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Mathematics should be as simple as possible,  

but not simpler. 

 Albert Einstein 
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1 Analytic geometry 
 

 

1.1 Introduction   

 

Analytic or coordinate geometry is the study of geometric properties of figures 

determined by algebraic representations and manipulation of equations describing 

their positions, configurations, and properties. It can be explained simply as being 

concerned with defining geometrical shapes in a numerical way and extracting 

numerical information from that representation. Investigation of geometric objects is 

performed by means of algebraic operations upon symbols defined in terms of 

a coordinate system. René Descartes (1595 – 1650), a well-known French philosopher 

and mathematician was the first to apply algebra to geometry, so it is also known as 

Cartesian geometry. It is based on the idea that any point in a two-dimensional space 

can be represented by two numbers determining its position with respect to 

a coordinate system.  

The most commonly used is the Cartesian coordinate system, a fixed origin at the 

point O, and two perpendicular lines,  coordinate axes x and y, meeting at this point. 

Any point in a three-dimensional space can be analogously determined by three 

numbers, and so on; therefore points in the n-dimensional space are described as n-

tuples of real numbers called Cartesian coordinates.  

Other coordinate systems are possible, in a plane the most common alternative is polar 

coordinates, while in three dimensions common alternative coordinate systems 

include cylindrical and spherical coordinates. Because lines, circles, spheres, and 

other geometric figures can be regarded as collections of points in a plane or space 

that satisfy certain equations, they can be explored in an analytic way, via their 

equations and formulas, in addition to their synthetic representations by graphs. 

Generally, most of analytic geometry deals with measuring distances, angles and with 

the investigation of the position of basic geometric objects – points, lines and planes, 

conic sections, or quadratic surfaces.  

 

1.2 Three-dimensional Euclidean space 

 

Let us consider rectangular right-handed Cartesian coordinate system Oxyz, where O 

is origin of coordinates, lines x, y, z are coordinate axes, and planes xy, xz, yz are 

coordinate planes. Each point in the 3-dimensional space can be identified with an 

ordered triple of real numbers [x, y, z], its Cartesian coordinates, whereas coordinates 

of the system origin are O = [0, 0, 0].  

Distance of two arbitrary points A = [xA, yA, zA], B = [xB, yB, zB] can then be defined by 

the Euclidean distance formula  

222 )()()(),(
BABABA

zzyyxxBAd  . 

Thus the 3-dimensional space is called the Euclidean (metric) space with the 

Euclidean metric and it is denoted E3.  
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The Cartesian coordinates of an arbitrary point M = [xM, yM, zM] in the space determine 

its distances from the coordinate planes, zM = d(M, xy), yM = d(M, xz), and 

xM = d(M, yz), as illustrated in Fig. 1.1. 

 
Fig. 1.1. Cartesian coordinates of point M. 

 

Oriented line segment AB, with the initial (start) point A and terminal (end) point B 

determines a vector (direction) in the space, which can be represented by an ordered 

triple of real numbers  

a = (xB – xA, yB – yA, zB – zA), 

where xB – xA, yB – yA, zB – zA  are the components of a, as shown in Fig. 1.2. 

Components of a vector do not depend on its location.  

 
Fig. 1.2. Components of vectors a = AB, b = OB. 

 

If A = O, then vector b = OB = (xB, yB, zB) is said to be the position vector of point B.  
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The zero vector is denoted 0 = (0, 0, 0), and i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) are 

unit vectors in the directions of each of the coordinate axes. 

If a = (a1, a2, a3), then the non-negative real number  

2

3

2

2

2

1 aaa a  

is called the length (magnitude, norm) of the vector a. 

 

Examples 

1. 0000 222 0  

2. 1100,10110,1001 222222222  kji  

 

If a = (a1, a2, a3), b = (b1, b2, b3), and  is a real number, then the sum of vectors a and 

b is the vector  

a + b = (a1 + b1, a2 + b2, a3 + b3), 

and the scalar multiple of vector b by a scalar  is the vector 

 b = (b1, b2, b3). 

See Fig 1.3 for a visual representation of both the sum of two vectors and the scalar 

multiple of a vector. 

 
Fig. 1.3. Sum of vectors, scalar multiple of vector. 

 

Two vectors a and b are said to be collinear (parallel), if and only if a nonzero real 

number   R exists, such that b = .a.  

Three vectors a, b, c are linearly independent, if a linear combination of these vectors 

k a + l b + m c = 0 exists, such that at least one of coefficients k, l, and m is a nonzero 

real number, i.e. k2 + l2 + m2  0. This means that at least one from vectors a, b, c is a 

linear combination of the two others.  

Unit vectors i, j, k are linearly independent vectors in E3 forming the ortho-normal 

basis of the 3-dimensional Euclidean space. Consequently, any vector a = (a1, a2, a3) 

can be represented as a linear combination of the unit vectors i, j, k with scalars equal 

to the vector coordinates in this basis, 

a = a1 i + a2 j + a3 k. 

In E3 we distinguish two kinds of vector products, the scalar (dot) product and the 

vector (cross) product. 
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The scalar product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) is the real number 

determined by the formula 

332211 bababa ba . 

Remark. It can be proved that another possible definition of the scalar product is 

,cosbaba   

where  is the smaller angle formed by vectors a and b. Hence, two nonzero vectors 

a and b are perpendicular if and only if their scalar product equals zero. 

 

Examples 

1. Vectors a = (2, –3, 1) and b = (1, 1, 1) are perpendicular, because they are nonzero 

vectors, and a b = 2 – 3 + 1 = 0, while .3,14  ba  

2. The length of vector a = (4, 3, 12) is .13169144916 a  

 

The vector product of two nonzero vectors a = (a1, a2, a3) and b = (b1, b2, b3) is the 

vector c = a  b with the following properties: 

1. ,sinbaba   

2. c is perpendicular to both vectors a and b,  

3. vectors a, b, c in this order form what is referred to as right-handed system. 

Remark. Property 1. can be geometrically interpreted in the following way: length of 

vector c = a  b equals to the area of a parallelogram formed by vectors a and b. 

Two vectors a and b are parallel if and only if their vector product is a zero vector. 

Some of the basic properties of the vector product are the following: 

1. a  b = – (b  a), 

2. i  j = k, j  k = i, k  i = j, 

3. a  (b  c) = (a  b)  c = – (b  c)  a = – c  (a  b) =  (c  a)  b. 

The relationship between the components of the vector product c = a  b and the 

components of both vectors a = (a1, a2, a3) and b = (b1, b2, b3) can be derived by 

expanding the determinant   

).,,( 122131132332

21

21

31

31

32

32

321

321321

babababababa

bb

aa

bb

aa

bb

aa

bbb

aaaccc



 kji

kji

kjic
 

The Lagrange formula is the identity involving both, the scalar and the vector product 

of three vectors 

a  (b  c) = b (a  c) – c (a b). 
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The Cauchy–Schwarz inequality states that for any two vectors a and b it holds that 

(a b)2  a b . 

The scalar triple product of three vectors a, b, c is a real number determined as the 

value of the determinant 

321

321

321

)(],,[

ccc

bbb

aaa

 cbacba . 

Three nonzero vectors a, b, c are said to be coplanar if their scalar triple product equals 

to zero. The scalar triple product of 3 nonzero vectors a, b, c is a nonzero number 

equal to the volume of the parallelepiped formed by the respective vectors, 

V = [a, b, c], as shown in Fig 1.4. 

 
Fig. 1.4. Geometric interpretation of vector product and mixed scalar product. 

 

Examples 

1. The vector product of two vectors  a = (2, –3, 1) and b = (1, 1, 1) is the vector 

c = (– 4, – 1, 5) perpendicular to both a and b, because  a  c = –8 + 3 + 5 = 0, and 

b  c = – 4 – 1 + 5 = 0, .4225116 c  

2. Three vectors a = (1, 3, –1), b = (–2, 2, –4) and c = (1, –1, 2) are coplanar, because 

their triple scalar product [a, b, c] equals to zero 

0
11

22

21

42
3

21

42

211

422

131

],,[ 



















cba . 

 

An angle formed by two nonzero vectors can be determined as 

.π,0,cos 


 
ba

ba
 

The angle of two collinear equally oriented vectors is  = 0, the angle of two collinear 

vectors with opposite orientation is  = . Perpendicular nonzero vectors a and b form 



12 
 

angle  = /2, and because cos (/2) = 0, from the above formula for their scalar 

product it holds that a b = 0. 
 

1.3 Linear objects in space 
 

Planes and lines are geometric figures that can be analytically determined by linear 

expressions representing relationships between coordinates of their points. Two types 

of equations are distinguished in general, implicit and explicit equations. Relations 

holding for triples of Cartesian coordinates of object points are called object implicit 

equations. Formulas for the evaluation of Cartesian coordinates x, y and z of the object 

points are called parametric equations of an object, and they depend on the value of 

one or two real parameters. The analytic equation of a plane will be derived from its 

geometric definition. A plane can be uniquely determined by any one of the following: 

1. three non-collinear points 

2. two intersecting lines 

3. two different parallel lines 

4. a line and a point not on this line 

5. a point and a direction (perpendicular to the plane). 
 

 
Fig. 1.5. Plane   determined by point M and direction n perpendicular to  . 

 

Any non-zero vector n = (a, b, c) perpendicular to the plane  is called a normal vector 

to the plane . Let M = [xM, yM, zM] be a point in the plane , as can be seen in Fig 1.5.  

Point M and an arbitrary point X = [x, y, z] in the plane   form the vector perpendicular 

to the plane normal vector n, MX = (x – xM, y – yM, z – zM), thus the implicit equation 

of plane   can be determined from their scalar product as  

0)()()( 
MMM

zzcyybxxa , a2 + b2 + c2  0, 

which can be rewritten in the following form, called the general equation of a plane 

0 dczbyax , where 
MMM czbyaxd  .  

Constant d = 0 in the equation of the plane passing through the origin O.  

The equation of the plane intersecting coordinate axes in the points P = [p, 0, 0], 

Q = [0, q, 0, 0] and R = [0, 0, r] can be reduced to the intercept form 

 .1
r

z

q

y

p

x
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Such plane intersects coordinate plane 

xy in line PQ, coordinate plane xz in line 

PR and coordinate plane yz in line QR.   

View of this plane sketched in the 

axonometric projection method is 

presented in Fig. 1.6, as triangle PQR 

visible in the rectangular trihedron with 

vertex in the origin O, edges in the 

positive semi-axis x+, y+, z+, and faces 

as parts of coordinate planes xy, xz, yz. 
          

        

 Fig. 1.6. Plane intersecting coordinate axes. 

Planes in special position to the coordinate planes and coordinate axes are determined 

by equations of special forms. Views and equations of planes parallel to one from 

coordinate axes, therefore perpendicular to coordinate planes determined by the two 

other coordinate axes are shown in Fig. 1.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1.7. Planes parallel to coordinate axes. 
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Planes parallel to one coordinate plane, therefore perpendicular to the coordinate axis 

that is not in the respective plane, are viewed with their equations in Fig. 1.8. 
 

   

 

Fig. 1.8. Planes parallel to coordinate planes. 

 

Examples 

1. The general equation of a plane passing through the point A = [2, –3, 1] and 

perpendicular to the vector n = (1, 1, 1) is x + y + z = 0. This plane passes through 

the origin of coordinates, as obviously  d = –2 + 3 –1 = 0.  

2. Plane with the general equation 5x –10y + 4z – 20 = 0 is passing through points 

P = [4, 0, 0], Q = [0, –2, 0] and R = [0, 0, 5] on the coordinate axes. 

3. The equations of the coordinate planes xy, xz and yz are z = 0, y = 0, and x = 0, 

respectively. 

4. The plane defined by the equation x – z = 1 passes in direction of coordinate axis 

y through the point P = [1, 0, 0] on coordinate axis x and point R = [0, 0, –1] on 

coordinate axis z. This plane intersects coordinate plane xy in a line parallel to 

coordinate axis y and passing through point P, and coordinate plane yz in a line 

also parallel to coordinate axis y but passing through the point Q. This plane is 

perpendicular to coordinate plane xz, and intersects this coordinate plane in a line 

determined by points P and Q. 
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Fig. 1.9. Position of two planes. 

 

Let two planes 1, 2 with normal vectors n1, n2  be defined by the general equations  

).,,(,0

),,,(,0

22222222

11111111

cbadzcybxa

cbadzcybxa





n

n
 

Planes 1, 2 are perpendicular, if their normal vectors n1, n2 are perpendicular, which 

yields that a1a2 + b1b2 + c1c2 = 0. 

Planes 1, 2 are parallel, if their normal vectors n1, n2 are collinear, which means, 

there exists a real number  such that (a1, b1, c1) =  (a2, b2, c2). Parallel planes either 

coincide, i.e. they have all points in common, or they have no common points, and we 

speak about two different parallel planes. Planes that are not parallel intersect in a 

common line, called intersection (or pierce) line of the two planes. 

 

 
Fig. 1.10. Intersection line of two planes. 

 

Any line r in the space E3 can be determined as the intersection of two non-parallel 

planes 1, 2. Therefore, the pair of their general equations forms the general equation 

of this pierce line r. Vector s = n1  n2, parallel to pierce line r, is called the direction 

vector of line r. The line can be unambiguously defined by one point P = [xP, yP, zP] 

and direction vector s = (sx, sy, sz), and represented by the vector equation  
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PX = t.s, t  R,  

which stands for three parametric equations in the coordinate form  

x = xP + t sx,   y = yP + t sy,   z = zP + t sz,   t  R, 

where variable t is called a parameter. Specific value of parameter t determines the 

Cartesian coordinates of one point on the line and the position of this point on the line 

with respect to the given fixed point P. 

 

Let two lines be represented by the parametric equations  

p: x = xP + t x1,    y = yP + t y1,     z = zP + t z1,    t  R,    s1 = (x1, y1, z1), 

q: x = xQ + u x2,   y = yQ + u y2,   z = zQ + u z2,    u  R,   s2 = (x2, y2, z2). 

Lines p and q are parallel, if their direction vectors s1, s2 are collinear, which means 

there exists a real number  such that (x1, y1, z1) =  (x2, y2, z2), as seen in Fig. 1.11. 

  

Fig. 1.11. Parallel lines. 

 

Lines p and q are intersecting, if they have exactly one common point, as shown in 

Fig. 1.12. It means, there exist real numbers t0 and u0 such that  

xP + t0 x1 = xQ + u0 x2 ,   yP + t0 y1 = yQ + u0 y2 ,   zP + t0 z1 = zQ + u0 z2 . 

 
Fig. 1.12. Intersecting lines. 

 

Lines p and q are skew, if they are neither parallel nor intersecting. Skew lines have 

no common points and their direction vectors are non-collinear. 

Lines p and q are perpendicular, if their direction vectors s1, s2 are perpendicular, 

therefore, if  x1 x2 + y1 y2 + z1 z2 = 0.  
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Examples 
1. Parametric equations of the coordinate axes are:   

 x:  x = t, y = 0, z = 0,  y:  x = 0, y = t, z = 0,  z:  x = 0, y = 0, z = t, t  R. 

2. Planes with general equations 1: x + 2y – z = 3 and 2: 2x – y + 3z = 1 are 

intersecting planes, their normal vectors n1 = (1, 2, –1) and n2 = (2, –1, 3) determine 

the direction vector of their common line, s = (5, –5, –5). One common point of 

planes, i. e. one point on their intersection line, can be determined as a point, in 

which the line intersects coordinate plane xy with coordinate z = 0. The other two 

coordinates can be determined from the equations of these planes, as a solution of 

the system of two equations: x + 2y = 3, 2x – y = 1. Its unique solution is x = 1, 

y = 1.  The parametric equations of the intersection line are 

 x = 1 + 5u, y = 1 –5u, z = 5u, u  R.   

3. Lines p, q determined by equations p: x = –1 + t, y = 18 + 9t, z = 10 + 5t, t  R and 

q: x + y –2z +3 = 0, 3x –2y + 3z + 9 = 0 are identical, because the direction vector 

of line q is vector u = (1, 1, –2)  (3, –2, 3) = (–1, –9, –5) collinear with the direction 

vector (1, 9, 5) of line p. A common point of lines p and q is point P = [–1, 18, 10] 

on line p, whose coordinates satisfy equations of line q.  

