepend on the coordinatef its
position, and this dependence be defined by fundtitherefore- = f(x).
b
Then I f (X)dx determines the work that was done by this forfce,mass point is
a
displaced from positior = a to positionx = b, it means it is moving on trajectory in
line segment that is geometrically represented lased interval{a, b) on the
coordinates axis x.
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Connection between the definite and indefiniteintegrals

Newton - Leibniz Formula (The evaluation theorem)

If fis a function continuous on an interal b) andF is any antiderivative of on
(a, b), then

j f(x)dx=[F(X)]2 =F(b)-F(a).

Examples

1. '7|Esinxdx = [— cosx]g =-cost+cos0=1+1=2
0

[ T_T

2. :[11_'_ v =[arctan]", = arctant arctan( #“)_-"Z__z
3 3

3. .[2)(74-1 1_[ 2x+ 2 =1[|n‘xz+2X+2‘]3:1(|n17_|n10)
1 X +2X+2 1 X + 2X + 2 2 | 5

4.6 Integration methodsfor definiteintegrals

Integration by parts
Let u(x) andv(x) be functions having continuous derivatives{ayb), then

Jqu'(x)v(x)dx = [u(x)v(x)]z - T u(x)V'(x)dx.

Examples.

TE

1. | xsinxdx = [—xcosx]§+.|'cosxdx O+[smx]0—

2. [(x+De*dx= [(x+1)e] Iexdx 2e? —[e] e2—e+1

L e— O =y [ 3

The substitution method (change of variables)

Let a functionf(x) be continuous on an intervé, by, and let functiongp(t) and
@ '(t) be continuous on an intervél, ), and moreover let for eadhl (a, £) be
#(t) O (a, by, while ¢(a) =a, ¢(p) =b. Then the composite functioffg(t)) is
continuous o a, pB) and

b B
J 0dx=[ 1 (@®)¢' Bt
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Examples.

X = 2sint .
2 x=0=t=0 2
1. J'«/4—x2dx= . ='|'«/4— 4sin’t 2cogdt =
5 X=2=>t=— 5
dx = 2costdt

T

cos’tdt =4 t+1sintcost}2:n
2 2

0

o'—.m\n

t=e*+1
¢ e Xx=0=>t=2 +
2 [ & a= *302 f”dt—fl+ Ha= el =
0 € +1 X=1l=>t=e+
dt = e*dx
e+l
ze+l+In(e+])-2-In2=e- 1+InT
t=Inx
4inx . |XF1=t=0 el 3
3.! K memm1 T !(1+t)dt—t+2 =2
0
dt =L ax
X

If a0 R andfis an even function integrable on the interra, a), then
a a
j f (x)dx = 2] f (X)dx .
-a 0

If a0 R andf is an odd function integrable on the interad, a), then

.Tf(x)dx=0.

Examples

1. Txf’ex2 dx=0
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1 1
2. _[xarctanxdx = ZJ xarctanxdx =

1

1
+
x arctanx =% J‘gldx =
0

o'—;p

~ TR _T_ L T
=2 [x]0+.[|;1+xzdx 4 1+[arctanx]O ) 1

Themean value
Letf be a function integrable on an interyalb). Then the number

1 b
=——| f(X)dx
% b_al()

is called the mean value (the average value) ofuthetionf on the intervala, b).
If the functionf is continuous ora, b), then at least one poidt] (a, b) exists such
that

£(&) :lea [ £ (0

In the case of a non-negative functibrihe last equality provides a geometric
interpretation of as the height that can be used to construct armglet whose base
is the intervaka, by and whose area equals the area of a given curmilingpezoid.

Examples

1. Mean value of functioft y = x* on intervakO, 1) is

1% 1 1
u=—"—|xdx=|">| =2,
1-03 3], 3

and the point, in which function attains this vaisi€ (1 (0, 1)
f =—=é%== =
($) @
Mean value of functiorf can be geometrically interpreted as the height of
rectangle with the base of size 1, whose area sdgodhe area of the curvilinear

trapezoid determined by the graph of functipimterval{0, 1) on coordinate axis
x and line segment on line= 1, see fig. 4.8.
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0.6

0.44

1/3

0.2

=

N ocoommnod

02 0 02 04 1/{3 06 08 1 12

-0.24

Fig. 4.8. Geometric interpretation of function meatue on interval

. Mean value of functioft y = 1 + 2cos< on intervak—Tt, 10 is

1 r . m
= 1+ 2cox ¥Yx =|x+ 2six| =
U n+n_{[( px = I,
_ n+2sint—(-n) —2sin(- p):1

21

and becausef (§) =1 < 1+2cosf =1 cosf =0 = E=i%, two points

exist in the interval-1, 1), in which function value equals to the average of
function values on this interval, see in fig. 4.9.

y=1+2cosx
24
4
1 1
1 1
[ o
| 1
1 1
1 0 |
* T T v T —®
—r : -3 -2 3 E -1 0 1 E 2 3 : T
1 ¢ |
| 2 2 |
1 |
1 |
,1_

Fig. 4.9. Mean value of function
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4.7 Applications of definiteintegrals

Geometric applications

The area of aplanefigure
Letf andg be functions continuous on an interyalb) and such that for each
x O (a, b) it holds that g(x) < f(X). The plane region

R={[x,y]:a£ x<b,g(x)sy< f(x)}

is said to be a regular region and its &k€éd) is computed by means of the formula

AR) = [ (F (%)= g(x))dx.

X 0

-1

Fig. 4.10. Area of a regular region

Volume of a solid of revolution
Let us consider a solid generated by the revoludimout coordinate axisof a
regular region

R:{[x,y]:as x<b,g(x)sy< f(x)}.

Then the volumé& of this solid can be calculated by the formula

v = (£2(x) - g°(x))dx

a
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-2

Fig. 4.11. Solid of revolution Fig. 4.12. Simglne curve

Length of a ssimple plane curve

Let a simple curve be the graph of a continuoustfan f whose derivative is also
continuous on an intervak, b). Then it can be shown that the lendthof the
smooth curve given by the graphfdfetween lines = a andx = b is determined by
the formula

L =T 1+[ /()] dx.

The area of a surface of revolution

Let functionf and its derivative be continuous on an intefaab). Let us consider a
surface generated by revolving the curve thataplgrof functiony = f(x), x O (a, b)
about coordinate axig. It can be proved that the area of this surface loa
determined by the formula

S:j‘ f ()}2+[F' ()] dx.