4. Parametric equations of line l passing through point L = [1, 0, 0] and parallel to the 

line given by the pair of general equations x – y + z – 5 = 0, x + 2y – 7 = 0 can be 

derived by means of its direction vector s. This vector is a cross product of planes 

normal vectors defined by equations, n1 = (1,–1, 1), n2 = (1, 2, 0), and s = (–

2, 1, 3). The parametric equations of line l are: x = 1 –2t, y = t, z = 3t, t  R. 

 

Let plane 0:  dczbyax  with normal vector n = (a, b, c) be given and line 

p: x = xP + t xs, y = yP + t ys, z = zP + t zs, t  R, with direction vector s = (xs, ys, zs). 

Plane  and line p are parallel, if normal vector n and direction vector s are 

perpendicular, i.e. if axs + bys + czs = 0. 

Plane  and line p are perpendicular, if normal vector n and direction vector s are 

collinear, i.e. if there exists   R such that (a, b, c) =  (xs, ys, zs). 

Line p lies in the plane   if  

axP + byP + czP + d = 0, and axs + bys + czs = 0. 

 

Fig. 1.13. Position of plane and line. 
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Two intersecting lines define a single plane as do two parallel lines, see Fig. 1.11 and 

Fig. 1.12. The plane can be determined by point P = [xP, yP, zP] and two non-collinear 

direction vectors u = (ux, uy, uz), v = (vx, vy, vz), and it is represented by a parametric 

equation 

PX = t.u + s.v, t, s  R,  

which is a symbolic form of three parametric equations  

x = xP + t ux + s vx,  y = yP + t uy + s vy,  z = zP + t uz, + s vz,  t, s  R, 

where variables t and s are real parameters. The values of parameters t and s determine 

the Cartesian coordinates of the points in the plane and their position with respect to 

the fixed point P and scalar multiples of direction vectors u and v. 

 
Fig. 1.14. Parametric representation of plane. 

 

The general equation of plane determined by three non-collinear points 

A = [xA, yA, zA], B = [xB, yB, zB], C = [xC, yC, zC] can be derived from the equation 

0

1

1

1

1



CCC

BBB

AAA

zyx

zyx

zyx

zyx

. 

Parametric equations can be composed from one point, e.g. point A, and plane 

direction vectors u = AB and v = AC. The normal vector to a plane is the vector 

product of vectors u and v, n = u  v, which is perpendicular to vector AX determined 

by the point A and an arbitrary point X in the plane, therefore their scalar product is 

zero, and the equation of the plane can be represented also as n AX = 0.  

 
Fig. 1.15. Plane determined by three non-collinear points. 
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Equations of planes determined by two parallel or intersecting lines or by a line and a 

point not on this line can be derived in a similar way.  

 

Examples 

1. The parametric equations of line k passing through the point M = [2, 3, –1] and 

perpendicular to the plane : x + 2y – z = 0 are 

 x = 2 + t, y = 3 + 2t, z = –1 – t, t  R. 

2. Line l: x = 2, y = 1 + 3t, z = –3 + 2t, t  R, and plane  : x –2y + 3z –1 = 0 are 

parallel, as direction vector s = (0, 3, 2) of line l and normal vector n = (1, –2, 3) 

of plane  are perpendicular, because their scalar product is 0.  

3. The general equation of a plane  passing in the direction of coordinate axis x and 

perpendicular to line q: x + y – z + 3 = 0, x – y + z + 9 = 0 can be determined from 

the unit vector (1, 0, 0) in the direction of axis x and direction vector of line q, 

which is the normal vector n of the plane . Vector n is the cross product of normal 

vectors n1 = (1, 1, –1) and n2 = (1, –1, 1), n = n1  n2 = (0, –2, –2). The general 

equation of plane   is  – 2y – 2z + d = 0. 

4. The general equation of a plane determined by the line p = AB, A = [3, 1, 1], 

B = [1, 4, 2],  and point C = [0, 0, 4] is 10x + 3y + 11z – 44 = 0, normal vector 

n = (10, 3, 11) are determined as the cross product of vector u = AB = (–2, 3, 1) 

and vector v = AC = (–3, –1, 3), while the value of coefficient d = – 44 can be 

achieved from coordinates of any of the points A, B, C. 

 

1.4 Distances and angles 

 

The distance of two points measured by Euclidean formula can be used for measuring 

distances of any two objects sharing no common points, e.g. the distance of a point 

and a line, a point and a plane, or the distance of two parallel lines or planes. 

Let P = [xP, yP, zP] be a point not in the plane 0:  dczbyax .  

 
Fig. 1.16. Distance of point and plane. 
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The distance of the point P from the plane  can be measured as the distance of points 

P and Q, where Q is the intersection point of the plane  and perpendicular line k 

passing through the point P. This distance can be calculated from the formula  

222
)(),(

cba

dczbyax
PQdPd

PPP




 . 

The distance of the point P from the line p: X = A + t s, t  R, where A = [xA, yA, zA], 

s = (a, b, c), can be determined as the distance of points P and Q, where Q is the pierce 

point of line p and plane  passing through point P perpendicularly to line p.   

 
Fig. 1.17. Distance of point and line. 

 

The distance of two parallel planes 0:,0:
21
 dczbyaxdczbyax 

equals to the distance of two intersection points of these planes and line k 

perpendicular to both of them, and it can be calculated by the formula  

222

21
)(),(

cba

dd
PRdd




 . 

 

Fig. 1.18. Distance of parallel planes and parallel lines. 

Similarly, distance of two parallel lines p q is the distance of the pierce points P and 

Q of these lines with the plane perpendicular to both parallels p and q. 
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Examples 

1. Distance of point M = [1, 3, –1] and plane  : x + 2y – 2z = 0 is 

3
9

9

)2(21

261
),(

222





Md .  

2. Line l: x = 2, y = 1 + 2t, z = –3 + 2t, t  R, and point A = [1, 3, –1] are at the 

distance, which can be measured in the plane  passing through point A 

perpendicularly to the line l. The normal vector of this plane is the direction vector 

of line l, therefore plane equation is 2y + 2z – 4 = 0. The intersection point of line 

l and plane  is point B = [2, 3, –1], and the distance of points A and B equals to 

the distance of point A and line l, 1001)(),(  ABdlAd . 

3. The distance of two parallel planes 07:,04:  zyxzyx 

equals to 3
3

74
),( 


d .  

4. Two parallel lines, p = PR, P = [2, 1, 3], R = [1, 2, –1] and q passing through the 

point Q = [1, –1, 3], are at a distance, which can be measured in the plane  

perpendicular to both lines and passing, for instance, through the point Q, and 

defined by equation x – y + 4z – 14 = 0. Plane  intersects line p at the point 

T = [37/18, 17/18, 50/18] and distance of points Q and T equals to the distance of 

lines p and q, which is 178
6

1
)( QTd . 

 

The angle formed by two lines equals to the angle of their direction vectors, therefore 

parallel lines form angles 0 or .  

A line with direction vector u and a plane with normal vector n determine the angle 

that can be calculated by the formula 

nu

nu 
sin .  

A plane and a line parallel to it therefore form angles  = 0, or  = , depending on 

the orientation of vectors u and n. 

 

Fig. 1.19. Angle of line and plane. 
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The angle of two planes is determined as the acute angle of their normal vectors, 

2

π
,0,cos

21

21 


 
nn

nn
. 

 
Fig. 1.20. Angle of two planes.  Fig. 1.21. Angle of two lines (example 4). 

 

Examples 

1. Lines p: 2x – y + z +1 = 0, x + 2y – 2z + 2 = 0 and q: y – z = 0, x + 2y – 2z + 2 = 0 

are parallel, because they form an angle determined by their direction vectors 

 sp = (2, –1, 1)  (1,2 , –2) = (0, 5, 5), and sq = (0, 1, –1)  (1, 2, –2) = (0, –1, 1), 

therefore 1
10

10

11.25250

)1,1,0()5,5,0(
cos 







 , and  = . 

2. Planes  : 2x + y –3z + 2 = 0 and  : x – 2y + 1 = 0 are perpendicular, because their 

angle is defined by the formula 0
41.914

)0,2,1()3,1,2(
cos 




 , and  = /2. 

3. The size of the angle formed by line p: x = 2 + 2t, y = 1 + t, z = –3 + 2t, t  R, and 

plane  : 4x + 2y –4z + 1 = 0 can be calulated by 

 
143

2

16416.414

)4,2,4()2,1,2(
sin 




 , 179131.0

143

2
arcsin  . 

4. Skew lines p: x = 1 + u, y = 1 + u, z = 1 and q: x = v, y = – v, z = 0, see Fig. 1.21, 

are perpendicular, because the scalar product of their direction vectors equals to 

zero, (1, 1, 0)  (1, –1, 0) = 1 – 1 = 0.  

5. Planes x + 2z – 2 = 0, 3x + 6z – 12 = 0 with collinear normal vectors (1, 0, 2) and 

(3, 0, 6) are parallel, their distance can be calculated as 
5

2

5

)4(2



d . 

6. Line p: z – 3 = 0,  x + y – 2  = 0 is parallel to plane  : x + y + z – 4 = 0, because  

direction vector s = (–1, 1, 0) of the line p that is the vector product of normal 

vectors (0, 0, 1) and (1, 1, 0), is perpendicular to the normal vector n = (1, 1, 1) of 

plane , as their scalar product is 0. Distance of line p and plane  is 
3

1
d . 
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1.5 Quadratic surfaces 

 

A quadratic equation in three variables x, y and z in the general form 

0
44342414231312

3

33

2

22

2

11
 azayaxayzaxzaxyazayaxa , 

where at least one of real coefficients 231312332211
,,,,, aaaaaa  is non-zero can represent 

one of the following point sets in the space E3:  

1. an empty set, e.g. x2 + y2 + 1 = 0 

2. a single point, e.g. x2 + y2 + z2 = 0, or x2 +y2 +z2 6x + 9 = 0  

3. two planes, e.g. xy = 0, or 4x2  y2  = 0  

4. a single plane, e.g. x2 = 0 

5. a single line, e.g.  x2 + y2 = 0 

6. a quadratic surface, e.g. singular (cylindrical or conical), or regular 

(ellipsoid, hyperboloid of one or two sheets, elliptic or hyperbolic 

paraboloid). 

Any quadratic surface can be analytically represented by a quadratic equation, the 

form of which is determined by its position in the coordinate system. Quadratic 

surfaces in the basic position, i.e. with axes in one of the coordinate axes or in lines 

parallel to coordinate axes and with vertices located on coordinate axes are 

represented by equations in the simple canonical forms with real positive constants, 

a, b, c or r. 

Cylindrical surfaces 

A surface generated by all straight lines passing in a given direction s through points 

on a given curve k that is not in the plane in direction s is called cylindrical surface. 

Lines on the cylindrical surface are called generators or rulings, while curve k is called 

the generatrix (generating or basic curve), or also the directrix.  

The analytic representations of elliptic (circular for a = b = r), hyperbolic and 

parabolic cylindrical surfaces with a generating ellipse (circle), hyperbola and 

parabola in the coordinate plane xy (with axes in the coordinate axes) and rulings in 

the direction of coordinate axis z are in the forms 

cyx
b

y

a

x
ryx

b

y

a

x
 2

2

2

2

2

222

2

2

2

2

,1,,1 . 

 

Fig. 1.22. Cylindrical surfaces. 
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Analogously, the equations of cylindrical surfaces with a generatrix in other 

coordinate planes xz, or yz and rulings in the direction of the respective orthogonal 

coordinate axes y or x can be derived. Cylindrical surfaces determined by an ellipse 

(a circle) or a hyperbola in a more general position, i.e. with its centre at the point 

S = [m, n, 0] and its axes in the direction of one of the coordinate axes, or a parabola 

with its vertex at the point V = [m, n, 0] and its axis in the direction of coordinate axis 

y can be represented in the form 

).()(,1
)()(

,)()(,1
)()(

2

2

2

2

2

222

2

2

2

2

nycmx
b

ny

a

mx

rnymx
b

ny

a

mx













 

A circular cylindrical surface is called cylindrical surface of revolution as it can be 

generated by revolving one generator line in a given direction about an axis of the 

surface passing through the circle centre in the respective direction.   

Conical surfaces 

A surface generated by all straight lines passing through a given point V and 

intersecting a given curve k that is not in the same plane with the point V is called a 

conical surface. Lines on a conical surface are called generators (rulings), point V a 

vertex and curve k is called a generatrix (generating or basic curve), or also a directrix.  

The analytic representations of elliptic conical surfaces with vertex at the origin and 

generating ellipse in the plane parallel to one of the coordinate planes xy, xz or yz (with 

axes in the coordinate axes) are in the forms 

0,0,0 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 x
b

z

a

y
y

b

z

a

x
z

b

y

a

x
. 

 

 
Fig. 1.23. Conical surfaces. 

 

A conical surface of revolution can be created by generating circle k in a plane parallel 

to one coordinate plane with centre on the perpendicular coordinate axis that is the 

axis of the conical surface of revolution. Such a surface can be also generated by 

revolving a line passing through the origin about one of the coordinate axis. 

A more general equation of a cylindrical conical surface with a vertex at the point on 

one of the coordinate axes can be obtained in the form  

.0)(,0)(,0)( 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 cx
b

z

a

y
cy

b

z

a

x
cz

b

y

a

x
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Ellipsoids 

The canonical form of the equation of an ellipsoid with its centre at origin and axes in 

the coordinate axes is 

1
2

2

2

2

2

2


c

z

b

y

a

x
. 

The coordinate planes xy, xz and yz intersect ellipsoid in ellipses with pairs of semi-

axes (a, b), (a, c) and (b, c). In the case of two equal semi-axes we speak about an 

ellipsoid of revolution, and if all three semi-axes are equal, a = b = c = r, it becomes 

a sphere with the centre S = [m, n, p] and radius r that is defined by the general 

equation  

 (x – m)2 + (y – n)2 + (z – p)2 = r2. 

 

 
 

Fig. 1.24. Ellipsoids and sphere. 

 

Hyperboloids 

The equation of a hyperboloid of one sheet in the basic position (with its axis in the 

coordinate axis z and its centre of symmetry at origin) is 

1
2

2

2

2

2

2


c

z

b

y

a

x
. 

The intersections of this quadratic surface by coordinate planes xz and yz are 

hyperbolas with their centres at origin, their imaginary axes in the coordinate axis z 

and semiaxes (a, c) and (b, c), and the surface intersection by the coordinate plane xy 

is an ellipse with semi-axes (a, b) on coordinate axes x and y.  

Analogously, the canonical equations of one-sheet hyperboloids in basic positions 

with axes in coordinate axes y and z can be derived as 

1,1
2

2

2

2

2

2

2

2

2

2

2

2


c

z

b

y

a

x

c

z

b

y

a

x
. 
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Fig. 1.25. Hyperboloids of one sheet. 

 

A hyperboloid of two sheets in the basic position (with axis in the coordinate axis z 

and centre of symmetry at origin) with the equation 

1
2

2

2

2

2

2


c

z

b

y

a

x
, 

consists of two separated parts. The intersections of this quadratic surface by the 

coordinate planes xz and yz are hyperbolas with centres at origin and semiaxes (a, c) 

and (b, c). The coordinate plane xy does not intersect this two-sheet hyperboloid, but 

its intersections by planes y = k, k > c, are ellipses.  

 

     
Fig. 1.26. Hyperboloids of two sheets. 

 

Paraboloids 

An elliptic paraboloid with its axis in the coordinate axis z, y, x and vertex at origin is 

determined by the canonical equation  

,0,0,0
2

2

2

2

2

2

2

2

2

2
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2

 cx
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z
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x
cz

b

y

a

x
 

while the + sign stands for the positive half-space where z > 0, y > 0, x > 0, and, 

obviously, the – sign for the negative half-space, where z < 0, y < 0, x < 0. A plane 

perpendicular to the paraboloid´s axis intersects the surface in ellipses, while for a = b 

we speak about paraboloid of revolution with intersections that are circles. Planes 

passing through the paraboloid´s axis intersect it in parabolas.  
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Fig. 1.27. Paraboloids. 

 

A hyperbolic paraboloid with its axis in the coordinate axis z, y, x and its vertex – a 

saddle point at origin is determined by the canonical equation  

.0,0,0
2
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Its intersections by the coordinate planes are parabolas and/or hyperbolas, a plane 

passing through the vertex intersects this surface in a pair of intersecting lines 

(singular hyperbola). Contrary to other quadratic surfaces, there are no values of 

constants a, b, c, for which a hyperbolic paraboloid can be a surface of revolution.   
 

 
Fig. 1.28. Hyperbolic paraboloids. 

 

Examples 

1. An ellipsoid of revolution with axis in coordinate axis x, semi-axis a = 2, b = c = 3 

is determined by the equation 36449 222  zyx . 

2. Equation z = y2 – x2 = 0 defines hyperbolic paraboloid with saddle point at origin. 

3. Equation  
224 yxz   defines the upper part of a two-sheet hyperboloid of 

revolution with its axis in coordinate axis z and semi-axes a = b = c = 2. 

4. Canonical form of the equation of a parabolic cylindrical surface with its axis 

parallel to coordinate axis y and its basic parabola in coordinate plane xz with a 

vertex [0, 0, 2] and parameter  p = 2  is  x2 = 4(z – 2).   
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1.6 n-dimensional Euclidean space 

 

A space consisting of all points determined by n-tuples of real numbers,  n  1, with 

the distance of two arbitrary points X = [x1, x2, … , xn], Y = [y1, y2, … , yn] defined by 

the Euclidean metric  

22

22

2

11 )(...)()(),( nn xyxyxyYXd   

is called an n-dimensional Euclidean space. 

If n = 1, then, d(X, Y) =  y1 – x1 . For every natural number n and for any triplet of 

points X, Y, Z  En the following properties can be proved: 

1. YXYXdYXd  0),(,0),(  

2. ),(),( XYdYXd   

3. ),(),(),( YZdZXdYXd  . 

The function d: En  En  R is called a metric on En, and the pair (En, d) is the metric 

space. Let X0 be a point in the space En, and  > 0 be a real number. Then set  

   ),(:)(
00

XXdXXN n
E  

is the -neighbourhood of point X0. N (X0) is an open interval for n = 1, it is an open 

disc for n = 2, and a ball without its spherical boundary for n = 3. 

Let M  be a subset of En. A point X0  M is called an interior point of the set M, if 

there exists  > 0 such that N (X0)  M. The set of all interior points of the set M is 

called the interior of the set M. The set M is said to be open, if it consists of interior 

points only.  

A point X0  En is called a boundary point of the set M  En, if each neighbourhood 

N (X0) contains at least one point which belongs to the set M and at least one point 

that does not belong to the set M. The set of all boundary points of the set M is called 

the boundary of the set M. A set is called to be closed, if it contains all its boundary 

points. 

 

Examples 

1. The interior of set  10,10:],[ 2  yxyxM E  is an open plane region 

with a square boundary with vertices at origin [0, 0], point [0, 1] on coordinate axis 

x, point [1, 0] on coordinate axis y and point with coordinates [1, 1]. 

2. The space region bounded by a unit cube with vertices on coordinate axes in E3 is 

the closed set  10,10,10:],,[ 3  zyxzyxM E . 

3. The set  4:],,[ 2223  zyxzyxM E  is a closed ball in space E3 bounded 

by a sphere with centre at origin and radius of 2. 
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4. An ellipsoid of revolution with semi-axes a = 2, b = 3 and c = 3 on coordinate axes 

x, y, and z and centre at the origin of the coordinate system is the boundary of an 

open set determined as 








 1
994

:],,[
222

3 zyx
zyxM E . 

Set M  En is called connected, if any pair of its points can be connected by a simple 

curve lying entirely in the set M. The set M is called simply connected, if it contains 

any bounded region with the boundary in a closed curve k in M, k  M. Simply 

connected set contains no holes.  

Set M  En is call bounded, if a real number r  R and a point X0  En exist such that 

for each X  M  holds  d(X, X0 ) < r. 
 

 
Fig. 1.29. Connected, simply connected and bounded sets. 

 

Examples 

1. The annulus  161:],[ 222  yxyxM E  determined by concentric circles 

with centres at origin and radii 1 and 4 is a connected set in the plane, but not 

simply connected. It is bounded, as for example for point  X0 = [0, 0]  E2 and any 

r > 4, d(X, X0 ) < r  for all X  M, see in Fig. 1.29, left. 

2. Tetrahedral region with vertices at origin and unit points on coordinate axes in E3 

is set  1,0,0,0:],,[ 3  zyxzyxzyxM E , which is closed, simply 

connected and bounded set, as for any r > 1 and point X0 = [0, 0, 0] it holds that 

d(X, X0 ) < r  for all X  M,  see in Fig. 1.29, right. 

 

A point is called an isolated point of a set M  En, if such ε-neighbourhood of this 

point exists which contains no other point from the set M. A point is called a limit 

(cluster) point of a set M  En, if any ε-neighbourhood of this point contains infinitely 

many points from the set M. 

Any bounded infinite set M ⊂ En contains at least one limit point. A limit point is 

either an interior or a boundary point of this set. An interior point of the set is always 

an element of the set, an exterior point never belongs to the set. A boundary point can 

either belong to the set, or it can be not a point of the set.       
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Let M ⊂ En be a non-empty set and X0 ∈ En be an arbitrary point. Then exactly one 

of the following holds: 

1. Point X0 belongs to the set M with at least one of its neighbourhoods Nɛ(X0)  M. 

Point X0 is an interior point of the set M. 

2. Point X0 does not belong to the set M and neither does any point from at least one 

of its neighbourhoods, Nɛ (X0) ∩ M = ∅. Point X0 is an exterior point of the set M. 

3. Any neighbourhood Nɛ (X0) of the point X0 contains at least one point of the set M 

and at least one point not in the set M. Point X0  is a boundary point of the set M. 

4. There exists such neighbourhood Nɛ(X0) of the point X0, for which 

Nɛ (X0) ∩ M = {X0}. Point X0 is an isolated and a boundary point of the set M. 

Any set of points in En which is opened and connected is called a region. A set of 

points in En which is the closure of a region is a closed region. Any closed region can 

be obtained from a suitable region by adding all its boundary points.  

A set M is closed if and only if it contains all its limit points. 

 

Examples 

1. The set  1:],,[ 3  zzyxM E  in Fig. 1.30, left, is a not connected and not 

bounded open region determined by all points in two half-spaces with boundary 

planes z = –1, and z = 1. Origin O is the exterior point of set M, all points in the 

boundary planes are limit points not contained in the set. Complement of set M is 

a closed region, a layer between the two planes  1:],,[ 3  zzyxCM E .  

2. The region    ]2,2[],2,2[22,22,0:],[ 2  yxxyyxM E  is a 

closed, simply connected, and bounded set, with boundaries in line segments on 

coordinate axes x and y joining points [–2, 0], [2, 0] and [0, –2], [0, 2] and both 

isolated points [–2, 2] and [2, –2], see in Fig. 1.30, right. 

 

 

Fig. 1.30. Open region in space (on left), closed region with isolated points (right). 
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2 Differential calculus of multivariable functions 
 

 

2.1 Definition of a function of more variables   

 

Let M be a non-empty subset of the n-dimensional Euclidean space  

M  E
n
, n  1, M  ∅. 

Any mapping  f  from the set M to R, in which each point X = [x1, x2, ... , xn]  M  is 

attached a unique real number, is called a real function of n real variables.  

f: M  R, X f (X). 

Set M is called the domain of definition of function f, denoted as D(f ).  

Image of the point X = [x1, x2, ... , xn]  M in the mapping f, the real number attached 

to the point X, denoted as y = f (X) = f (x1, x2, ... , xn), is the value of the function f  at 

the point X. The range of values of function f  is the set  

)}(),(:{)( XfyfDXyfH  R . 

For n = 2 we use the notation f (x, y) instead of  f (x1, x2), and for n = 3 the notation 

f (x, y, z) is used instead of  f (x1, x2, x3). 

A function of n variables can be uniquely determined by the domain of definition 

D(f )  E
n
 and by a formula (or function rule), due to which exactly one real number 

y can be attached to any point X = [x1, x2, ... , xn]  D(f ) as a function value y = f (X). 

In the same way as for the functions of one real variable, a function rule can be 

determined in various forms: 

- in words 

- by a table of values 

- by a graph 

- analytically – by means of a mathematical expression or an equation. 

Some of the significant concepts, for example boundedness (boundedness from 

below or boundedness from above), maximum or minimum of the function and 

operations on functions are defined analogously as in the real case for n = 1. 

Let f  be a function of n variables defined on the set M of points in the space E
n
, for 

n  1. The graph of function f is a set G(f )  E
n+1 

of all ordered (n + 1)-tuples, 

points [x1, x2, ... , xn, xn+1]  E
n+1

, for which the following properties hold: 

1. [x1, x2, ... , xn]  M 

2. xn+1 = f (x1, x2, ... , xn). 

Therefore 

)}(,],...,,[:],,...,,{[)( 121

1

121 XfxMxxxXxxxxfG nn

n

nn  



 E . 

Geometrically we can directly visualise only graphs of functions of one or two 

variables. The graph of a continuous function of one real variable y = f (x), x  I  R 

is a plane curve segment.  
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Fig. 2.1. Graph of function of one variable. 

 

The graph of a function of two variables f (x, y) is defined on the set D(f ) of points 

in the space E
2
 and it is the set of all such points [x, y, z] in the space E

3
, for which: 

1. [x, y]  D(f )  

2. z = f (x, y) 

therefore 

G(f ) = {[x, y, z]  E
3
: [x, y]  D(f ), z = f (x, y)}. 

G(f) is a set of those points [x, y, z] in the space, whose coordinates satisfy the 

equation z = f(x, y), and usually it can be geometrically visualised as a surface patch 

in E
3
. 

 

Properties: 

1. The orthogonal projection of the graph of 

function f (x, y) to the plane xy is the function 

domain of definition D(f ). 

2. Any line parallel to the coordinate axis 

z intersects the graph of function f (x, y) in at 

most one point. 

 
 

Fig. 2.2. Graph of function of two variables. 
 

A surface that is a graph of function f (x, y) of two variables can be projected into 

different views using the projection methods of Descriptive geometry, by means of 

one of the basic projection methods – Monge method (top view and front view or 

side views), or orthogonal axonometry (axonometric view). 
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Examples 

1. Function xyyxf  1),( is defined on }1:],{[)(  xyyxfD 2
E . Part of the 

domain of definition and the corresponding part of the graph of this function, and 

the contour plot of the graph are in the Fig. 2.3. 

 

      

Fig. 2.3. Domain of definition and graphs of function with two variables. 
 

2. Graph of function )arcsin(1),( yxyxf  , the contour plot of the function graph 

and its domain of definition }11:],{[  yxyxM 2
E  are in the Fig. 2.4. 

 

 

Fig. 2.4. Domain of definition and graphs of function with two variables. 
            

 

2.2 Limit and continuity of functions of more variables 

 

Let function  f (X) be defined on some neighbourhood of the point A = [a1, a2, ..., an], 

which is the limit point of the function domain of definition D(f ).  

Number b is said to be the limit of function f (X) at the point A, if for all  > 0 there 

exists such δ > 0, that for all points X  Nδ (A), X ≠ A, it holds  f (X)  Nɛ (b): 

 


bXfAXdbXf
AX

)(),(:00)(lim . 

The limit of function f (X) of two variables at the point A = [x0, y0] can be also 

written 

bXf
yxX




)(lim
],[ 00

. 
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Let functions f and g have proper limits at the point A 

21 )(lim,)(lim bXgbXf
AXAX




. 

Then there exists (at the point A) also the limit of functions: 

1. c1f + c2g, where c1,c2 are arbitrary constants and  

  221121 )()(lim bcbcXgcXfc
AX




 

2. f.g and    21)().(lim bbXgXf
AX




 

3. 
g

f
 and 0,

)(

)(
lim

2

2

1 


b
b

b

Xg

Xf

AX
. 

An improper limit of a function of several variables at a proper point, which is the 

limit point of its domain of definition, is defined similarly to an improper limit of a 

function of one variable: 

KXfAXdKXf
AX




)(),(:00)(lim  , 

KXfAXdKXf
AX




)(),(:00)(lim  . 

Examples 

1. Function   
22

1
),(

yx
yxf


   is not defined at the point [0, 0] that is the limit 

point of its domain of definition D(f ) = E
2
 – {[0, 0]}, and it holds that 

0)(lim 22

]0,0[



yx

X
,  anyhow there exists an improper limit of function f(x, y) at 

the point [0, 0],  



 22]0,0[]0,0[

1
lim),(lim

yx
yxf

XX
, see Fig. 2.5, left. 

2. Function f(x, y) = ln(x + y
2
), with domain D(f) = {[x, y]  E

2
: x + y

2
 > 0} is not 

defined at the points of parabola y
2
 = – x, which are the limit points of its domain 

of definition, the function limit at these points is improper and it equals – . 

      

Fig. 2.5. Improper limits of functions at the limit points of their domains. 
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Let function  f (X) be defined on some neighbourhood of the limit point of its domain 

of definition D(f ), point A = [a1, a2, ..., an]. Function f(X) is continuous at the point 

A, if a proper limit of function f exists at this point, and this limit equals to the value 

of function f at the point A 

)()(lim AfXf
AX




. 

Function f continuous at all points of the set M  D(f) is said to be continuous on the 

set M. If M = D(f), we speak about a continuous function f. 

Let functions f and g be defined on some neighbourhood of the point A and let them 

both be continuous at the point A. Then the functions 

c1f + c2g, c1, c2 R 

 f . g 

are also continuous at the point  A.  

If  g(A)  0, then the function  
g

f
  is also continuous at the point A. 

Remark. If A is a boundary point of the domain of definition of function f, then f 

cannot be continuous at A in the standard sense. This is the reason why we define a 

new concept of continuity of a function at a point with respect to a set, which is a 

kind of analogy of one-sided limits of real functions of one real variable.  

Let function f (X) be defined on a set M  E
n
 and let point A  M. It is said that the 

function f is continuous at the point A with respect to the set M, if for each  > 0 

there exists  > 0 such, that if X  N (A)  M then f (X) – f (A) < . It is said that 

function f is continuous on the set M, if it is continuous at each point X  M with 

respect to the set M. 

A function of more variables continuous on a closed region has similar properties as 

a function of one variable continuous on a closed interval.  

Let function f be continuous on a bounded, connected and closed region Ω  E
n
. 

Then the following assertions hold: 

1. Function f is bounded on Ω, therefore there exists positive number K > 0 such, 

that | f (X) | < K for any point X  Ω. 

2. Function f  has its maximum and minimum on the set Ω, therefore there exists 

at least one point P1  Ω and at least one point P2  Ω such, that  

 f (P1)   f (X)  f (P2) for all points  X  Ω. 

3. Let A and B be different points from the region Ω such, that f (A)  f (B). Then 

function f reaches any value between f (A) and f (B) at the points from Ω, 

therefore there exists at least one point C Ω such, that f (A) < f (C) < f (B). 

The range of values of function f of two variables that is continuous on a bounded 

closed region Ω is a closed interval in R (or a one point set) that is the image of the 

region Ω in the mapping determined by the function f. 
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Examples 

1. Range of values of function f (x, y) = sin(x
2
 – y

2
), with domain D(f) = E

2
, is the 

interval H(f) = – 1, 1  R, the function graph on the set 
2

3

2
,

3

2 
M  is 

illustrated in Fig. 2.6, left.  

2. Interval – 1, – 0.5  R is the range of function 
2

1
),(

22 


yx
yxf  defined on 

the set }1:],{[ 222  yxyxM E . The graph of the function f is sketched in 

Fig. 2.6, on the right.  

 

  

Fig. 2.6. Graphs of functions continuous on bounded closed regions. 

 

2.3   Partial derivatives of functions of more variables 

 

Let  z = f (x, y)  be a function defined on certain neighbourhood of point A = [x0, y0], 

which is the limit point of its domain of definition D(f ). Let us determine the set  

1

0 )}(],[:{ E fDyxRxM x
 

and define the function 

),()(:: 0yxfxgMxRMg xx  . 

The derivative )( 0xg  of the function g(x) at the point x0, if it exists, is said to be the 

partial derivative of function f (x, y) at the point A = [x0, y0] with respect to the 

variable x, denoted  

),(),()(),( 0000 A
x

f
yx

x

f
Afyxf xx









  

0

000

0

0

00

),(),(
lim

)()(
lim),(

00 xx

yxfyxf

xx

xgxg
yxf

xxxx
x












. 
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Fig. 2.7. Partial derivative of function f (x, y) with respect to x at point T = [x0, y0, f(x0, y0)]. 