Examples

1. Area of a region bounded by graphs of functiés = In x, g(x) = In> can be
calculated as definite integral with boundariepa@intsa, b, for which it holds
thatf(a) = g(a), f(b) = g{), which means

INX=In’X = Inx=00Inx=1 = x=10x=e

e
= 3—-e.
1

AR) = _T(In(x) —Inz(x))dx =[—3x+ 3xInx—xIn? x]
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05

-0.5

Fig. 4.13. Area of plane region

2. Area of a plane regi°R={[X.y]ZOst],05yge +2e } is

1 _x —X X _ ~AX 1 2 _
AR =[® "¢ dx=[e ¢ } -£1
)2 2 |, 2

©

2 - 0 1 2

Fig. 4.14. RegiofR and surface of revolution

3. Volume of a solid of revolution generated by rewadvplane region

R:{[x,y]:Os x<1 0<sy< ¢ ;e_x}
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about coordinate axisis calculated by formula

V= njl‘ 7(ex i e—x)2 dx = 1{1 (e2X e+ 4x)}l =" (e2 +e7 + 4)
4 8 8 '

0 0

4. Length of a segment of plane curve catenary, wigcthe graph of function

f (X) _ eX —X

on intervak0, 1y in fig. 4.14, left, can be calculated as follows

1 (ex—e'x)2 _ (ezx—l)x/m 1_e2—1
L_l by ®e A1+e*) C o2

5. Surface area of a surface of revolution generajethé revolving segment of a
catenary about coordinate axisillustrated in fig. 4.14 right, is calculated thg
definite integral

S= j : (ex_e_x)zdx:

o2 4
_ (e4x+4xezx—1)\/2+e2x+e‘” l_e2+e‘2+1
) 8e* (1+¢”) T8

0

Physical applications

Mass of athin planeregion (plate)
Let f be a positive continuous function on interyalb), and let the area of regular
plane region

:{[)g y]:asx<bl<sy<f (x)}
be determined a®\(R) =jl f (X)dx, while the specific density of the plate material
is p. Massm of this plate can be then calculated by meankefdrmula
b
m(R) = p A(R) = pj f (X)dx.

Let f be a continuous and positive function on an infefaab), and let the volume
of a solid of revolutiors generated by the revolving curvilinear trapezoid

={[x y]:asx<b0<y< f(x)}
b
about axisx be V (S) = nI f2(x)dx, and the specific density of solid materigbis
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Let Sbe revolving about the coordinate axiwith the angular velocitye Then the
following physical characteristics can be calcudafier the solid of revolutiors by
means of definite integrals

b
M ass m(S)=pm/(S)=npjf2(x)dx
) a
Static moment S(:npfx[f 2(x)dx
) b
Ix[lf 2(x)dx
Centre of gravity T=[x,0,0], % =— =2,
[ £2(dx
o a
Moment of inertia J =7’0J. f*(x)dx
Kinetic energy npa)z jf (x)dx
Examples

1. Let a thin plate made from a material with specifensityp be determined as

2
:{[x, y]:0<sx<a, 0sy<, /b’ —bzxz} Then the area and mass of this
a

plate are

AR) = j b* - xdx—— Ja? - x%dx =

— 2 4

2 [xx/a -x? +a arctanL} :Enab
a a’

m(R)=,0DA(R)=‘11npab.

2. Let the solid of revolutioi® be a part of a paraboloid of revolution determibgd
the revolving parabolic region bounded by parabgla-/2px, p > O,

coordinate axis and line segments on lings= 0,x = h > 0. The volume and
mass of solids made from the material with specific dengitis
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h
V(S) =nj2pxdx=nph2, m(S) = pV = noph?,
0

while the surface area of a part of the parabalitase of revolution is

5=2u| 2.1+ Patc= 2n 20+ 169 x= 2 plan+ o) - 7).
0 0

h 3 h
The static moment isSX = np'prXZdX = anp[);} = gnpph3, and the
0 0
gn,oph3
Lo . _X_3 _2
centre of gravity is in the poifit= [xr, 0, 0], X; =— = ;- =_h.
m  woph 3

The moment of inertia of soli® revolving about the coordinate axiswith
angular velocitywis

h 3"
T[p 2.2 2| X 2 21,3
J=—"|4p°xdx=2 —| == h®,
2_([ p npp{s} 3npp

0

while its kinetic energy isE =;a)2\] =;n,0a)p2h3. The solid is presented in
fig. 4.15.

Fig. 4.15. Solid of revolution bounded by part afgboloid of revolution and disc
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4.8 Improper integrals

Integralson unbounded intervals
Let a functionf be defined on an intervé, ) and integrable on any interva, b),

b
b >a. If a proper IimitLimI f (X)dx exists, then it is called the improper integral of

fon(a, ©) and it is denoted b)_f f (x)dx. Thus
a

T f(X)dx = le]z f(x)dx.

a

y=fx)
y=fx)

b
[fGx)dx
a

e
a b—>oo X ad— — o0 b *

Fig. 4.16. Improper integrals

In this case it is said that this improper integeaists or converges, and in the
opposite case if a proper limit does not exist thiegral does not exist or diverge.
Improper integrals on other types of unboundedvals are defined similarly.

jl f(x)dx = Jtrpw.tf f (X)dx

jf(x)dx: jf(x)dx+jf(x)dx

—00 —00 (o]

If both improper integrals on the right hand sidésge their existence does not
depend on the choice ofd] R, then according to the definition above the indégn

the left-hand side also exists and equals to their, which does not depend on the
choice ofc as well.
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/ y=fx)

b
[fGe)dx

a —> — oo C b—>oo X

Fig. 4.17. Improper integral
The geometric meaning of improper integrals is egiahl to that of the standard
definite integrals. We can utilize them for examfaecalculate areas of unbounded

curvilinear trapezoids or plane figures determifgdthe boundaries in graphs of
continuous functions on intervalsef, b), (a, ) or (-0, ).

Integrals of unbounded functions
Let function f be integrable on each interva, &), £ O (a, b), and unbounded in

'
some left neighbourhodd; (b) of pointb. If a proper Iimitql(irLl_J. f(x)dx (a real
- a

number) exists, then it is called the impropergna off on(a, b). Thus

b

b
[ fx)dx

ate

b-g
[fGe)dx
a

a b-¢ b X a a+g b X

Fig. 4.18. Integrals of unbounded functions
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In this case it is said that this improper integraists or converges, in the opposite
case this integral does not exist or diverges.

Analogously iff is integrable on each intervg], b), £ 0 (a, b) and unbounded in a
right neighbourhood; (a) of pointa, then

if(x)dx:}ifg+i f (x)dx.