 

Plane y = y0 parallel to coordinate axis z and intersecting coordinate plane xy in the 

set Mx intersects the graph of function f (x, y) in the curve z = f (x, y0). The partial 

derivative ),(
00

yxf
x
  can be geometrically interpreted as the slope of the tangent 

line t1 to this curve at the point T = [x0, y0, f(x0, y0)], tan),(
00
 yxf

x
, where  is 

the angle of line t1 and the coordinate plane xy, while its direction vector is 

)),(,0,1(
001

yxf
x
s . 

Analogously we can determine the set  

1

0 )}(],[:{ E fDyxRyM y
 

and define the function 

),()(:: 0 yxfyhMyRMh yy  . 

The derivative )( 0yh  at the point y0 of function h(y), if it exists, is the partial 

derivative of function  f(x, y) at the point A = [x0, y0] with respect to the variable y, 

denoted 

),(),()(),( 0000 A
y

f
yx

y

f
Afyxf yy











0

000

0

0

00

),(),(
lim

)()(
lim),(

00 yy

yxfyxf

yy

yhyh
yxf

yyyy
y












. 

Plane x = x0 parallel to coordinate axis z and intersecting coordinate plane xy in the 

set My intersects the graph of function f (x, y) in the curve z = f (x0, y). The partial 

derivative ),(
00

yxf
y
 can be geometrically interpreted as the slope of the tangent line 

t2 to this curve at the point T = [x0, y0, f(x0, y0)], tan),(
00
 yxf

y
, where  is the 

angle that line t2 forms with respect to the coordinate plane xy, while this line 

direction vector is )),(,1,0(
002

yxf
y
s . 
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Fig. 2.8. Partial derivative of function f (x, y) with respect to y at point T = [x0, y0, f(x0, y0)]. 

 

Function f (x, y) continuous at the point A may have no partial derivatives defined at 

the point A. Function  f (x, y), whose partial derivatives at the point A exist, need not 

be continuous at the point A. 

The plane determined by both tangent lines,  = t1 t2 is the tangent plane to the graph 

G(f) of function f(x, y) at the point T = [x0, y0, f(x0, y0)]  G(f). 
 

 

Fig. 2.9. Tangent plane to the graph of function f(x, y) at the point T = [x0, y0, f(x0, y0)]. 

 

Let A = [x0, y0] be a limit point of the domain of definition D(f ) of function f(x, y) 

and let there exist both partial derivatives of function f at A  

)(),(),(),( 0000 AfyxfAfyxf yyxx
 . 

Tangent plane   to the graph of function f at the tangent point T = [x0, y0, f (x0, y0)] is 

determined by the equation  

))(())(()( 00 yyAfxxAfAfz yx  . 
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The normal vector to the tangent plane  is represented as 

)1),,(),,(( 000021 yxfyxf yx
 ssn  

and it is the direction vector of a straight line passing through the point T and 

perpendicular to the plane  called the normal to graph G( f ) at T. 

 

Examples 

1. Function f (x, y) = x
2
 + y

2
, with domain D(f) = E

2
, has both partial derivatives at 

the point A = [2, 3], while 6)3,2(,4)3,2( 
yx

ff , and f(2, 2) = 13, and the 

equation of the tangent plane at the point T = [2, 3, 13] is  4x + 6y – z – 13 = 0, 

while its normal vector is )164(21  ,,ssn , and parametric equations of the 

normal to the function graph are  

R ttztytx ,13,63,42 . 

The graph of function f (x, y), tangent plane and normal to the graph at the 

tangent point T are illustrated in Fig. 2.10, left. 

 

     
Fig. 2.10. Tangent planes and normals to graphs of functions f (x, y). 

 

2. Let function f (x, y) = sin xy, be defined on the closed region – π/2, π/2  E
2
. 

The tangent plane to the function graph at the point O = [0, 0, 0] is the coordinate 

plane xy intersecting the graph of function f in the perpendicular line segments 

located on coordinate axes x and y and meeting at the origin of the coordinate 

system, see in Fig. 2.10, right. The tangent plane equation z = 0 can be 

determined from the partial derivatives 

 xyxyxfxyyyxf yx cos),(,cos),(  ,  

whose values at the point [0, 0] are equal to zero. The direction vectors of the 

tangent plane are the unit vectors of the coordinate axes x and y,

),0,1,0(),0,0,1( 21  ss  and the normal vector of the plane is the unit vector 

)1,0,0(21  ssn , as the normal to the function graph is coordinate axis z with 

the parametric equations R ttzyx ,,0,0 . 
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3. Function 3 221),( yxyxf  defined on E
2
 has both partial derivatives 

 3

2

223

2

22 )(
3

2
),(,)(

3

2
),(



 yxyyxfyxxyxf xx
  

defined on E
2
 except at the origin O = [0, 0] of the coordinate system. Their 

values at the point A = [2, 2] are equal, 31)2,2()2,2( 
yx ff , and the 

equation of the tangent plane to the function graph at the point T = [2, 2, 1] can 

be derived in the form x + y + 3z 1 = 0. The tangent plane intersects the graph of 

function in the curve with the double point at the tangent point T, see in Fig. 2.11, 

left, with the implicit equation 

0233 22  yxyx . 

Vectors )1,3,0(),1,0,3( 21  ss  can be chosen as the tangent plane direction 

vectors, while its normal vector is then )9,3,3(21  ssn , or collinear vector 

)3,1,1(1 n . The normal to the function graph can be determined parametrically, 

as line R ttztytx ,31,2,2 . 

 
 Fig. 2.11. Tangent planes and normals to graphs of functions f (x, y). 

 

4. Equation of the tangent plane to the graph of function 24),( yyxf   at the 

point T = [1, 0, f (1, 0) = 2] is  z = 2, because both partial derivatives at the point 

[1, 0] have zero values 

0)0,1(,)4()(,0)( 2

1

2 


yyx fyyXfXf .  

 The tangent plane is parallel to the coordinate plane xy, direction vectors are 

),0,1,0(),0,0,1( 21  ss  and it is tangent to the function graph in the line 

parallel to the coordinate axis z given by equations  y = 0, z = 2, as illustrated in 

Fig. 2.11, right. Normal to the graph of function can be determined 

parametrically as line R ttzyx ,,0,1 . 
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2.4   Total differential of functions of more variables 

 

Let M  E
2
 be set of such points from D(f ), at which both partial derivatives of 

function  f (x, y)  with respect to x or y exist. 

Function determined on the set M, in which any point A  M  is attached the partial 

derivative of function f (x, y) at the point A with respect to x or y, is said to be the 

partial derivative of function f (x, y) with respect to x or y 

)(:)(:

::

AfAfAfAf

MfMf

y

f
f

x

f
f

yyxx

yx

yx















RR  

Suppose that A = [x0, y0] is the limit point of the domain D(f ) of definition of 

function f (x, y) and let both partial derivatives )(),( AfAf yx
 of function f exist and 

be continuous at the point A. Then function  f  is said to be differentiable at the point 

A, and function increment f = f (X)  f (A) is expressible in the form  

),()())(())(()()( 00 AXdXyyAfxxAfAfXf yx  , 

where d(X, A) is the distance of points X and A and ω(X) is the function continuous 

at A and such that ω(A) = 0.  

Remark. It can be simply proved that the differentiability of f at A implies its 

continuity at A. On the other hand, differentiability of f at A does not follow from 

continuity. A sufficient condition of the function differentiability at a point A is the 

existence and the continuity of its function partial derivatives at A. 

The total differential of function f at the point A is the expression 

))(())((),( 00 yyAfxxAfyxdf yxA  . 

An equation of the tangent plane to the graph of function f can be then rewritten in 

the form  

)()( XdfAfz A , 

from which the geometric interpretation of function f total differential at the point A 

can be derived, as illustrated in Fig. 2.12.  

 

 

 

 

 

 
 

Fig. 2.12. Total differential of function f (x, y). 
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If: 1.  0),(lim 


AXd
AX

, 

     2.   function  f  is continuous at the point A, 

     3.   partial derivatives )(),( AfAf yx
 exist,  

then the condition of the differentiability of function f  can be written in the form 

),()(),()()()( AXdXyxdfAfXfXf A  . 

Omitting the last member of this equality we can obtain an approximation formula 

often used in numerical mathematics for the estimation of values of function f in the 

neighbourhood of point A    

)()()()()()( XdfAfXfXdfAfXf AA  . 

 

Examples 

1. The total differential of function 2

1

22 )(),(


 yxxyyxf  at the point A = [1, –1] 

is determined by the values of partial derivatives )(),( AfAf yx
 , while 

 ,)(),(,)(),( 2

3

2232

3

223


 yxxyxfyxyyxf yx
 

)1(
22

1
)1(

22

1
),(  yxyxdfA

. 

The equation of the tangent plane to the function graph at point T = [1, –1, f (A)] 

illustrated in Fig. 2.13 can be determined as ),()( yxdfAfz A  in the form 

 022)1(
22

1
)1(

22

1

2

1
 zyxyxz . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13. Tangent plane to the graph of function f (x, y). 
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2. An approximate value of the number 05.81.2   can be estimated, for instance, 

using the total differential of function xyyxf ),(  at the point A = [2, 8], 

which is determined by the partial derivatives of this function 

4

1
)8,2(,

2
),(,1)8,2(,

2
),( 

yyxx f
xy

x
yxff

xy

y
yxf   

and the value of function f(A) = f(2, 8) = 4. Then 

1125.405.825.01.2)5.8,1.2(

25.0225.024)(

)8)(8,2()2)(8,2()8,2()(







f

yxyxXf

yfxffXf yx

  

while the exact value is 4.11157 . 

 

2.5 Partial derivatives of higher orders 

 

Suppose that a function of two variables f(x, y) defined on a set M has both partial 

derivatives )( and  )( XyfXxf  . These functions of two variables can again possess 

partial derivatives with respect to each of the variables. If such partial derivatives 

exist we denote them the second partial derivatives or partial derivatives of the 

second order of the function f(x, y). According to the order of differentiation we 

obtain four second-order partial derivatives denoted in one from the following ways: 

.][,][
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


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






 

Derivatives )( and  ),( XyxfXxyf   are called the mixed second partial derivatives. 

For most of the functions they are equal. Generally, if they are both continuous, then 

they are identical. 

Function f of n variables, possessing n partial derivatives with respect to all n 

variables has up to n
2
 partial derivatives of the second order. In case n = 2 there exist 

2
2 

= 4 partial derivatives of the second order, for n = 3 there are 9 second-order 

partial derivatives, etc.  

 

Examples 

1. The second partial derivatives of function 342),( yxyxyxf  are the following:
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2. Function yxyxf ),( has partial derivatives xxyxfyxyxf y

y

y

x ln),(),( ,
1  

and its second partial derivatives are   

 
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3. Function xyzezyxf ),,(  of three variables has the first partial derivatives 

,),,(,),,(,),,( xy
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and the following partial derivatives of the second order 
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4. Partial derivatives of the first and second order of function 1ln),(  xyyxf , 

defined on the set }0:],{[)( 1  xyyxfD 2
E , are  functions 
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defined on the same domain.  

 

The partial derivatives of the third and higher orders are defined similarly.  

If the second partial derivatives of the function f (x, y) have partial derivatives, then 

these are called the third partial derivatives or partial derivatives of the third order of 

the function f. The number of the third-order partial derivatives of the function of 

two variables is 2
2
  2 = 2

3 
= 8. If we differentiate function f(x, y) three times with 

respect to both variables, we receive   
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The partial derivatives of partial derivatives of order n – 1 are called the n-th partial 

derivatives or partial derivatives of order n. The number of partial derivatives of 

function of two variables of order n is 2
n-1 
 2 = 2

n
, and they can be represented as 

follows 

.][,][

...

,][

,][

,][,][

1

1
)1(

...

)(

...11

1
)1(

...

)(

...

222

1
)1(

...

)(

...

22

1
)1(

...

)(

...

11

1
)1(

...

)(

...1

1
)1(

...

)(

...

111

22

22

111

n

n

n

n

y

n

yyy

n

yyyn

n

n

n

x

n

yyy

n

xyyy

n

n

n

n

y

n

yxxx

n

yyxxx

n

n

n

n

x

n

yxxx

n

yxxxx

n

n

n

n

y

n

xxx

n

yxxxn

n

n

n

x

n

xxx

n

xxx

y

f

y

f

y
ff

xy

f

y

f

x
ff

yx

f

yx

f

y
ff

xyx

f

yx

f

x
ff

yx

f

x

f

y
ff

x

f

x

f

x
ff

nnnn

nn

nn

nnnn



















































































































































































 

 

Examples 

1. Function 223),( xyyxyxf   has non-zero partial derivatives up to order 3, 

where mixed third-order derivatives are non-zero constants. 
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All partial derivatives of function f of order 4 and higher orders are equal to zero.  

2. Partial derivatives of function )ln(),( yxyxf  are functions 
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 )()!1()(

....


,  

where the sign of a particular derivative depends on the parity of the derivative 

order and on the number of differentiations with respect to variable y. In the case 

of an odd order of the derivative its sign is positive if the number of 

differentiations with respect to variable y is an even number or zero, and it is 

negative for odd number of differentiations with respect to variable y. For an 

even order of the derivative, the sign is negative for the even number of 

differentiations with respect to variable y, and it is positive for their odd number. 
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Analogously to the properties studied in calculus of a real function of one real 

variable we can investigate various properties of functions of more variables by 

means of their partial derivatives of higher orders. This means that we can 

 determine all stationary and critical points in the function domain D(f) 

  identify the existence of points of the local extremes of function,  i.e. points at 

which function reaches its locally minimal or maximal values 

  find points at which function reaches global extremes on a closed region  

  investigate other special points on the graph of function, e.g. saddle points. 

 

2.6 Local extremes of functions of more variables 

 

Let f  be a function of n variables defined on D(f)  E
n
 and let A be an arbitrary 

point from its domain of definition. It is said that the value f (A) is the local 

maximum, or local minimum of function f, if there exists such neighbourhood Nɛ (A) 

of point A that for each point X  Nɛ (A)   D(f) the following inequality holds:  

f (X) ≧ f(A), or  f (X) ≦ f(A). 

If for all points X  Nɛ (A)   D(f), X ≠ A is   

f  (X) > f (A), or  f (X) < f (A), 

the function value f (A) is said to be the strict local maximum, or strict local 

minimum. The point A is called the point of (the strict) local maximum, or (the 

strict) local minimum.  

Function f is said to have local minimum, or local maximum f (A) at the point A, 

while in case of sharp inequalities we speak about function strict local minimum, or 

strict local maximum  f (A) at the point A. Together, the local minima and the local 

maxima of a function are called local extremes of a function. 

Function  f  can reach local extremes in the following points only: 

1. stationary points, at which all partial derivatives, if they exist, are equal to 0  

2. points, at which partial derivatives do not exist. 

Let f  be a function of two variables. Point A  D(f) is said to be a critical point of 

the function, if )( and  )( AyfAxf   vanish or they do not exist. It can be proved that 

function f can possess local extremes only at its critical points. 

If 0)( and 0, )(  AyfAxf  but f (A) is not any local extreme of function f, then the 

point A is called the saddle point of function f. 

The geometric interpretation for the function of two variables is straightforward.  

Let [x0, y0]  D(f) be a stationary point of function f (x, y). The total differential of 

function f equals to zero at the function stationary point. Then the tangent plane to 

the graph of function f at the point T = [x0, y0, f(x0, y0)] on the surface G(f)  E
3
 has 

the equation  z = f(x0, y0) and it is parallel to the coordinate plane xy.   
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An illustration can be seen in Fig. 2.11., right, where function 24),( yyxf   

reaches its local maximum at the point A = [1, 0], at which both partial derivatives 

vanish. The tangent plane with equation z = f (A) = 2 is parallel to the plane xy. On 

the contrary, function f (x, y) = sin xy reaches no extreme value at the point A = [0,0], 

as can be recognised from Fig. 2.10, right, while both partial derivatives vanish at 

this point, A is the saddle point of the function and tangent plane intersects its graph. 

The stationarity of point A is the necessary but not the satisfactory condition for the 

existence of a local extreme of the function at this point. The function can reach 

local extremes also in such points, at which it is not differentiable. 

 

Examples 

1. Function 224),( yxyxf   defined on   04:,)( 222  yxyxfD E  

is not differentiable at the points of a hyperbola with the equation 4 + x
2
 – y

2
 = 0, 

as both partial derivatives, ,
4

),(,
4

),(
2222 yx

y
yxf

yx

x
yxf yx







 are not 

defined at these points. The function reaches its minimal value 0 at these points, 

and its range is interval 0, . The stationary point A = [0, 0] of this function, at 

which partial derivatives are vanishing, is the saddle point of function f, tangent 

plane to the function graph at this point has equation z = 2 and it intersects the 

graph in lines with equations x = y, z = 2, and x = – y , z = 2, see in Fig. 2.14, left. 

 

 
Fig. 2.14. Saddle point and points of local extremes of functions f(x, y). 

2. Function 2239),( yxyxf   has a minimal value –3 at the stationary point 

A = [0, 0], and its partial derivatives vanish at this point.  Partial derivatives 

2222 39
),(,

39

3
),(

yx

y
yxf

yx

x
yxf yx





 are not defined at the points of 

an ellipse in the plane xy with the equation 9 – 3x
2
 – y

2
 = 0, anyhow, the function 

reaches its maximum value 0 at this points, and its range is interval –3, 0, as is 

illustrated in Fig. 2.14, right. 
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From the above examples it is clear that the simple fact of vanishing partial 

derivatives 0)( )(  AyfAxf  does not itself guarantee that the function value f (A) 

is a local extreme of function. However, if f and its first and second partial 

derivatives are continuous on some neighbourhood N (A) of point A, the second 

derivative test exists, and it may verify the behaviour of the function f at the point A.  

Let  A = [x0, y0] be a stationary point of function  f (x, y) of two variables, and let 

there exist continuous first and second partial derivatives of function f on some 

neighbourhood  Nɛ (A) of point A, while  )( )( AyxfAxyf  . Let  

 2

000000

0000

0000

00 ),(),(),(
),(),(

),(),(
),( yxfyxfyxf

yxfyxf

yxfyxf
yxD xyyyxx

yyyx

xyxx





 . 

Then  

a) function f  has a strict local extreme f (x0, y0) at the point A, if 0),( 00 yxD , 

which is  

  a strict local minimum, if  0),(or  ,0),( 0000  yxfyxf yyxx
 

  a strict local maximum, if 0),(or  ,0),( 0000  yxfyxf yyxx
, 

b) function f does not have a sharp local extreme at the point A,  if 0),( 00 yxD , 

but A is a saddle point of the function graph, 

c) the test fails if 0),( 00 yxD . 

Determinant D is called the Hesse determinant (Hessian) of function f (x, y) of two 

variables at the point A from its domain of definition. 

The investigation of local extremes of the function of two variables can be therefore 

performed in the following steps: 

1. Find all stationary points of the function and points, at which the function 

does not have partial derivatives. 

2. Assess all critical points from step 1 and analyse possible existence of 

function extremes at these points.  

 At stationary points, at which second partial derivatives are continuous, 

Hesse determinant of the function at this point can be used to decide about 

the existence of local extremes (D(A) > 0) or saddle points (D(A) < 0).  

 In the case of a vanishing Hesse determinant (D(A) = 0) at the stationary 

point, the behaviour of the function on the neighbourhood of this point 

must be investigated by means of definition of local extremes. 

 The existence of local extremes at such points, at which partial derivatives 

do not exist, can be proved from the definition.  
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Examples 

1. To find all local extremes of function f (x, y) = x
3
 + xy

2
 − 27x we must determine 

its both first derivatives and all four second partial derivatives, and find all 

critical points. This function is defined on E
2
, and there are also defined its first 

partial derivatives ,2),(,273),( 22 xyyxfyxyxf yx   which are vanishing 

at the stationary points whose coordinates satisfy two equations  

 02,0273 22  xyyx . 

 From the second equation it follows that either x = 0 or y = 0, and substituting 

this condition to the second equation we receive the values of corresponding 

coordinates, 3or  ,33  xy . Four stationary points exist to be 

investigated, ]0,3[],0,3[ ],33,0[],33,0[ 4321  AAAA . The function 

second partial derivatives are 

,2),(,2),(),(,6),( xyxfyyxfyxfxyxf yyyxxyxx    while the Hesse 

determinant can be determined as function of two variables in the form 

 22 412
22

26
),( yx

xy

yx
yxD  . 

 Applying the second derivative test we receive: 

 ,0108)33,0(,0108)33,0(  DD Hessian value is negative at the 

points A1 and A2, therefore these are saddle points of function, tangent plane with 

the equation z = 0, as 0)33,0()33,0(  ff , intersects graph of function in 

the line x = 0 and the circle x
2
 + y

2
 = 27, which are presented in Fig. 2.15, right. 

 ,018)0,3(,0108)0,3(  xxfD Hessian value is positive at the point A3, 

and there is the local maximum at this point with the value f (–3, 0) = 54, Hessian 

value 018)0,3(,0108)0,3(  xxfD  is positive at the point A4, and there is 

the local minimum at this point with the value f (3, 0) = –54, Fig. 2.15, left. 

 

      
Fig. 2.15. Saddle points and points of local extremes of functions f(x, y). 
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2.7 Constrained and global extremes of functions of more variables 

 

In problems involving the determination of extremes of functions of two variables 

we often encounter the so called constrained (conditional) extremes. Let there be 

given a function f  (x, y) and a set (for example a curve) M  D(f ). The problem is to 

find a point A  M such that the value f (A) is the greatest or the least, compared to 

the values of f at the points of the set M, lying close to the point A. Point A of this 

kind is called a point of the constrained extreme.  

Let f be a function of two variables defined on D(f)  E
2 

and let a set M  D(f ). 

Then a point A  M is called the point of a constrained local maximum (minimum) 

if such neighbourhood N (A) exists that for each X  M  N (A) it is valid  

f (X)  f  (A)    ( f  (X)  f (A) ). 

The set M is mostly given as a set of points from D(f ) satisfying a condition given 

by the equation g(x, y) = 0, 

M = {[x, y]  D(f): g(x, y) = 0}  D(f).   

The condition determined by the equation, which is satisfied by coordinates of all 

points from the function f domain of definition D(f ) that are in the set M, is called a 

constraint. Extremes of function f, attained on the set M  D(f ) determined by the 

constraint are called the constrained local extremes of function f . 

Point A = [x0, y0] is the point of constrained local maximum (minimum) of function f 

for the constraint g(x, y) = 0, if such neighbourhood N (A) of point A exists, that for 

all X  N (A), whose coordinates satisfy the given constraint it holds that 

f (X)   f (A)  ( f (X)   f (A) ). 

In case of strict inequalities we speak about a strict constrained local maximum or 

minimum. Constrained local minima and maxima of a function are called 

constrained local extremes of function. 

How to determine all constrained local extremes of function f  (x, y)?  

It is straightforward and easier to solve this problem in the case, when it is possible 

to express one from the variables x or y as a function of the other variable from the 

constraint equation g(x, y) = 0. If, for example, we can obtain y = h(x) from the 

constraint, then, substituting this expression for y to the original function f, we 

obtain a function of one variable F(x) = f (x, h (x)). In this way, instead of 

determining constrained local extremes of the function of two variables f (x, y), we 

look for local extremes of the function of one variable F(x).  

Similarly, if x = h(y), by substitution we receive function G(y) = f (h (y), y) of one 

variable y and we look for its local extremes. 
 

Examples 

1. Constrained local extremes of function f (x,y) = x
2
 + y

2
 + 1, if the constraint is 

given by the equation x + y  1 = 0, can be determined as local extremes of 

function of one variable, because the function y  = 1  x  can be substituted to the 
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function f  (x, y), thus obtaining function F(x) = x
2
 + (1  x)

2
 + 1 = 2x

2
  2x + 2. 

This function has the derivative 24),(  xyxF  vanishing at the point x = 0.5, 

while value of the second derivative 04),(  yxF  is always positive, and 

function has local minimum at the stationary point x = 0.5, which is F(0.5) = 1.5. 

This is also the value of the constrained local minimum of function f(x, y) at the 

point [0.5, 0.5], as f (0.5, 0.5) = 1.5 . Geometric meaning of this problem is to find 

a point with the minimal z coordinate on the curve, which is the intersection of 

the function graph G(f ) - paraboloid of revolution with axis in the coordinate axis 

z, and plane passing in the direction of axis z through the line x + y = 1 in the 

coordinate plane xy.  It is the vertex of the intersection parabola, in Fig. 2.16, left. 
 

          

Fig. 2.16. Geometric interpretation of constrained local extremes of functions f(x, y). 

 

2. Function f (x, y) = xy defined on E
2
, whose graph G(f ) is the hyperbolic 

paraboloid, has a saddle point A = [0, 0], as it is the stationary point of its partial 

derivatives xyxfyyxf yx  ),(,),( , and from the values of the function second 

partial derivatives 1),(),(,0),(),(  yxfyxfyxfyxf yxxyyyxx
 follows the 

constant value 1 of the Hesse determinant. Constrained extremes of function 

f (x, y) for constraints x  y = 0 and x + y = 0 can be found expressing one 

variable as function of the other one. Function F(x) = x
2
, received from the first 

constraint, with derivatives 2)(,2)(  xFxxF , has its local minimum at the 

point x = 0 with value F(0) = 0, which is the local constrained minimum of 

function f (x, y) = xy at [0, 0]. Function G(y) = y
2
, derived from the second 

constraint with derivatives 2)(,2)(  yGyyG , has its local maximum at 

the point y = 0 of value G(0) = 0 that is the local constrained maximum of 

function f (x, y) = xy at the point [0, 0]. Intersection parabolas of graph G(f ) and 

planes passing in direction of coordinate axis z through the lines with equations 

defining constraints in the coordinate plane xy meet at the point [0, 0, 0], whose z 

coordinate defines values of both local constrained extremes, and which is the 
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highest point at one and the lowest point at the other parabola, as can be observed 

in Fig. 2.16, right.   

However, if the constraint g(x, y) = 0 is too complicated to express one of the 

variables in terms of the other, then another method can be used, namely the method 

of the Lagrange multipliers. To determine the points at which the function f attains 

constrained local extremes we form an auxiliary function 

 F(x, y) = f(x, y) + g(x, y), 

where  is a suitable constant called the Lagrange multiplier. It is clear that the 

function F(x, y) is defined on the set M and moreover 

F(x, y) = f (x, y)  for each [x, y]  M. 

It can be easily proved, that if a point A = [x0, y0]  M is a point of a local extreme of 

the function F(x, y), then A is a point of a constrained local extreme of the function 

f (x, y) subject to the constraint g(x, y) = 0. The converse of the latter proposition is 

not valid. It might not be possible to find all constrained local extremes with the aid 

of this method.  

Applying the method of the Lagrange multipliers, we create first the following 

system of three equations in three unknowns x, y and  

0),(

0),(),(),(

0),(),(),(







yxg

yxgyxfyxF

yxgyxfyxF

yyy

xxx





 

Solving this system we obtain the critical points of the function F(x, y). Then we 

must verify (for example by means of the second derivative test) whether these 

points are points of extremes. 

 

Examples 

1. Optimisation problem ''At which point of the circle x
2
 + y

2
 = 1 does the sum x + y 

have the extreme value?'' can be solved by determining the constrained local 

extremes of the function of two variables f (x, y) = x + y with the constraint 

defined by equation x
2
 + y

2
  1 = 0. None of the variables can be represented as 

function of the other one, so we form function F(x, y) = x + y + (x
2
 + y

2
  1) 

with the Lagrange multiplier  and find the solution of the system of equations 

 

01

021),(

021),(

22 





yx

yyxF

xyxF

y

x





 

 From the first two equations it follows that 
2

1
 yx , which after 

substituting to the third equation gives the values 2/22,1  . Thus we receive 

two stationary points of function F(x, y)  that have to be investigated, namely 
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 ]2/2,2/2[],2/2,2/2[ 21  AA . 

 The second partial derivatives of function F(x, y) are  

  ,0),(),(,2),(),(  yxFyxFyxFyxF yxxyyyxx   

 and the value of the Hesse determinant is D(X) = 42 
> 0, so function F attains 

local constrained extremes at both points. It is a local constrained minimum at 

point A1 determined by the positive value of 1 with value F(A1) = f (A1) = 2 . 

At the point A2, determined by the negative value of 2, function F attains a local 

constrained maximum with the value F(A2) = f (A2) = 2 .  

This situation can be interpreted geometrically as looking for such points on an 

ellipse that are extremely located with respect to their distance to the coordinate 

plane xy. The ellipse is the intersection curve of a plane determined by equation 

x + y  z = 0 and a cylindrical surface of revolution x
2
 + y

2
 = 1. The axis of this 

cylindrical surface is in the coordinate axis z and its radius equals 1. The values 

of the constrained extremes are equal to z coordinates of the two extremely 

located points, as illustrated in Fig. 2.17, left. Then the answer to the 

optimization problem is the following: ''The sum x + y has its maximum value 

2  at the point A1 on the circle x
2
 + y

2
 = 1 and it has the minimum value 2  at 

the point A2  of the circle.'' 
  

             

Fig. 2.17. Geometric interpretation of constrained local extremes of functions f (x, y). 

 

2. Finding the greatest and the least values that the function f(x, y) = xy takes on the 

ellipse 1
28

22


yx

 we are looking for constrained local extremes that could be 

investigated by the method of the Lagrange multipliers, as the constraint equation 

does not allow elimination of any of the variables. Forming the new function 
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F(x, y) = xy + (x
2
 + 4y

2 
 8) we can define the system of three equations for 

determination of its stationary points  

 

.084

,08),(

,02),(

22 





yx

yxyxF

xyyxF

y

x





 

 From the first and the second equations follows 
y

x

x

y

82
 , from which 

after some manipulations we receive y =  x. Substitution into the third equation 

gives values 12,1 y  and therefore 22,1 x . Thus we receive four stationary 

points of function F(x, y)  that have to be investigated, namely 

 ]1,2[],1,2[],1,2[],1,2[ 4321  AAAA ,  

 while the corresponding values of the respective Lagrange multipliers are 

 4/1,4/1,4/1,4/1 4321   . 

 The second partial derivatives of function F(x, y) are  

  1),(),(,8),(,2),(  yxFyxFyxFyxF yxxyyyxx   

 and the value of the Hesse determinant is D(X) = 162 
1, which gives D(Ai) = 0 

for all i = 1, 2, 3, 4. Thus the method fails and function F must be investigated in 

the neighbourhoods of all stationary points. It attains equal values at pairs of 

points, as F(A1) =  F(A4) = 2 and A1, A4 are points of local constrained maxima, 

while F(A2) = F(A3) = 2, and points A2, A3 are points of local constrained 

minima, see in Fig. 2.17, right. Then, the greatest value that function f(x, y) = xy 

takes on the ellipse 1
28

22


yx

 equal to 2 at the points A1 = [2,1], A4 =[2, 1], 

while the least value equal to 2 is reached at the points A2 = [2, 1], A3 =[2, 1]. 

 

Investigation of the constrained local extremes of function f (x, y) of two variables 

can be therefore summarized in the following steps: 

1. Variable y can be extracted from the constraint g (x, y) = 0 and determined as a 

function of variable x, y = h (x). This function can be substituted into the function 

f (x, y), while a composite function of one variable x defined on the set M can be 

obtained, f (x, h (x)) = F (x). All local extremes of function F (x) on the set M are 

constrained local extremes of function f (x, y) of two variables on the set M. 

2. Variable x can be extracted from the constraint g (x, y) = 0 and determined as a 

function of variable y, x = h (y). This function can be substituted into the function 

f (x, y), while a composite function of one variable y defined on the set M can be 

obtained, f (h (y), y) = F (y). All local extreme of function F (y) on the set M are 

constrained local extremes of function f (x, y) of two variables on the set M. 

3. In the case that none from the variables x or y can be extracted from the constraint 

g(x, y) = 0 and expressed in terms of the other, the method of the Lagrange 

multipliers can be used. We define an auxiliary function called Lagrange function  
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F (x, y) = f (x, y) +  g (x, y), 

where  is an arbitrary constant called the Lagrange multiplier. Function F (x, y) 

is defined on set D(f), and moreover, as  g (x, y) = 0 in the points of set M, it holds 

that F (x, y) = f (x, y) on M. If any point A = [x0, y0]  M is the point of a local 

extreme of function F = f +  g, then point A is the point of a constrained local 

extreme of function  f  for the constraint g (x, y) = 0.  

Geometric interpretation of constrained local extremes of function f can be derived 

as z-coordinates of extremely located points on a curve that is the intersection of 

graph G(f) of function f with the cylindrical surface determined by a curve defined in 

the plane xy by the respective constraint, while lines on this surface are in the 

direction of coordinate axis z. 