Examples

1. Integral
Todx . %odx . .
[ =lim[—= = lim[arctan]; =limarctarb =~
ol x® bl l4 X" boo b-oo 2

represents geometrically the area of unboundedmegiurvilinear trapezoid

1
below the graph of functior]a_ﬁ on intervak0, «), fig. 4.19.
X

Fig. 4.19. Unbounded region with am@  Fig. 4.20. Unbounded region without area

2. Integral

b
Iexdx— I|m e‘dx+lim | e*dx =

aﬂ—oo b- o0
c

:Jtrpw[exj +|b'”l[ ] = +lim & —¢°

a— -

is diverging, therefore it does not determine treaaof unbounded region,
illustrated in fig. 4.20.
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3. Integral

1 c 1 c 1
[ ac=tim [ der lim [ o= Iim{—l} + Iim{—l} = o
—1X c-0" —1X c-0" . X c-0" X | c-0" X e

is diverging because of the integrand functiont isaunbounded on interval
(-1, 1), and both improper integrals are diverging, as hmte-sided limits are
improper. Area of unbounded region on fig. 4.2ft, Boes not exist.

1

T T T T T
2 3 0 1 2 3 4

Fig. 4.21. Unbounded functions
4. Integral
4 4
dax _ . dx _ . 4
J'— = I|m+.|‘—= I|m+[&]c = lim (2-+/c) =2
o & -0 . \/; c-0 c-0
is a converging improper integral, determining &nea of unbounded curvilinear

trapezoid in fig. 4.21, right.
5. Integral

o C b

je‘xzdx: lim J'e'xzdx+ lim je‘xzdx =r,

a— —0 C—o0o
—00 a Cc

where both improper integrals lead to elliptic grids that can be evaluated

numerically, is converging, and its value is theaarof unbounded region

illustrated in fig. 4.22.

6. Area of a curvilinear trapezoid in fig. 4.23 bouddey the linesx = 0, x = 4,
1

y = 0 and the graph of functioy = (x—l)‘é IS
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dx +

o]

Ilmjl%(f
+lifn[ W} (1+()

Fig. 4.22. Unbounded region with are&

24

-4

Fig.4.23. Unbounded region
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5 Ordinary differential equations

5.1 Basic concepts and definitions

Many physical, chemical, biological and various higical problems lead to
mathematical models dealing with solutions of défgial equations.

An ordinary differential equation is an equatiopresenting the relation between
independent variabbefrom some seM [0 R, unknown functiorf(x) and at least one
of its derivatives'(x), f"(x),...,f™ (x), n O N.

Denotingf(x) =y, f'(X) =y, ... f?x) = y©, the differential equation can be
symbolically written in the form

F(x,y', ... y™) = 0.

The order of a differential equation is the ordérttie highest derivative which
appears in the formula. Anyhow, none of the derivatives of functié®) up to the
degree 1f —1), nor the functiorf(x) or independent variable must appear in the
ordinary differential equation of ordar explicitly.

The solution of the differential equation of degreis any functiony = f(x), which,
when substituted together with its derivatives itite given differential equation,
turns it into an identity on a sét. To solve differential equation means to find all
the functions satisfying this equation and to datee setM = (a, b) O R, which is
the domain of definition of all these solutions, tor show that the respective
differential equation has no solution.

The following types of solutions of differential #afions can be distinguished:

1. general solution, in which the number of appeadagstants equals to the
order of the equation

2. particular solution, which can be derived from temeral solution by an
appropriate choice of constants, or a solution ltiegufrom the given
initial conditions

3. singular solution, which cannot be obtained from ¢ieneral solution and
is not containing any constant

Methods used to solve differential equations afteddantegrations of differential
equation, functiory = f(x), which is the solution of differential equatiois, also
called the integral of the differential equation.

The graph of a solution is called the integral eunfthe given differential equation.

Examples

1. Equationxy’ — 2y = 0 is the differential equation of order 1, while general
solution isy = cx?, x [ R, wherec is any real number. The graph of this general
solution is the system of parabolas with axes endbordinate axiy for c # 0,
while one particular solution is the functign= 0, forc = 0, whose graph is the
coordinate axig, fig. 5.1.
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Fig. 5.1. System of integral curves Fig. 5.2. Gapf particular solutions

2. General solution of the second order differentgalagiony” +y = 0 is system of
functions y = ¢,cosx + ¢,sin X, X 0 R, wherec,, ¢, are arbitrary real constants.
Substitution of the functiog and its second derivatiwg’ = —(c;C0SX + C,Sin X)
in the equation yields equality 0 = 0. Particulalusons are functions, e.g. sm
—7cosx, —4sinx + 3cosx, etc. The integral curves are in fig. 5.2.

3. Second order differential equatioy)? + y* +x¢ = 0, has no solution, which can
be shown easily by contradiction. Let= f(X) be a solution of this differential

equation. Then it holds that”(x))? = — (Y* + X), which cannot be true for any
real number.

y=e"—1

WL

Fig. 5.3. System of integral curves
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4. General solution of the first order differentialuagiony’y — ye‘ = 0 is one
parametric system of functiorys= € + ¢, xR, ¢ O R. The solutiony = 0 is a
singular solution, which cannot be obtained frora general solution by any
choice of constart, fig. 5.3.

Cauchy initial problem for differential equation of order 1

To find the solution of a given differential equuatiof order 1 satisfying the initial
conditiony(xo) = Yo, While xo, Yo are given numbers, is called Cauchy initial proble
This condition can be geometrically interpreted lagking for such particular
solution, whose integral curve is passing througmtpQ = [Xo, Vo] determined by
initial condition.

Examples

1. Solution of the Cauchy initial problegiy — ye* = 0, y(0) = 0, is the function
y=€ -1, xR, whose graph is the integral curve passing thraihghpoint
[0, O], fig. 5.3.

2. Solution of Cauchy initial problery’ = 2, y(1) = 0 is the functiory = ¥* -1,
whose graph is a parabola with axis in the cootdiaaisy passing through point
[1, O], i.e. one particular solution obtained fréine@ general solution of a given
equation in the forny = ¥* + ¢, x OR, ¢ OR, represented geometrically by a
system of coaxial parabolas in fig. 5.4.

N

Fig. 5.4. Particular solution
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3. Velocity of radioactive decay of a specific maiteproportional to the amount of
matter, which is represented as the time funchitft), t O (0, o). This relation
can be written as differential equation of order 1

dﬂ=—kM = M'(t) =-kM, t0< 0,),

dt
wherek > 0 is a constant dependent on the radioactivéemandt is time as
independent variable. The general solution of égnas functionM(t) = ce™,
c>0,t 00, x). Different functions of decay are obtained agipalar solutions
for specific materials, witkh characteristic for the particular matter.