In many, especially in optimization problems, we are interested in the greatest or the 

least value of a function on a subset of its domain of definition, in other words, in 

the global extremes of a function on a set. Global extremes of a function of more 

variables are defined in the following.  

Let f be a function of n variables, n  1, defined on the set M  D(f). Maximum 

(minimum) of the set H(f ), which is the range of function f for all X  M is called 

the global, or absolute maximum (minimum) of function f on the set M. Global 

maxima and minima are referred to as the global extremes of function f on the set M.  

If M is an open region, function f may not attain any global extremes on this set. If 

M is a closed bounded set and f is a function continuous on M, then the global 

extremes on M are attained, and they can be found in the following steps: 

1. We find all local extremes of function f  inside set M, while it is sufficient to find 

values at all critical interior points of M. 

2. We find all local extremes of function f on the boundary of set M, which are 

constrained local extremes of function f on the boundary of set M.  

3. Global maximum (minimum) of function f on the set M is then the greatest (least) 

from all found values, local extremes of  f inside the set M and constrained local 

extremes of f on the boundary of the set M.  

 

Examples 

1. Let us find all global extremes of function f (x, y) = 2x
2
 + y

2
 on the closed disc in 

the plane xy, set M = {[x, y]  E
2
: x

2
 + y

2 
 4}. Local extremes of function f 

inside set M can be found at stationary points obtained from vanishing conditions 

of the first partial derivatives yyxfxyxf yx 2),(,4),(  , while one point 

A = [0, 0] is determined, which is the point in the set M. The Hesse determinant 

value can be calculated as D(x, y) = 8 > 0, from the constant values of the second 

partial derivatives  0),(),(,2),(,4),(  yxfyxfyxfyxf yxxyyyxx
, therefore 

point A is the point of a local minimum, the value is f  (0, 0) = 0. Constrained 

local extremes on the boundary of set M, which is the circle x
2 
+ y

2 
= 4, can be 
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investigated introducing the function F(x, y) = 2x
2
 + y

2
 +  (x

2 
+ y

2 
 4). From the 

partial derivatives of this function the system of equations is formed 

 

,04

,022),(

,024),(

22 


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yx

yyyxF

xxyxF

y

x





 

and stationary points can be found, as follows. 

For x = 0,  = 1, y = 2, and A1 = [0, 2], A2 = [0, 2], 

for y = 0,  = 2, x = 2, and A3 = [2, 0], A4 = [2, 0]. 

 The second partial derivatives of function F(x, y) are  

  0),(),(,22),(,24),(  yxFyxFyxFyxF yxxyyyxx   

 and the Hesse determinant equals D(X) = 42 
+12 + 8, which gives for both 

values of  equal values D(Ai) = 0 for i = 1, 2, 3, 4. Thus the method fails and 

function F must be investigated in the neighbourhoods of all stationary points. It 

attains equal values at pairs of points, as F(A1) =  F(A2) = 4, and A1, A2  are points 

of local constrained minima of function f (x, y), while F(A3) = F(A4) = 8, and 

points A3, A4 are points of local constrained maxima of function f (x, y), see 

geometrically represented in Fig. 2.18. Here the graph of function f (x, y) is an 

elliptic paraboloid with axis in the coordinate axis z and vertex at origin, while 

boundary of the set M, circle x
2
 + y

2 
= 4 determining constraint is represented by 

a cylindrical surface of revolution with the axis in coordinate axis z and radius 2. 

The constrained extremes are z coordinates of the extremely located points on the 

intersection curve of the two surfaces. Comparing values of local minimum and 

constrained minimum we obtain the final solution of the initially posed problem. 

Global extremes of function f (x, y) = 2x
2
 + y

2
 on the closed disc M are attained at 

the following points - global minimum at the point A = [0, 0], value is f (0, 0) = 0, 

global maximum at points A3 = [2, 0], A4 = [2, 0], value is f (A3) = f (A4) = 8. 

 

 
Fig. 2.18. Global extremes of functions f (x, y) on set M. 
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3   Integral calculus of multivariable functions 
 

 

3.1  Basic concepts of multiple integration   

 

Integration of functions in several variables is done applying the principles of 

integration of functions of one real variable. There, for example, we calculated the 

area under a graph of a continuous non-negative function f(x) defined on an interval 

in real numbers, I = a, b  R, by accumulating the area. First we divided interval I 

into n not overlapping sub-intervals xi-1, xi, i = 1, ... , n, then we chose an arbitrary 

point i  (xi-1, xi) in each of them, and formed the sum of areas of small rectangles 

with sides equal to the lengths of sub-intervals xi = xi  xi-1  and the value of function 

f (i) at the chosen point from the respective interval. Thus we obtained an 

approximate formula  





n

i

ii xfA
1

).(  

for the calculation of the area of the defined curvilinear trapezoid, see in Fig. 3.1. The 

denser the division, the more precise results can be obtained. In a limit process for 

number of sub-intervals n tending to infinity we arrive to the concept of definite 

integral of function  f(x) over an integration domain I = a, b 

 




b

a

n

i

ii
ni

dxxfxfA )().(lim
1

 .

 

Fig. 3.1.  Area of a curvilinear trapezoid. 
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Consider now the following problem.  

Let D  E2 be a bounded region and f (x, y) be a non-negative continuous function of 

two variables defined on D. We want to find the volume of a curvilinear cylinder 

determined by D and f (x, y), it means the volume of the solid bounded from below by 

D lying in the plane xy, by the surface G(f) that is the graph of function f (x, y) from 

above, and by the corresponding cylindrical surface generated by lines passing 

through the boundary points of D and parallel to the coordinate axis z. The procedure 

is analogous to that for computing the area of a curvilinear trapezoid.  

First we divide D into n sub-regions D1, D2, ... , Dn not overlapping and such that areas 

A(D1), A(D2), ... , A(Dn) can be computed. Then we choose an arbitrary point from 

each sub-region [i, i]  Di, i = 1, 2, ... , n. Finally we form the sum 





n

i

iii DAfV
1

)().,(  . 

This number is equal to the volume of a solid bounded by parts of planes z = f(i, i) 

from above, therefore depending on the division of the region D and the choice of 

points [i, i]  Di, i = 1, 2, ... , n. It is natural to consider the acquired sum as an 

approximation of the desired volume of a given curvilinear cylinder, in Fig. 3.2.  

 

 
      

 

 

 

 

 

                    f(i, i) 

                                                                                        i 

 

                i 

 

 

 

Fig. 3.2.  Volume of a curvilinear cylinder. 
 

This idea leads to the concept of double integrals for functions of two variables, over 

plane regions. We will first discuss a simpler case, with the region D considered as a 

two-dimensional interval, i. e. a rectangle, and function f (x, y) is not necessarily non-

negative. 
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3.2 Double integrals 

 

Let I  E2 be a two-dimensional interval, which is the Cartesian product of two closed 

intervals a, b and c, d, i.e. a rectangular region 

I = {[x, y]  E2: a  x  b, c  y  d} = a, b  c, d. 

Let us take an arbitrary division of the interval a, b 

a = x0 < x1 < ... < xn-1 < xn = b 

and an arbitrary division of the interval c, d 

c = y0 < y1 < ... < ym-1 < ym = d 

where n and m are any natural numbers. By means of these two divisions, a division 

is given of the two-dimensional interval (rectangle) I consisting of n.m two-

dimensional sub-intervals (rectangles)  

Iij =  xi-1, xi   yj-1, yj, i = 1, ... , n, j = 1, ... , m 

such that  





mn

ji

ij

mn

ji

ij IAIAII
,

1,

,

1,

)()(and . 

Now let f (x, y) be any function of two variables, defined and bounded on I. In a similar 

way to above we can compute the sum 


mn

ji

ijji IAf
,

1,

)().,(  for any division of I and 

any choice of points [i, j]  Iij, i = 1, 2, ... , n, j = 1, ... , m, as the area of the two-

dimensional sub-intervals equals A(Iij) = xiyj . 

This number is called the integral sum of function f (x, y) over the rectangular region, 

two-dimensional interval I.  

If the limit of the integral sums exists as the area of the greatest two-dimensional sub-

interval (rectangle) approaches zero, it is called the double integral of function f (x, y) 

on (over) region I and denoted by 
I

dxdyyxf ),( . Therefore 







mn

ji

ijji
IA

I

IAfdxdyyxf
ij

,

1,
0)(max

)().,(lim),(  . 

Function f (x, y) is then called integrable on I. 

Sufficient condition of integrability 

If a bounded function of two variables possesses only a finite number of points of 

discontinuity on any two-dimensional interval I  E2, then it is integrable on this 

interval. 

Corollary. Every function of two variables, continuous on a two-dimensional interval 

I  E2 is integrable on I. 
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Examples  

1. Any function defined by the relations:  f (x, y) = 1 if x.y is rational, and f (x, y) = 0 

if x.y is irrational, is not integrable on any two-dimensional interval in E2.  

2. Function f (x, y) = c, where c is an arbitrary constant, is integrable on any two- 

dimensional interval and  

 )(),( IcAdxdyyxf
I

 . 

Geometric interpretation of double integral of function f (x, y)  0 on region I is the 

volume of solid T in E3
 that is bounded by planes z = 0, x = a, x = b, y = c, y = d and 

by the graph of function f , surface patch G(f ) with equation z = f (x, y) 

T = {[x, y, z]  E3: [x, y]  I, 0  z  f (x, y)}. 

 

 

Fig. 3.3.  Solids determined by various functions. 
 

Fubini theorem (simple form) 

Let function  f (x, y)  be continuous on a rectangular region  I = a, b  c, d, then 
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Two-dimensional intervals are planar regions with measurable areas. Any region, 

whose area is measurable is called a measurable region. All of the above 

considerations can therefore be rewritten for double integrals defined on measurable 

regions. Some basic properties of double integrals on measurable regions are 

presented in the following. 
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Properties of double integrals: 

1. Linearity: Let functions f1, f2, ..., fk  be integrable on a measurable region M  E2 

and let  c1,  c2, ... ,  ck  be real numbers, then 

  

 1 1 2 2

1 1 2 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

k k

M

k k

M M M

c f x y c f x y c f x y dxdy

c f x y dxdy c f x y dxdy c f x y dxdy

   

   



  
 

2. Additivity: Let function f  be integrable on a measurable region M  E2 that is the 

union of a finite number of measurable regions Mi  E2 with no common interior 

points, then 

          
k

i

iMM
1

       



k

i MM i

dydxyxfdydxyxf
1

),(),( . 

3. Monotonicity: Let functions f, g be integrable on a measurable region M  E2 and 

let for all points X = [x, y] M  hold that  f (x, y)   g(x, y), then 

 
MM

dydxyxgdydxyxf ),(),( . 

4. Positivity: Let function f be integrable on a measurable region M  E2 and let  

f (x, y)  0  for all  X = [x, y]  M, then 

 
M

dydxyxf 0),( . 

5. Let function f  be integrable on a measurable region  M  E2, then function   f   is 

also integrable on M and 

  
MM

dydxyxfdydxyxf ),(),( . 

 

Examples  

1. Double integral of function f (x, y) = x3  2xy + y2 over a two-dimensional interval 

1, 1  0, 2 can be evaluated in two ways: 
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2. Double integral of function f (x, y) = sin(x  y) over a two-dimensional interval 

π, π   0, π can be evaluated as follows: 
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The plane region 

Mxy = {[x, y]  E2: a  x  b, g(x)  y  h(x)},  

where a, b  R, a  b, g and  h are continuous functions defined on interval a, b, 

while for all  x  a, b it holds that  g(x)  h(x), is called regular region of type xy. 

Various forms of regular regions of type xy are illustrated in Fig. 3.4. 

 

          
 

             
 

Fig. 3.4. Regular regions of type xy. 

 

Similarly, various forms of regular regions Myx of type yx can be determined, while 

the description of a regular region Myx can be derived analogously to the description 

of the regular region Mxy, simply by exchanging variables. Therefore the independent 

variable x becomes a dependent variable and vice-versa, so that variable y is 

considered as an independently changing variable. 
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The plane region 

Myx = {[x, y]  E2: c  y  d, g(y)  x  h(y)},  

where c, d  R, c   d, and functions g and h are continuous on interval c, d , while 

for all y  c, d   it holds that  g(y)    h(y), is called a regular region of type yx. 

 

Examples 

1. Set }21:],{[  yxyxM 2
E  can be described in both ways, as a regular 

region of type xy, }2,21:],{[  yxxyxM xy

2
E , or as a regular region 

of type yx , }1,21:],{[ yxyyxM yx  2
E . 

2. Region }441:],{[ 2222  yxyxyxM 2
E  can be described as a union of 

regular regions sketched in Fig. 3.5, 
yxyx MMM 21  , where 

},144,11:],{[ 221 yxyyyxM yx  2
E  

}441,11:],{[ 222 yxyyyxM yx  2
E . 

 

 

Fig. 3.5.  Regular region M. 
 

The double integral of function f (x, y) of two variables on a regular region Mx or My 

can be defined similarly to a double integral on the double interval I = a, b  c, d . 

Let function f  be integrable on a regular region M, then the double integral of f over 

M exists and it is denoted 


M

dxdyyxf ),( . 

Analogous properties to those stated for integrals over measurable regions (double 

intervals) are valid also for double integrals on regular regions Mx or My, or on any 

union of a finite number of regular regions. Areas of these measurable regions can 

then be evaluated using these properties as double integrals of function f (x, y) = 1 over 

the respective regions.  
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These properties are:  

0. Sufficient condition of integrability 

1. Linearity 

2. Additivity 

3. Monotonicity 

4. Positivity  

5.  
MM

dydxyxfdydxyxf ),(),(  

 

For the evaluation of double integrals on regular regions, a strong form of the Fubini 

theorem can be used. 

Fubini theorem (strong form) 

Let function  f (x, y)  be continuous on a regular region of type x, 

Mx = {[x, y]  E2: a  x  b, g(x)  y  h(x)}, 

then 
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For function  f (x, y)  continuous on regular region of type y 

My = {[x, y]  E2: g(y)  x  h(y), c  y  d}  

it holds that 

dydxyxfdxdyyxf

d

c

yh

ygM

  














)(

)(

),(),( . 

 

Examples 

1. The double integral of function
y

x
yxf ),(  over set }21:],{[  yxyxM 2

E  

    can be evaluated as a double integral over a regular region of type xy, 
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2. The double integral of function
2

),( yeyxf  over }10:],{[  yxyxM 2
E  

can be evaluated as a double integral over a regular region of type yx only,  

}0,10:],{[ yxyyxM yx  2
E , it cannot be evaluated over region Mxy 
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3.  The double integral of function yxyxf  2),(  over the set bounded by two 

parabolas with equations  y = x2 and x = y2 can be evaluated as an integral over a 

regular region of type xy, see in Fig. 3.6. 

 },10:],{[ 2 xyxxyxM xy  2
E , 
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Fig. 3.6.  Regular region and graph of function of two variables. 
 

4. The double integral of function yxeyxf ),(  over unit disc with centre in the 

origin,  22 11,11:],[ yxyyyxM yx  2
E ,   

 cannot be evaluated analytically. Analogously, the double integral of function f  

over region bounded by two parabolas with equations  y = x2  1 and  y = x2 , 

 }1,
2

2

2

2
:],{[ 22 xyxxyxM xy  2

E ,  

 but these double integrals can be evaluated numerically, e.g. using the symbolic 

algebra system Mathematica we can receive the following approximated results 

 

 371421,0,99524,3  
 dxdyedxdye

xyyx M

yx

M

yx . 

Both regular regions with graphs of function yxeyxf ),(  over them are 

presented in Fig. 3.7. 
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Fig. 3.7.  Regular region and graphs of function of two variables. 

 

5. Archimedes (287 BC - 212 BC) discovered relation between volumes of basic 

geometric solids (Fig. 3.8), which can be verified by the evaluation of volume by 

means of double integrals. 

A1. Volume of a parabolic section of a cylinder of revolution equals to one-sixths 

of the volume of a prism circumscribed to this cylinder. 
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Fig. 3.8.  Archimedean problem. 
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3.3  Triple integrals 

 

Consider the following problem. Let a physical body occupy a bounded region D in 

space, D  E3, and let this body be non-homogeneous, meaning its mass density varies 

depending on the position of a point in the body. We can assume that the density is 

represented by a non-negative continuous function of three variables (x, y, z)  

defined on D. We want to find the total mass of this non-homogeneous solid. The 

procedure for the estimation of this mass is analogous to that for computing the 

volume of a curvilinear cylinder. We divide region D into n sub-regions D1, D2, ... , 

Dn , not overlapping and such, that volumes V(D1), V(D2), ... , V(Dn) can be computed. 

Then we choose an arbitrary point from each sub-region [i, i, i]  Di, i = 1, 2, ... , n 

and form the sum 

 



n

i

iiii DVm
1

)(.),,(  . 

This number is equal to the mass of a by parts homogeneous solid, depending on the 

division of the region D and the choice of points [i, i, i].  It is natural to consider 

this sum as an approximation of the desired mass of the given physical body. This 

idea leads to the concept of triple integrals for functions of three variables over space 

regions. In what follows we will discuss a simpler case, where the region D is a three 

dimensional interval, i. e. a rectangular parallelepiped, and the function f (x, y, z) is not 

necessarily non-negative. 

Let I  E3 be a three-dimensional interval, which is the Cartesian product of three 

closed intervals a, b, c, d and e, h, i.e. a prismatic region 

I = {[x, y, z]  E3: a  x  b, c  y  d, e  z  h } = a, b  c, d  e, h. 

Let us take an arbitrary division of the interval a, b 

a = x0 < x1 < ... < xn-1 < xn = b 

an arbitrary division of the interval c, d 

c = y0 < y1 < ... < ym-1 < ym = d 

and an arbitrary division of the interval e, h 

e = z0 < z1 < ... < zp-1 < zp = h 

where n, m and p are any natural numbers. These three divisions specify a division of 

the three-dimensional interval (prism) I consisting of n.m.p three-dimensional sub-

intervals (prisms)  

Iijk =  xi-1, xi   yj-1, yj   zk-1, yk, i = 1, ... , n, j = 1, ... , m, k = 1, ... , p 

such that 



pmn

kji

ijk

pmn

kji

ijk IVIVII
,,

1,,

,,

1,,

)()(and . 
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Now let f  (x, y, z) be any function of three variables, defined and bounded on I. In a 

similar way to above we can compute the sum 


pmn

kji

ijkkji IVf
,,

1,,

)(.),,(  for an 

arbitrary division of the three-dimensional interval I and an arbitrary choice of points 

[i, i, i]  Iijk, i = 1, 2, ... , n, j = 1, ... , m, k = 1, ... , p, while the volume of the three-

dimensional sub-intervals equals V(Iijk) = xi yj zk. 

This number is called the integral sum of function f (x, y, z) over the rectangular region, 

namely the three-dimensional interval I.  

If the limit of the integral sums exists, as the volume of the greatest three-dimensional 

sub-interval (prism) approaches zero, it is called the triple integral of function 

f (x, y, z) on (over) region I and it is denoted by dzdydxzyxf
I

 ),,( . Therefore 







pmn

kji

ijkkji
IV

I

IVfdzdydxzyxf
ijk

,,

1,,
0)(max

)(.),,(lim),,(  . 

Function f  (x, y, z) is then called integrable on I. 

Sufficient condition of integrability 

If a bounded function of three variables possesses only a finite number of points of 

discontinuity on a three-dimensional interval I  E3, then it is integrable on this 

interval. 

Corollary. Every function of three variables continuous on a three-dimensional 

interval I  E3 is integrable on I. 

 

Example 

1. Function f (x, y, z) = c, where c is an arbitrary constant, is integrable on any three 

dimensional interval I and )(.),,( IVcdzdydxzyxf
I

 . 

The physical interpretation of a triple integral of function  (x, y, z)  0 on region I is 

the mass of a non-homogenenous prism I in E3
 that is bounded by planes x = a, x = b, 

y = c, y = d, z = e, z = h, while its density varies according to a non-negative 

continuous function of three variables  (x, y, z) defined on I.  

 

Fubini theorem (simple form) 

If function f (x, y, z) is continuous on rectangular region  I = a, b  c, d   e, h, 

then 
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aI

dzdydxzyxfdzdydxzyxf ),,(),,( . 

In computing triple integrals over three-dimensional intervals by means of this 

theorem we can interchange the order of integrals appearing on the right hand side of 

the above equality. In fact, we have 6 possibilities how to rearrange them. 
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Three-dimensional intervals are space regions with measurable volumes. Any space 

region, whose volume is measurable is called a measurable region. All above 

considerations can be therefore rewritten for triple integrals defined on measurable 

regions. Some properties of triple integrals on measurable regions are given in the 

following. 

Properties of triple integrals: 

1. Linearity: Let functions f1,  f2, ...,  fk  be integrable on a measurable region M  E3
  

and  c1,  c2, ...,  ck  are real numbers, then 

 

.),,(...),,(),,(

),,(...),,(),,(

2211

2211
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kk

dzdydxzyxfcdzdydxzyxfcdzdydxzyxfc

dzdydxzyxfczyxfczyxfc

 

2. Additivity: Let function f  be integrable on a measurable region M  E3 that is the 

union of a finite number of measurable regions Mi  E3 with no common interior 

points, then 

          
k

i

iMM
1

       



k

i MM i

dzdydxzyxfdzdydxzyxf
1

),,(),,( . 

3. Monotonicity: Let functions f, g be integrable on a measurable region M  E3 and 

let it hold for all points X = [x, y, z]  M  that  f (x, y, z)   g(x, y, z), then 

 
MM

dzdydxzyxgdzdydxzyxf ),,(),,( . 

4. Positivity: Let function f   be integrable on a measurable region M  E3 and let the 

inequality  f  (x, y, z)  0  hold for all  X = [x, y, z]  M, then 

 
M

dzdydxzyxf 0),,( . 

5. Let function f  be integrable on a measurable region M  E3, then function   f   is 

also integrable on M and 

  
MM

dzdydxzyxfdzdydxzyxf ),,(),,( . 

 

Using the above properties, triple integrals over measurable regions can be evaluated, 

namely triple integrals defined over three-dimensional intervals, prismatic regions 

I = a, b  c, d   e, h  E3 and their unions. It is easy to show that for function 

f (x, y, z) = r, where r is an arbitrary real constant, the value of a triple integral of 

function f over region I is equal to the r-multiple of the region volume V(I), 

  
I

ehcdabrIrVdzdydxr ))()(()( . 
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Examples  

1. The volume of a prism I = a, b  c, d   e, h  can be evaluated as triple integral
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2. The triple integral of function f  (x, y, z) = 2(x + z) over I = 0, 13 equals: 
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3. The triple integral of function f (x, y, z) = x3 + xy + yz  over the three-dimensional 

interval 0, 1  0, 2  0, 3 can be evaluated for example as follows: 
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4. Triple integral of function f (x, y, z) = sin(x + y + z) over three-dimensional interval 

I = 0, π3 equals: 
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In E3 we can distinguish six types of regular regions: xyz, yxz, xzy, zxy, yzx, zyx. These 

represent various combinations of variables for functions of two variables and 

functions of one variable determining the boundaries of a generalised solid T in E3 

that is the domain of definition of function f (x, y, z) integrated over this region.  
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For example, the sets 

Rxyz = {[x, y, z]  E3: [x, y]  M, z1(x, y)  z  z2(x, y)}  

or 

R'xyz = {[x, y, z]  E3: [x, y]  M', z1(x, y)  z  z2(x, y)} 

where  z1(x, y)  z2(x, y)  are continuous and bounded functions on regular region 

M = {[x, y]  E2: a  x  b, g1(x)  y  g2(x)}  

or  

M' = {[x, y]  E2: c  y  d, h1(y)  x  h2(y)} 

are regular regions in E3 with respect to the plane xy, regular regions of type xyz 

 ),(),(),()(:],,[ 2121

3 yxzzyxzxgyxb,gxazyxRxyz  E  

or of type yxz 

 ),(),(),()(,:],,[ 2121

3 yxzzyxzyhxyhdyczyxRxyz  E . 

 

Examples 

1.  Set R = {[x, y, z]  E3, x2 + y2  z2  4, z  0} can be described as a regular region 

of the type xyz, see in Fig. 3.9, left. 

  4,1122:],,[ 22223  zyxxyx,xzyxRxyz E  

  

 

Fig. 3.9. Regular regions of types xyz and yxz. 

 

2.  The solid generated as a sub-space in E3 bounded by two paraboloids with the  

equations z = x2 + y2, z = 4  (x2 + y2), sharing a common circle x2 + y2 = 2 in the 

plane z = 2, see in Fig. 3.9, right, can be described as a regular region of type yxz, 

   222 22,22],[ yxyy:yxM yx  E  ,     

  22223 4,],[],,[ yxzyxMyx:zyxR yxyxz  E  . 
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Fubini theorem 

For function  f (x, y, z)  continuous on a regular region R of type xyz it holds that 
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If function  f (x, y, z)  is continuous on a regular region R' of type yxz, then 
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All properties of double integrals on region  a, b  c, d , or on a regular region M, 

analogously hold for triple integrals on region a, b  c, d   e, h, or on regular 

regions R, R' in E3, or on any set that is a union of a finite number of regular regions. 

These properties are:  

0. Sufficient condition of integrability 

1. Linearity 

2. Additivity 

3. Monotonicity 

4. Positivity 

5.  
DD

dzdydxzyxfdzdydxzyxf ),,(),,(  
 

Examples 

1. Triple integral of function f(x, y, z) = 2z on a region defined by equalities x = 0, 

y = 0, z = 1, x + y + z = 2 is triple integral over a regular region of type xyz, 

  yxzxyx:zyxR  21,10,10],,[ 3
E  , 

 and its value is 
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2. Triple integral of function f (x, y, z) = x + y + z over a region defined by 

  1,0,0,0],,[ 3  zyxzyx:zyxR E   

 can be evaluated as triple integral on regular region of type xyz, 
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3.4 Multiple integrals 

 

Multiple integral of function f (X) of more variables on an arbitrary measurable closed 

region G  En, n  1 is a generalisation of the concepts of double or triple integrals, 

therefore it can be defined in a similar way.  

Region G is called measurable, if there exists its measure, a unique positive real 

number denoted as μ(G).  

Let region G can be divided into n partial measurable not overlapping sub-regions Gi 

with measures denoted as μ(Gi), while  

1. Gi  Gj = , for all i  j, i, j = 1, ... , n 

2.  Gi = G, for i = 1, ... , n. 

If for any sequence of integral sums of function f (X) on G with the norms μ(Gi) 

convergent to zero 





n

i

ii Gf
1

)(.)(   

a unique proper limit exists, then this number is called multiple integral of function f 

on region G denoted 

dXXfGfI
G

n

i

ii
n  




)()(.)(lim
1

  

and function f (X) is said to be integrable on region G  En. 

Function f  integrable on a measurable closed region G  En is bounded on this region.  

Function f continuous (up to finite number of points) on a measurable closed region 

G  En is integrable on this region. 
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Properties of multiple integrals 

1. Linearity: If functions  f1,  f2, ...,  fk  are integrable on a region G  En  and  c1,  c2, 

... ,  ck  are real numbers, then 




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G

kk

GG

G

kk
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2. Additivity: Let function  f  be integrable on region  G   En and let 
k

i

iGG
1

 , 

where  Gi   En are measurable regions with no common interior points, then 

 



k

i GG i

dXXfdXXf
1

)()( . 

3. Monotonicity: Let functions  f,  g  be integrable on a measurable region G  En 

and let for all points X  G hold that  f (X)    g(X), then 

 
GG

dXXgdXXf )()( . 

4. Positivity: Let function  f  be integrable on a measurable region  G  En and let  

f (X)  0 for all  X  G, then 

 
G

dXXf 0)( . 

5. Let function  f  be integrable on a measurable region G  En, then function  f(X)  

is also integrable on G  and  

 
GG

dXXfdXXf )()( . 

 

3.5 Transformations in the plane 

 

Let M*  E2 be a non-empty set. A mapping (transformation) Φ from set M * to the set 

E2 is a rule by which every point [u, v]  M * can be associated with a unique point 

[x, y]  E2. Point [x, y] is the image of point [u, v] in the given mapping denoted 

   [x, y] = Φ([u, v]), 

while set M * is the domain of this mapping Φ. 

Transformation Φ is determined by two functions of two variables 

x =  1(u, v) 

y =  2(u, v) 

defined on set M *. 
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Transformation Φ: M *  E2 is called a one-to-one mapping, if for any two points 

[u1, v1], [u2, v2]  M * it holds that 

[u1, v1]  [u2, v2]  Φ([u1, v1])  Φ[u2, v2], 

which means that the images of two different points are two different points.         

For any one-to-one mapping Φ there exists a mapping Φ−1 from the set M = Φ(M *) to 

the set M * such, that for any [x, y]  M = Φ(M *) it holds 

    Φ−1([x, y]) = [u, v]  Φ([u, v]) = [x, y]. 

Mapping Φ−1 is called the inverse mapping of the mapping Φ and it is determined by 

the equations 

u =  1
-1(x, y) 

v =  2
-1(x, y) . 

  Mapping Φ: M *  E2 determined by relations  

 [u, v]  [x, y] = [ 1(u, v),  2(u, v)] 

is said to be continuous at the point [u0, v0]  M *, if functions  1,  2  are continuous 

at this point. In the case of functions  1,  2   continuous on set M *, mapping Φ is said 

to be continuous on set M *. 

Any one-to-one continuous mapping maps a simple curve to a simple curve.       

Mapping Φ: M *  E2, M*  0, M *  E2 is said to be regular on M *, if the following 

properties hold: 

1. functions  1,  2  have continuous partial derivatives on set M * with respect to 

both variables  

2.  for all [u, v]  M * 
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),(),(

),(),(

),(
22

11




















v

vu

u

vu
v

vu

u

vu

vuJ




. 

Determinant J(u, v) is called the Jacobi functional determinant of mapping Φ, or the 

Jacobian in short. The sign of the Jacobian J(u, v) of any regular mapping Φ on the 

set M * is the same at all points [u, v]  M *. 

Any regular mapping on M *, Φ: M *  E2 is continuous on M *. 

A one-to-one mapping maps any regular region to a regular region, and any closed 

region to a closed region. 

Let Ω*  E2 be a regular region and let mapping Φ: Ω*  E2 be one-to-one and regular 

on Ω*. If G*  Ω* is a measurable closed region, then G = Φ(G*) is also a measurable 

closed region and   

 
*

),()(
G

dvduvuJG . 
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3.6 Double integrals in polar coordinates 

 

Transformation to polar coordinates is a useful technique leading to a considerably 

easier representations of many curves and regions described by complicated formulas 

in Cartesian coordinates. It is often used for the description of domains of integration, 

which are plane regions bounded by arcs of circles, and for evaluation of double 

integrals of functions defined by formulas, in which square roots of sums of squares 

of variables appear. This is namely the case of functions whose graphs are parts of 

quadratic surfaces.  

Let P be a fixed point in the plane. The half-line o  with the start point P and a 

revolution about point P in the positive (anti-clockwise) sense determine a polar 

coordinate system (P, o , ) in the plane. Point P is called the pole (origin) of the 

coordinate system, half-line o is the polar axis of this system.  

Each point M in the plane can be attached an ordered pair of real numbers, M = (ρ, ), 

whose geometric interpretation is clear from Fig. 3. 10:  

1. ρ = |PM|  is the distance of point M to the pole P, 

2.  = |∢( PMo, )| is the size of positively oriented angle with the vertex in the 

pole P, formed by the polar axis o  and half-line PM . 

Ordered pair of real numbers (ρ, ) is called the polar coordinates of a point, number 

ρ  0, ) is the modul, while number    0, 2π) or   (−π, π is the polar angle. 
 

 
Fig. 3.10.  Polar coordinates in plane. 

 

Let both, polar (P; o , ) and Cartesian (O; x, y) coordinate systems be determined in 

the plane E2, while P = O, and polar axis o  coincides with the positive part of the 

coordinate axis x, as in Fig. 3.10. These two systems can be mapped to one another, 

and the relations between the two pairs of coordinates of point M ≠ O are defined by 

the equations 

xM = ρ cos ,  yM = ρ sin ,  0    ,  0     2π . 

Because 022  MM yx , the following equations hold 

    
2222

sin,cos
MM

M

MM

M

yx

y

yx

x





  . 
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In the case ρ = 0, and therefore x = y = 0, the polar angle is not defined by the equations 

above, and for polar coordinates of the pole holds P = (0, ), for arbitrary number . 

Mapping of the plane with the polar coordinate system to the plane with the Cartesian 

coordinate system is called the polar transformation of the plane.  