Cauchy initial problem for differential equation of order 2

To find such particular solution of a given diffatiel equation of order 2 that
satisfies the initial conditiong(Xy) = Vo, ¥'(X) =Y1, While xo, Yo andy; are given
numbers, is called Cauchy initial problem for diffietial equation of order 2. This
condition can be geometrically interpreted as Ingkior such particular solution,
whose integral curve is passing through the deterdhpointQ = (xo, Yo), while the
tangent line to the respective integral curve it ploint has the sloge=y'(x) =Y.

Fig. 5.5. Cauchy initial problem of order 2

Examples

1. Functiony =3 + cx + Gy, €1, C; € R is the general solution of the second order
differential equatiory” = 6x, wherex 00 R. The particular solution satisfying
Cauchy initial conditiong/(0) =1, y'(0) = 2 can be obtained from the general
solution substitutingk = 0,y = 1,y’ = 2, with the result; = 2,¢c, = 1, so it
appears in the form=x’ + 2 + 1, see fig. 5.5.
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2. The general solution of the second order diffesdrgguationy” +4y = o
i
. X 1 .
is y=c,cosX+c, sin 2—5 cos>2+z sin2 |n sin® wherecy, ¢, O R
T s _ . e .
and XD[kE' (k +1)Ej ,k 0 Z. Particular solution satisfying initial conditions

Vi V4 . X 1 . .
—|=1,y| = |==isfunctiony, =sSin2x—— cosX+= sin? In sin
y( j y(4j 2 Yo 2 4 fsing

defined forxD(o,gj is illustrated is in fig. 5.6.

0.79

1@------
yp

0.5 1

o
¢ ----------

oIy @--------

NS

-0.5 1

Fig. 5.6. Cauchy initial problem of order 2

While solving differential equations, certain marigtions and transformations must
be performed, which transform the former equationat new one. This new

differential equation can have such solutions, #rat not solutions of the former

differential equation, or some solutions of themier equation are not the solutions
of the new one anymore. If each solution of on¢heftwo differential equations is

also the solution of the other one on the sametket,equations are said to be
equivalent. Such transformation, in which an edeivbequation is obtained from

the original differential equation, is called ecalent transformation. In the case that
a non-equivalent transformation is applied to sodvelifferential equation, the

resulting differential equation can have more avefe solutions than the original

equation, or the domain of definition of the saatican be different. It is therefore

necessary to analyze and specify all solutionsotinginly.
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The general solution is not always expressibleniexplicit form. Sometimes it can
be represented as an equation, which is acceptdastion in an implicit form

F(x, y) = 0.

5. 2 Equation with separ ated and separable variables

Let us start our considerations with the most comnamd easily solvable
differential equations, in which variables y, y’' are separated or can be easily
separated.

The differential equation of the form
p(x) +aly)y’ =0,

wherep(X) is continuous ona b), q(y) is continuous onc( d) is called differential
equation of order 1 with separated variables. Anjuton of this differential
equation ord [ (a, b) has the form

j p(x)dx+.[q(y)dy =¢,cdR, c = constant.
If g(y) # 0 on €, d), then through each point in the regibn= (a, b) x (c, d) is
passing just one integral curve of the given défdial equation.

A special case of the differential equations witharated variables are equations of
the form

y' =1(x),
with the general solution

y:jf(x)dx+c,---cDR.

All the integral curves representing general sohgi of the above differential
equations are the curves defined as shifted graplesme particular integral curve
that is the graph of one particular solution.

Examples

I

1. Solution of differential equatioﬂx+l =0 is the solution of equation

IZxdx+I;L/dy:C,CDR, y#0,
x> +Iny =C=Iny =C-x?
y=e = y=tefe™ = y=ce™

which is the functiory = ce” ,COR,c#0. Selected integral curves are
sketched in fig. 5.7.
137



Fig. 5.8. Particular solution



2. Particular solution of the differential equationthvseparated variablgs = 3¢,
which satisfies the initial conditiog = 0 for x = -1 can be derived from the
general solution

y=J'3x2dx+c=x3+c, cOR
by substituting the initial condition, 0 = (1) ¢, where the constant &s= 1, so
it is the following functiory = x® + 1, see fig. 5.8.
3. Solving differential equation + yy’' = 0 we obtain

J'xdx+'|'ydy:C,CDR

2 2
X?J,y?:c:m%y2 =c= y=+/c-x?,cOR",x0(-c,C).

Integral curves are concentric semicircles withtieanin the origin and radic.

The differential equation of the form

P1(X) G(y) + cu(X) oY) Y =0,
wherep;(X), gi(X) are continuous oraf b), px(y), d.(y) are continuous orc(d) is
called the differential equation of order 1 witlpaeable variables.

If qu(X).ax(y) # 0, then this differential equation can be transied to the differential
equation with separated variables

[T
W) 609

These two differential equations are not equivalangeneral, as the assumption
01(X).0=(y) # 0 need not be true on the entire interaabj x (c, d).

If gu(y) = 0 fory, = by, whileb; O (¢, d), i = 1, 2,...k, kO N, then functiony;, = b; are
the solutions of the original differential equatidmit they are not the solutions of the
transformed differential equation.

The solutions of differential equation with sepdeakariables are the functions
yi=b, i =1, 2,...,k, kO N, whereb;, are the roots of equatiap(y) = 0, and all
solutions of the transformed differential equatieith separated variables in the
form

de.p M
0, (x) 9 (Y)

If q(y) # 0 on €, d), then through each point in the regr (a, b) x (c, d) just one
integral curve of the given differential equatisrpassing.

dy =c,cOR c= constant.
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Examples

1. Solution of differential equatiop — xy’ = 0 can be found step by step. Function
y=0 is one solution of the given differential edaat Transforming this
equation to differential equation with separatedaldes we now considgrz 0
obtaining the equation

1.1y y =0,x#0.
Xy

This equation can be solved as follows

J')l(dx—'[ildy:C,x:tO,CDR

InX =Injy =Ine = Inly = InH y = M:>y cx,xOR,cOR.

Particular solutiony =0 of the orlglnal equatlon with separated vaesabls
included in the general solution for valae 0. Integral curves form a bundle of
lines with a common point in the origin, fig. 5.9.

224

Fig. 5.9. Integral curves

,_ 2 L
2. To find the particular solution of differential egfion y = 1+xy2 satisfying the
X
initial conditiony(1) = 1, let us rewrite the given equation in tbhari
2xy
—y =
1+ %2
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One solution of this equation is the functipna 0.
Fory # 0 we obtain

2x 1
=2 =V =0
1+ X2 yy
2X 1
dx—-|—=dy=C
J.1+X2 jy y

1+x°
eC

In‘1+x2‘—ln\y\=lne°
2
Inly =In :>)4:1J(;CX :>y:c(1+x2),xDR,cDR

For the particular solution we evaluate

1+x
l=c(l+1l)=c=%andy= XOR.

Some of the coaxial parabolas forming the systenmtefyral curves of the general
solution, including the particular solution, aregented in fig. 5.10.

8

Fig. 5.10. Particular solution
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5.3 Linear differential equations of thefirst order

Differential equation

y'+p(x)y =9(x)
wherep(x) andg(x) are continuous ora(b) is called a linear differential equation of
the first order (or of order 1). k(x) is a nonzero function, the equation is called
non-homogeneous (with a right-hand memberg(¥ = 0 on &, b), it means the
equation is in the form

y'+p(¥y =0,
then it is called homogeneous (without a right-hamamber).
Homogeneous linear differential equation of thetforder is a differential equation
with separable variables, which can be transfortoettie differential equation with
separated variables in the form

1y’+ p(x)=0,yz0.
y

Solutions of the original equation on interval ) are: functiony = 0 and all
solutions of the differential equation with sepadhvariables

jldy+jp(x)dx=c,cmR

y

Inly -Ine® = —j p(x)dx

M:_ = cp™l PO
Inec J.p(x)dx:>y ce cOR

The particular solutiory = 0 is therefore included in the general solutfon a
specific value of the constart;= 0.

There exists exactly one solutign= y(x) of the linear homogeneous differential
equation of the first order on interval, p) satisfying the initial condition(x) = Yo,

Xo O (a, b) in the form

_ = p(x)dx
y=c,e J :

Examples.

1. Equationy’ — 2xy = 0 is a homogeneous differential equation of nddeand its

. . 2xdx 2 i
general solution isy = cej =ce" , x O R, wherec is any real number. The

graph of this general solution is a system of exndial curves foc # 0, while
one particular solution is the function= 0, for ¢ = 0, whose graph is the
coordinate axig, fig. 5.11.
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Fig. 5.11. System of integral curves

2. Solution of the first order homogeneous differdnéguationy 'y — ye = 0
consists of a singular solutign= 0 and a general solution of equatiér € = 0,
which isy’=¢€*, thereforey =€ + ¢, x O R, c O R, see fig. 5.3.

D>
P>

Fig. 5.12. System of integral curves

3. A particular solution of the homogeneous liner elifintial equation in the form
y' —ycotx=0 is the functiony = sin x, while the general solution is
determined ag =c.sinx,cOR,x#km, kO Z, see fig. 5.12. The function=0
is one particular solution for the constant 0, its graph is the coordinate axis
Other particular solutiog(x) = 5sinx is a solution of Cauchy probley(v2) = 5.
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The Cauchy initial condition in the forg(m) = k # 0 has no solution, as crt
from the equation is not definedat 1t (there exists no solution passing through
the point |, k], but all solutions are passing for instance thtothe pointft, 0]).

A non-homogeneous linear differential equatyont+ p(x)y = g(x) can be solved by
the method of variation of a constant. First wedfime general solution of the
homogeneous linear differential equation (withdwat tight hand member)

—j p(x)dx

y=ce ,xO(ab).

Then we look for a solution of the non-homogenedifferential equation in the
form

V(¥ = (e "™ xO(ab)

where c(x) inserted into the general solution of the homegers differential
equation instead of the constaris such function defined om,(b) thaty(x) satisfies
the original equation.

Then, there must exist a derivative of the functie) on @, b)

~[ PO dx [ p(x)cx

y'(x) =c'(x)e = p(x)c(x)e
Substitution to the original differential equatigives

¢ - pxee " + procioe T = g

¢l = 900 = ¢(x = gl

c(x) = I g(x)ejp(x)dxdx+ c,cOR.

Inserting the obtained form of functia(x) to the general solutioy(x) yields

y(x) = U g(x)el " ax + c)e’I PO

y(X) = S L Lok I g(x)e_I PM%ax, x 0 (a, b).

This proves that the general solution of a non-hgeneous linear differential
equation of the first order consists of a genedut®on for the corresponding
homogeneous linear differential equation of thet firder

Y =ce_jp(x)dx,xD(a,b),cDR,
and one arbitrary particular solution of the oraimon-homogeneous linear
differential equation of the first order in the rior

—| p(x)dx = p(x)dx
yo =" 9006 xO @by, y = yu +ye
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Exactly one solution o# linear differential equation of the first ordam mterval
(a, b) exists and such, that it satisfies the initiatdition

Y(Xo0) = Yo, %o U (&, b).

Examples

1. General solution for the non-homogeneous diffee¢mguationy’ +y = 2x can
be composed from the general solution of the homeges differential equation
y' + y = 0, and one particular solution of the originanrFhomogeneous
differential equation. The homogeneous equation lbantransformed to the

differential equation with separated varialyesy' +1=0, with the solution
y, =ce,xOR,cOR. The particular solution of the original non-
homogeneous equation can be then represented as fihetion
Yo =c(X)e™,XxOR with the derivativey, = c'(X)e™ —c(x)e™, wherec(X) is
an unknown function. Inserting it to the originajuation yields the equation
c'(x)e™ =2x, from which follows'(X) =2xe* = c(x) =2e*(x-1), and
Yo =2(x—1). Finally, the general solution of the original Hoomogeneous
differential equation iy =y + yp, Y=C€ *+2(x-1),x0R,cOR. Several
integral curves are illustrated in fig. 5.13.

Fig. 5.13. System of integral curves

2. Solution of the initial Cauchy problegy +y = 2%, y(0) = -2, can be obtained
from the general solution of this differential etjoa from the previous example.
The specific value of the constamis the solution for the equatiot?2 =c — 2,
thereforec = 0, and the requested particular solution is lthear function
y=2(x—-1,x0R, while its graph is a line in fig. 5.13.
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5.4 Linear differential equations of the second order

Differential equation of the form

y" +pwy’ +py =9(X),
wherep; andp, are real numbers amyX) is a continuous function on interval, ),
g(x) # 0, is called a non-homogeneous liner differerggiation of the second order
with constant coefficients. A special form of thiigferential equations fog(x) = 0
on (@ b)

y'+py' +py =0,
is the homogeneous linear differential equatiorthef second order with constant
coefficients.
If &, a; are arbitrary real numbers, it can be provedyttiexie exists just one solution
of the non-homogeneous (or homogeneous) linerrdiftéal equation of the second
order with constant coefficients satisfying theiaticonditions

(%) = a0, Y'(%0) =&y, % 0 (& b) (% OR).

Let y1, y> be two arbitrary solutions of the homogeneousedififitial equation, then
any linear combinatiorc,y; + Gy, €1, C; [ R, is also the solution of this equation.

Linear dependence and independence of solutions
Two solutionsy,, y» of the homogeneous differential equation are lilyedependent

onR, if such a numbek exists, that for atk 0 R it holds that
Vvi=ky,©y; —ky,=0.

If the two solutionsy, y, of the homogeneous differential equation are imetakly
dependent oR, then they are called linearly independent.

Letyy, - be two arbitrary functions differentiable on ateiwvalJ. The determinant

Yi(%) Y2 (X)
Yi(%) ¥2(X)

is called Wronskian, or Wronski determinant of flimasy;, y,onJ.

W(x) =

The functionsy, v, are linearly independent ahif their Wronskian is non-zero for
eachx 0 J.

Any pair of two linearly independent solutions dfiet homogeneous linear
differential equation of the second order is caltbé fundamental system of
solutions of this differential equation.

If yi, y» form the fundamental system of solutions of thenbgeneous linear
differential equation of the second order, thengbeeral solution of this differential
equation is

Ciy1 + Coy2,

wherecy, ¢, O R are arbitrary constants.
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Examples

1. Functionsy; = € y, = 1 form the fundamental system of solutions o th
differential equatiory” —y' = 0, as they are both solutions of this equatim
their Wronskian is

W) ="
e

1
J=—eX¢O forallx O R.

The general solution of the respective differerggliation is
y:C;LeX+C2,X[| R.

2. Functionsy; = €, y, = x€ form the fundamental system of solutions of the
differential equatiory” -y’ = 0, as they are both solutions of this equatim]
their Wronskian is

W) ="
e

1
J=—eX¢O forallx O R.

The general solution is
y=ci€+c, xOR.

Suppose that one particular solution of the homeges liner differential equation
of the second order with constant coefficients ifuactiony = €, r is a real
constant. Then it holds that

"

y' =re”, y" =r’e™, which meansy' =ry, y" =r?y.

Inserting functiory and its derivatives to the differential equatiom ebtain
ree” +pre”*+p,e* =0
e*(r*+pyr+p,)=0

and becausé* # 0 for allx 0 R, the above equation is true if and only if
r’+pr+p,=0.

Therefore, the functiory = €*, r O R is the solution of the homogeneous liner
differential equation of the second order with ¢ans coefficients, only if is the
root of the above quadratic equation called theratharistic equation of the
respective differential equation.

There are the following three possibilities for thets of the characteristic equation
a) two distinct real roots exist
b) a double real root exists
¢) a couple of complex conjugate roots exist.
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Case a)

The discriminant of the characteristic equatiompasitive,D = pl2 —-4p, >0, and
the equation has two distinct real roots# r,. Then it can be proved that the
functions y, =e™,y, =€?* are both solutions of the respective differential
equation, their Wronskian is

X X

e e’

W(X) = r.erlx r erzx
1 2

=(r,—r)e"™?* 20 forallx O R,

hencey; andy, are linearly independent and thus they form a &dmmehtal system of
solutions, it means

y=ce” +c,e?,c,c, 0R.

Case b)
The discriminant of the characteristic equationagégjaero,D = p/ —4p, =0, and

the equation has one double rarot_Tpl. Then it can be proved that the functions

y, =€™,y, =xe™ are both solutions of the respective differentigliation, their
Wronskian is

X X

W(X) = e xe

T 1):e2”‘¢0foraIIxDR,
re e " (X+

hencey, andy, are linearly independent and thus they form a &nmehtal system of
solutions, it means

y=ce™ +c,xe”, ¢,c, OR.
Case ¢)

The discriminant of the characteristic equationdgative,D = p/ —4p, <0, and

the equation has two conjugate complex ragts a + ib, r, = a — ib. Then the
complex function

y =™ = "™ = e codox+ie™ sinbx

satisfies the respective differential equationRoft can be proved that both the real
and the imaginary part of this complex functigiit means functions

y, = e cosbx, y, =e™ sinbx

are real solutions of the respective differenteglagion.
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Wronskian of the two functions is non-zero

W(x) = e” coshx | ? sinbx — be?™ £ 0
e (acosbx—bsinbx) e*(asinbx+bcoshx)

for all x O R, hencey; andy, are linearly independent and form a fundamental
system of solutions, therefore the general solugon

y =c,e” cohx+c,e™sinbx, c,c, OR.

Examples

1. General solution of the equatigty — 4y’ + 3y = 0, will have one of the forms
that are described in a) - ¢), depending on thésrobits characteristic equation

r’—4r+3=0. The discriminant isD =(-4)* -43=4>0, the equation
has two real roots; = 3,r, = 1, and the general solution of the differential
equation is y=ce* +c,e*,x0O0R,c,c,[JR. Some integral curves are

illustrated in the fig. 5.14.

Fig. 5.14. System of integral curves

2. Equationy” + 6y’ + 9y = 0, with the characteristic equati®fi + 6r +9 =0 has
two solutionsy, =™, y, =xe, as the discriminant i = (6)* -40=0,
and the equation has one double real root-3, and the general solution of this
differential equation isy =ce™>* +c,xe¢>, xR, ¢,,c, OR. An illustration
of several integral curves is in fig. 5.15.
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Fig. 5.15. Integral curves of general solution

3. Characteristic equationr> —6r +13=0 of the second order differential
equationy” — 6y’ + 13/ = 0 has the discriminanD =(-6)* —413=-16,
therefore its two conjugate roots in the forfp, =3%i2 exist. The general
solution of the respective differential equatiomhien in the form

y =c,e* cox+c,e”sin2x, xOR, ¢,c, R,

see the graphs in fig. 5.16.

Fig. 5.16. System of integral curves
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Yy = cos 2x

@------ -9

Fig. 5.17. Particular solution

4. Particular solution of the differential equatigti + 4y = 0 satisfying the initial
conditiony(m) = 1,y'(1) = 0, is the function that can be obtained fromgeneral
solution specifying the coefficients; and c,. The characteristic quadratic
equation isr® + 4 = 0, it has two complex conjugate rogts=+2i, therefore the

general solution of the differential equation Haes form
y =c,cos2x+c,sin2x, xOR, ¢;,c, OR,
with the first derivative
y' = —2c, sin2x + 2c, COS2X..
Solving the equations
0=-2c;sin2xn + 2c, cos2n
1=c,cos2n +c,Sin2n

we obtain 0=2c, and 1=c;, from which the particular solution can be
determined as functiory = cos2x, X1 R. The integral curve of this particular
solution is presented in the fig. 5.17.

Vibrations problem plays an important role in modengineering and physics.
There are many cases when vibrations are descntidd linear differential
equations of the second order, having constanficieefts. These equations are used
as mathematical models of harmonic motions. Thd egample is related to the
frequently appearing problem on description ofrapéé harmonic motion.
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Example

1. Suppose that a moving body of the nmass under the action of a force directed
toward the state of equilibrium, the magnitudehaf force being proportional to
the deviation of the state. If we neglect the tasise of the medium, this motion
is said to be a simple harmonic motion. To findais, let us denote the distance
from the body to the state of its equilibrium gythen the force if = —as, a
being a positive constant. According to the Nevatdf' law of motion it holds
that

2 2
mgtf:—as: m(;ltzs+as:0 (ms"+as=0)

. a- . . n
Denoting k* ==, we obtain the equatios’ + k’s=0.
m
From this it follows thats = ¢, coskt + ¢, sinkt, ¢;,c, 0 R, which means that

is a periodic function of timewith the periodT = ?n .

Non-homogeneous linear differential equation ofgeeond order
y"+py’ +py =9(x),

can be solved by means of the associated homoggtirear differential equation
y"+py’ +py=0.

Let Y = cys + CoYo, Wherecy, ¢; O R, be the general solution of the associated
homogeneous differential equation 8y andye be the arbitrary solution of the
original non-homogeneous differential equationnthe

Y=Y +Yp=Ciy1 +Cy> +Yp
is the general solution of the original non-homagmrs differential equation.

There are two methods for finding the particulaluson of a non-homogeneous
differential equation of the second order.

1. Themethod of variation of constants

Let Y = cys + CY», Wherecy, ¢; O R, be the general solution of the associated
homogeneous differential equation By then the particular solution of the non-
homogeneous equation can be found in the form

Yo =C(X)Y; +C,(X) Y, -

Constantg; andc; are replaced by the unknown functian&) andc,(x) such, that
yr satisfies the non-homogeneous equation. Functmfg, cx(X) must have
derivatives on some interva, (), as then

Yo =C(X)Y; +C (X)) +Co(X) Y, +C,(X) Y,
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while we will assume that; (X)y, +C,(X)y, = 0, from which it follows

Yo =G ()Y +C, (XY
For the second derivative it holds that
= (XY, +C (XY +C(X)Y, +C,(X) Y, -

Substitutingyp and its derivatives to the non-homogeneous diffkequation and
after some transformations we receive equation

CO(YE+ PuYs+ oY1)+ C (Vs + PuYs + PoY,) + CL(X) Y +C(X) Y5 = 9(X) -

Becausey, and y, are the solutions of the associated homogenediereditial
equation, we obtain

Y1+ (X)Y, = 9(X).

The solution of the system of two equations
()Y +¢(X)y, =0
c(9Y; +C (XY, = 9(x)

with unknown functionsc] (x), ¢, (X) always exists, as the determinant of the system
is the Wronskian

Yi(%)  Y2(X)
Yi(%) ¥2(%)

Using the Cramer rule we obtain the unique solutiotme form

oy = MO o - Wo(X)
a(x) = W) ,Co(X) = W) |

where the determinant¥| (x) are derived from the determina®x) exchanging its

0
i-th column by( jfori =1, 2.
a(x)

W(X) = #0 forallxOR.

Then the functions;(x) andc,(x) can be determined by simple integration

6(%) :IV\;((X)) dx, ¢, (%) :jvv\\’;(()’(‘))dx.

Particular solution of the non-homogeneous diffeatrequation therefore appears
in the following form

W) 4 W,(%) 4
le. YZI dx

Yo =%l Wi Y2l wig
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Examples

1. Let us find one particular solution of the diffetiah equationy” —y’ = x +1.
From the characteristic equatioh — r = 0 of the associated homogeneous
differential equation we can find its general siointY = ¢, + C,€". Exchanging
the constantg;, ¢, with the functions we get the particular solutioh the
original non-homogeneous differential equatiggn = ¢, (X) +C,(x)e*, while the
functionscy(x), cx(xX) can be calculated as follows

0 ¢
x+1 ¢e*

X
— X

1
W = e_ W, =
0 e

1
=-e"(x+1),W, = 0

2
c,(X) :IVV\\/;dx: —.[(x+1)dx: —X?—x,
X+

"Ly = —(x+2)e”
e

¢,(%) :jvv‘\’;dx=j

2
. . . X
The particular solution is then in the foryp = 5" 2x-2,x0R.

The integral curve is in fig. 5.18.

0.5

S

b 0 1 2
) ™2

Fig. 5.18. Particular solution Fig. 5.19. Pardgewsolution

2. To solve the differential equatioy” +y = ! for all xD(—n,nj let us
cosx 2 2

find first the general solutioly = cyy; + cy, of the associated homogeneous
differential equationy” +y=0. Its characteristic equation is® +1 = 0 and it

has the complex conjugate roots, = =i, therefore Y =c, cosx+c,sinx.
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Exchanging the constantg c, with functions we get the form of the particular
solution of the original non-homogeneous differaintiquation

=c¢, k)cosx+c, (X)sinXx.

Then we calculate the functiongx), c,(x)

COSX  sinx .
"~ |-sinx cosx
0 sinx COSX 0
W, = COSX=tanx,W2= —-sinx 1=
COSX COSX

c(X) = J'Vv\édx = _[tanxdx =~IncosX, ¢, (X) = IVV\\//de= Ildx =X

and determiney, = —cosxIn/cosx + xsinx, see fig. 5.19.
The general solution of the non-homogeneous diftekequation is

=, COSX +C, sinx+ xsinx—cosxIn/cosx, ¢;,c, R, xOR.

2. The method of undeter mined coefficients
The method is suitable for solving non-homogenedifferential equations with
special form of the right-hand terms.

A) If the right-hand member ig(X) =e™ [P(X), wherea O R andP(X) is an
polynomial of degreen, then a particular solution of the equation exists

Yo = X€™ [P (X),
wherek is the multiplicity of & considered as a root of the characteristic

equation andP” (X) = b, +b,x+...+b_x" is an unknown polynomial of the

same degree &x). Coefficientshy, by, ..., b, are found by the method of the
undetermined coefficients.

B) If the right-hand member ig(x) = €™ [ﬂP(X) cosfx+ Q(X)Sin,BX), where

a, S0 R andP(x), Q(x) are polynomials, then a particular solution of th
equation exists

= xe™ [ﬂP (X)cosBx+Q’ (x)sm,Bx)

wherek is the multiplicity ofa + i3 considered as a root of the characteristic
equation andP’ (X), Q (X) are unknown polynomials of the same degree
identical with the greater degrees of the polyndsnR(x) and Q(x). The

coefficients of the polynomial® (x), Q (X) are found by the method of the

undetermined coefficients.
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Examples

1. The right-hand term of the equatiofi —2y' +y=¢€* is in the form A), while

a=1, and the polynomiaP(x) = 1 has just the absolute member. The
characteristic equation of the associated homogeneldferential equation is
r’— 2 + 1= 0, it has one double root= 1, thereforek = 2 and the particular

solution of the equation is Yy, = x%e* [A, with the first two derivatives

yr = Ae*(X* +2x) and yp = A€"(X* +4x+2).
After substitution to the differential equation witain

Ae* (X* +4x+2) - 2Ae* (X* +2X) + Ae*x* = €"

2A=1= A= 1

2

and Y, :;xzex, see fig. 5.20. The general solution of the asdedi
homogeneous differential equation is in the form

Y =ce* +c,xe’, ¢, c, UR,

and the general solution of the non-homogeneouatiequis

y=Y +y, =ce* +c,xe* +;x2ex,cl,c2 OR,xOR.

0.5 4

-0.5 1

Fig. 5.20. Particular solution
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2. Differential equationy” +4y =sin2x has the right-hand term in the form B).
By solving the characteristic equation+ 4 = 0 of the associated homogeneous
differential equation we obtain the rootg, =#2i, which yields the general

solution of this differential equatio¥ = ¢, cos2x + ¢, sin2x, ¢,c, JR. The

special form of the particular solution of the rmwmogeneous differential
eqguation can be determined as

Yo = X'€”(Aco2x + Bsin2x) = x(Aco2x + Bsin2x)

according toa = 0, # = 2 in the rootr; of the characteristic equation with
multiplicity k = 1, and bothP(x), Q(X) are the polynomials of degree 0. Then the
first two derivatives of the functioy are

yp = (A+2Bx)cos2x + (B — 2Ax)sin 2x,
yr = 4(B - Ax)cos2x — 4(A+ Bx)sin2x
whereas inserting these to the equation we obtafficientsA andB

4Bcos2x—4Asin2x =sin2x

B=0-4A=1=> A=—2'1

Particular solution isy, = _Z XCO0S2X, the integral curve is in fig. 5.21.

Finally, the general solution of the non-homogermeadlifferential equation
appears in the form

y=Y+y, =clc052x+czsin2x—£11xc032x, c,c, OR,xOR.

1 o
Y= — - ICos 2
Yy 1
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Fig. 5.21. Particular solution

The advantage of the method of the undeterminefficieats is that this method
does not require integration and its applicationtliie case of the special form of the
right-hand member) is mostly considerably simphemtthe method of the variation
of constants. The disadvantage is that this methaestricted to the case of the
special form of the right-hand members; hence iads always possible to use it,
contrary to the method of the variation of the ¢ants that is general, and can be
used in the case of any form of the right-hand tefnthe respective differential
equation.

Example
1. Particular solution of the differential equatioly” —2y' + 2y = €*Xc0Osx

satisfying the initial conditionsy(O)::L y'(O):l can be obtained with the

method of the undetermined coefficients, as thbt#igand term has the special
form B). The characteristic equation’—2+ 2=0 of the associated
homogeneous differential equation has the rogis 1+ i, therefore the general

solution of the homogeneous equationYis- c,e* cosx +C,e*sinx, ¢,,c, JR.

One solution of the non-homogeneous equation cdnuwel according to B) for
a=1,6=1in the roor; of the characteristic equation with multiplicity= 1,
while the degree of the polynomia{x) is 1, and the degree @X) is 0, so

Yp = xex[(Ax+ B)cosx+ (Cx+ D)sinx)].
Then inserting the first two derivatives

[(A+C)x + (2A+B + D)x+ BJcosx+
= +[(C AXx*+((2C+D- B)x+D]smx

. [[2cx? + aA+4C + 2D)x+ 2(A+ B +C)|cosx +
Yo =€ {+[— 2AXE +(~4A-2B+4C)X+2(-B+C + D)]sinx}
to the non-homogeneous differential equation waiakihe equation
2ex[(A+ D +2Cx)cosx+(-B+C - 2Ax)sinx] = e"xcosx
with solutions in coefficients, B, C, D
2(A+D)=0,4C=12(-B+C)=0,-4A=0

A:O,B:E,C:E,D:O ’
4 4

from which one solution of the non-homogeneous gon@an be represented as
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Yp = Lllex(xcosx+ x*sinx).

The general solution of the non-homogeneous equéio
. 1 .
y =c,e* cosx+c,e* smx+zex(xcosx+ x*sinx), c,,c, R

and the particular solution satisfying the initahditions has the coefficients
c=1,c= -1/4,

1. 1 1 .
yg = €| cosx—~sinx+ - xcosx+- x*sinx |,xOR.
4 4 4
Applying the method of variation of constants weireate the solution of the
non-homogeneous equation according to A) as
Y =C,(X)€* cosx+c,(X)e* sinx
and calculate the functiorg(X), cx(X) using Wronskian

e* cosx e”sinx
e*(cosx—sinx) €e*(sinx+cosx)

= =¥

and the determinants

0 € sinx .
W =| o = —-e”XsinX cosx ,
e"xcosx €* (Sinx+ cox |)
€ cosx
= =e”xcos X

2

g‘(cosx— sinx ) e‘x cosx

The resulting functions

c(x)= j%dx = —.[xsinx cosxdx :%x cossz—isL sin®

2
c,(X) :.|'%dxzj'xcoszdx:x—+E cos2+x sing
2 w 4 8 4

inserted to the particular solution give one solutof the non-homogeneous
equation
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Y, =€ cosx(1 XCOS2X —1sin2xJ +
4 8
2
+e*sin X—+10052x+1xsin2x
4 8 4
and the final general solution of the non-homogesemguation is
X 1 1.
y =€’ cosX ¢, +Zx0032x—§sm2x +
. X2 1 1. '
+€e7sinx ¢, + — + = Cc0S2X + — XSin2x
4 8 4

For the particular solution determined by the atittonditions we obtain the
values of both constants by substitution iptandy’, ¢; = 1, ¢, = —1/8, and the
particular solution illustrated in fig. 5.22 is

Yo =€ cosx(1+ i xcost—ésian) +

2
+e*sinX —}+X—+50032x+1xsin2x
8 4 8 4

254

ya(x)

-0.54

Fig. 5.22. Graph of particular solution
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