Polar transformation is a one-to-one and regular mapping  

   22 ],[),(*: E yxΩΩΦ R  

defined on the set  π20,0:),( 2   RΩ  and determined by the 

relations 

x = ρ cos , y = ρ sin , while 0,arctan,22  x
x

y
yx  , 

while  = π/2 for x = 0, y > 0, and  = 3π/2 for x = 0, y < 0. 

The Jacobi determinant (Jacobian) of the polar transformation is 

    0sincos
cossin

sincos
),( 22 


 




J .      

There are many important plane curves consisting of the points whose polar 

coordinates, in contrary to the Cartesian coordinates, satisfy a simple equation of the 

form  = f (), e.g. the polar equation of a circle is   = a sin , a > 0. 

 

Examples 

1. Graphs of some curves with polar equations  

   = a(1 cos ), a > 0, 0    2π, cardioid 

 0,2cos  aa  , 0    2π, leminscate of Bernoulli  

   = a, a > 0, 0    2π, Archimedean spiral 

 0,sin  ana  , n - natural, 0    2π, 2n leaved rose 

 are presented in Fig. 3.11, from left to right. 

  

 

Fig. 3.11.  Graphs of curves determined in polar coordinates. 

 

Domain of integration is often a plane region not bounded by lines, but by curves, as 

for instance: combinations of line segments, arcs of circles, or parts of other conic 

sections, like ellipses or hyperbolas. Especially in these cases it is simpler to describe 

the regions in polar coordinates. 
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Examples 

1. Regular region described in Cartesian coordinates 

 91:],[ 222  yxyxR E  in Fig. 3.12, left, 

 can be rewritten in polar coordinates as  

  π20,31:),( 2*   RR , 

 and region  0,402:],[ 22222  yyxyyxyxR E   in Fig. 3.12, 

middle, as  π0,2sin2:),( 2*   RR . 

2. Closed set of points in E2 bounded by two circles x2 + y2 = 2, x2 + y2 = 6 and two 

lines y = x, y = x for x > 0 can be easily described in polar coordinates as the 

region 

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4

π

4

π
,62:),( 2*  RR , see in Fig. 3.12, right. 

           

Fig. 3.12.  Planar regions described in Cartesian coordinates. 

3. Below regions described in polar coordinates are sketched in Fig. 3.13. 
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Fig. 3.13.  Planar regions described in polar coordinates. 
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The rule for change of variable in the definite integral plays an extremely important 

role in practical integration. It states: If  is a function defined on an interval I such 

that the derivative of  is continuous and different from zero on the interval I and f is 

a function continuous on  (I), then 

dtttfdxxf
II

)())(()(
)(




 . 

Change of variables in double integrals is used not only in the case of too complicated 

integrands (functions to be integrated), but also in the case of too complicated domains 

of integration. The rule for change of variables in the double integrals is essentially 

more complicated, therefore we will restrict all considerations to the final formula and 

to the case of the transformation from Cartesian coordinates to polar ones. 

Let Ω*  E2 be a regular region and let the mapping Φ: Ω*  E2 be a regular and one-

to-one transformation on Ω*given by formulas 

 x =  1(u, v), y =  2(u, v),  

where  1 and  2 are real functions of two variables. Let G*  Ω* be a measurable 

closed region and let function f(x, y) be continuous on the closed region G = Φ(G*). 

Then the formula for change of variables in double integrals has the form 

dvduvuJvuvufdydxyxf
GG

),()),(),,((),(
*

21   , 

where J(u, v) is the Jacobian of transformation Φ. 

Remark. Note that functions  1,  2, f  and their partial derivatives must be continuous 

on their respective domains of definition.  

Applying the general formula to the transformation Φ from Cartesian coordinates 

[x, y] to polar coordinates (, ) given by the formulas 

x =  1(ρ, ) = ρ cos  

y =  2(ρ, ) = ρ sin  

with the Jacobian  

0
cossin

sincos
),( 


 




vuJ  

the formula for polar transformation in double integrals can be obtained 

 ddfdxdyyxf
RR

 
*

)sin,cos(),( , 

where R* = Φ 
-1(R). Regions R and R* are domains of integration in the plane E2, while 

 and  can be interpreted as Cartesian coordinates in the plane. 

The presented change of variables may substantially simplify the given integral, as it 

may lead for instance to constant limits of integration in the transformed integral. 
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Examples 

1. The integral  
R

dydxyx )( 22  over the region  4:],[ 222  yxyxR E  can 

be easily evaluated in polar coordinates as an integral on the region 

   π20,20:),( 2*   RR , 
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2. The evaluation of the integral  
R

dydxyx )( 22  on more complicated region 

described in the Cartesian coordinates as  xyyxyxR  ,41:],[ 222
E  

can be simplified by means of transformation to polar coordinates, over the 

integration region 
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3. The integral 
R

dydxx , while R is the set bounded by the curve x2 + y2  2y = 0, 

can be evaluated in polar coordinates. The boundary of the set R is a circle with 

the unit radius and shifted centre, x2 + (y  1)2 = 1, therefore in polar coordinates 

it is described as  π0,sin20:),( 2*   RR , see Fig. 3.13, left. 

Transformation to the integral yields  
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3.7   Transformations in the space  

 

Let T*  E3 be a non-empty set. A mapping (transformation) Φ from the set T* to the 

set E3 attaching to every point [u, v, w]  M* a unique image, point [x, y, z]  E3 is 

determined by three functions of three variables 

x =  1(u, v, w) 

y =  2(u, v, w) 

z =  3(u, v, w) 

while set T* is the domain of this mapping Φ. 

Mapping Φ: T*  E3 determined by the relations  

 [u, v, w]  [x, y, z] = [ 1(u, v, w),  2(u, v, w),  3(u, v, w)] 

is said to be continuous at the point [u0, v0, w0]  T*, if functions  1,  2  and  3  are 

continuous at this point. When all three functions  1,  2,  3  are continuous on set T*, 

mapping Φ is said to be continuous on set T*. 

Any one-to-one continuous mapping of the space maps a regular surface patch to a 

regular surface patch.       

Mapping Φ: T*  E3, T*  0, T*  E3 is said to be regular on T*, if the following 

properties hold: 

1. functions  1,  2,  3  have continuous partial derivatives on set T* with respect 

to all three variables  

2.  for all [u, v, w]  T* 
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
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. 

Determinant J(u, v, w) is called the Jacobi functional determinant (the Jacobian) of 

mapping Φ. The sign of the Jacobian J(u, v, w) of any regular mapping Φ on the set 

T* is the same at all points [u, v, w]  T*. 

Any regular mapping on T*, Φ: T*  E3 is continuous on T*. 

A one-to-one mapping maps any regular region to a regular region, and any closed 

region to a closed region. 

Let Ω*  E3 be a regular region and let mapping Φ: Ω*  E3 be one-to-one and regular 

on Ω*. If G*  Ω* is a measurable closed region, then G = Φ(G*) is also a measurable 

closed region and   

 
*

),,()(

G

dwdvduwvuJG . 
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3.8  Triple integrals in cylindrical coordinates 

 

Similarly to the two-dimensional plane, the rectangular coordinate system in three 

dimensional space is not appropriate to all types of problems. There are circumstances 

in which other systems are more convenient. In some problems concerning triple 

integrals over some special types of domains of integration we will use cylindrical 

coordinates, which can be regarded as a simple three dimensional extension of the 

polar coordinate system. 

Let a plane π  and perpendicular line  p  be  given, while a polar coordinate system  

(P; o , ) be determined in the plane π such, that the pole P is the intersection point of 

plane π and line p. Plane π with the polar coordinate system and coordinate axis p with 

origin at the point P determine a cylindrical coordinate system (P; o , , p) in the three 

dimensional space. 

Any point M in the space is attached a unique triple of real numbers, its cylindrical 

coordinates M = (ρ, , z), while 

1. ρ,  are polar coordinates of the orthogonal view M1 of point M to plane π in 

polar coordinate system (P; o , ) 

2. z is an oriented distance of point M and plane π  

     and it holds ρ  (0, ∞),   [0, 2π), or   (−π, π], and z  (−∞,∞). 

 
Fig. 3.14. Cylindrical coordinate system in space. 

 

Pole P is the orthographic view of an arbitrary point M on coordinate axis z to plane 

π, therefore cylindrical coordinates of all points on the axis z are represented by a 

triple of real numbers (0, , z), for an arbitrary number .  

Let the Cartesian coordinate system (O; x, y, z) and the cylindrical coordinate system 

(P; o , , p) be given. These two coordinate systems are said to be related, if: 

1. plane π determining the cylindrical coordinate system (P; o , , p) coincides 

with the coordinate plane xy of the Cartesian coordinate system (O; x, y, z) 

2. the polar coordinate system (P; o , ) and the Cartesian coordinate system 

(O; x, y) in the plane π are the related coordinate systems 

3. axis p of the cylindrical coordinate system (P; o , , p) coincides with the   

coordinate axis z of the Cartesian coordinate system (O; x, y, z). 
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Let [x, y, z] be the Cartesian coordinates and (ρ, , z) be the cylindrical coordinates of 

point M not on the coordinate axis z, then their relation can be determined by the 

following equations 

x =  1(ρ, ) = ρ cos ,   y =  2(ρ, ) = ρ sin ,   z =  3(ρ, ) = z 

and because x2 + y2 > 0 
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All points with the constant first cylindrical coordinate ρ = a, a > 0 are points on the 

cylindrical surface of revolution with a basic circle in the plane π. The centre of this 

circle is at the point P and its radius equals a. The coordinate axis p is the axis of this 

cylindrical surface of revolution, while all generatrices  lines on the surface, are 

parallel to this axis, see in Fig. 3.14, on the right. 

Transformation of space E3, in which a cylindrical coordinate system is transformed 

to the Cartesian orthogonal coordinate system is called a cylindrical transformation of 

the space. The Jacobi determinant (the Jacobian) of the cylindrical transformation is 

    0
cossin

sincos

100

0cossin

0sincos

),,( 






 







 zJ .      

Therefore, the cylindrical transformation of the space is a regular transformation at all 

points in E3, but the origin of the coordinate system.  

The cylindrical coordinates are suitable mainly to describe solids enclosed by the 

cylindrical surfaces. 

 

Examples 

1. Equation ρ = 1, for 0    2π, 0  z  1 in cylindrical coordinates represents a patch 

of the cylindrical surface of revolution with radius 1 and axis z of a unit height. 

This can be described in the Cartesian coordinates as a set of points whose 

coordinates satisfy the relations x2 + y2 = 1 and 0  z  1. 

2. Plane of symmetry of coordinate planes xz and yz passing through the coordinate 

axis z can be represented in cylindrical coordinates by the equation  = π/2, while 

the equation z = a, a  R represents a plane perpendicular to the coordinate axis z. 

3. The equation z  in the cylindrical coordinates represents a paraboloid of 

revolution with vertex at origin and axis in the coordinate axis z, while the equation  

z =   describes the positive part of a conical surface of revolution with the vertex 

at origin and generatrices forming angle π/2 with coordinate planes xy, which are 

depicted in Fig. 3. 15 on the left and in the middle. 
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4. Inequalities 1    3, 0    π/2, 1  z  2 describe a part of a cylinder of revolution 

with axis in coordinate axis z, radius 3 and height 1, illustrated in Fig. 3.15, right.  

        
Fig. 3.15.  Space regions described in cylindrical coordinates. 

 

A change of variables in triple integrals is used in a similar way as in double integrals 

not only in the case of complicated integrand functions, but even more frequently for 

complicated domains of integration. Domain of integration is often a space region not 

bounded by planes but by several surfaces, which could be, for instance, parts of 

cylindrical or spherical surfaces. Especially in these cases it is simpler to describe the 

regions by means of cylindrical instead of Cartesian coordinates.  

Let Ω*  E3 be a regular region and let mapping Φ: Ω*  E3 be a regular and one-to-

one transformation on Ω*given by formulas 

 x =  1(u, v, w), y =  2(u, v, w), z =  3 (u, v, w) 

where  1,  2 and  3 are real functions of three variables. Let T*  Ω* be a measurable 

closed region and let function f(x, y, z) be continuous on a closed region T = Φ(G*). 

Then the formula for the change of variables in triple integrals has the form 

dwdvduwvuJwvuwvuwvufdzdydxzyxf
T T

),,()),,(),,,(),,,((),,(
*

321   , 

where J(u, v, w) is the Jacobian of transformation Φ. 

Remark. Note that functions  1,  2,  3, f and all their partial derivatives must be 

continuous on their respective domains of definition.  

Applying the general formula to the transformation Φ from Cartesian coordinates 

[x, y, z] to cylindrical coordinates (, , z) given by the formulas 

x =  1(ρ, , z) = ρ cos ,    y =  2(ρ, , z) = ρ sin ,    z =  3(ρ, , z) = z 

with the the Jacobian 0),,(  wvuJ , the formula for cylindrical transformation in 

triple integrals can be obtained 

dzddzfdzdydxyyxf

TT

 
*

),sin,cos(),,( , 

where T* = Φ-1(T). Regions T and T* are domains of integration in the space E3, while 

,  and z can be interpreted as Cartesian coordinates in the space. 
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Examples 

1. 
T

dzdydxz , where T is bounded by surfaces x2 + y2 = 4,  z = 1, z = 3 (illustrated 

in Fig. 3.16, left) can be represented in the cylindrical coordinates as the integral 

 
*T

dzddz  , while region T is thus transformed to the region 

   31π,20,20:),,( 3*  zzT  R , which yields the evaluation 
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2. Integral  
T

dzdydxyx )( 22  on set  2,0,2:],,[ 223  zyzyxzyxT E  

illustrated in Fig. 3.16, middle, is represented in the cylindrical coordinates as the 

 integral 
*

3

T

dzdd  , on the region described in the cylindrical coordinates 
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leading to the evaluation 
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Fig. 3.16.  Integration regions in space. 
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3. Evaluation of integral  
T

dzdydxyxz )( 22  on the set T bounded by planes z = 0, 

z = 1 and by surface x2 + y2 = 2x, while y  0, illustrated in Fig. 3.16, right, can be 

simplified by transformation to the cylindrical coordinates, leading to integration 

on the set   10π,π,cos20:),,( 3*  zzT  R , which 

yields the following integration 
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3.9 Triple integrals in spherical coordinates 

 
Another coordinate system that proved to be useful for the description of special sets 

in space E3 is the spherical coordinate system. The most fruitful and generally known 

application of the spherical coordinate system can be seen in cartography and geodesy. 

The position on the globe as a model of the Earth can be easily determined by two 

angles, known as azimuth (longitude) and elevation, which describe the position on 

the globe related to the set of defined meridians and parallels. These angles simply 

represent the position as two specific angles of revolution. One of them is the angle 

of revolution about the axis of the globe measured in the counter-clockwise orientation 

from the prime meridian passing through London to the actual position, called azimuth 

(longitude). The other, elevation, is the angle of revolution from the plane passing 

through the globe’s centre perpendicularly to the axis of the globe. The equator located 

in this plane is the parallel circle with the largest radius, i.e. radius equal to the radius 

of the Earth estimated as r = 6378 km.   

 

Let S be a fixed point in the plane π, and let half-line 
1p with the start point  S and 

counter-clockwise revolution about point S in the plane π determine the polar 

coordinate system (S; 
1p , ) in this plane. Let line 

2p  be passing through the point S 

perpendicularly to the plane π, 
2p   π. Plane π with the polar coordinate system and 

half-line 
2p  form the spherical coordinate system (S; 

1p , , 
2p ) in the space. Half-

lines 
1p  and 

2p  are coordinate axes and pole S is the origin of this spherical 

coordinate system. 

Any point M in the space can be attached a unique triple of real numbers,  

M = (ρ, , ζ), whose geometric interpretation can be understood from Fig. 3. 17.   
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The following relations are valid:  

    1.  ρ = |SM|, therefore ρ is the distance of points M and S 

     

    2.  = |∢(
1p , 

1SM )|, therefore  is the oriented angle with the vertex at the 

point S, with the starting arm formed by half-line 
1p  and the end arm by half-

line 
1SM , while M1 is the orthographic view of point M in the plane π 

      

    3. ζ = |∢(
2p , SM )|, therefore ζ is the angle formed by half-lines 

2p  and SM . 

      

The ordered triple of real numbers (ρ, , ζ)  determines  the spherical coordinates of 

point, where ρ  (0, ∞),   [0, 2π), or   (−π, π], ζ  [0, π).  

All points M on line p are attached spherical coordinates in the form (ρ, , ζ), where 

 is an arbitrary number, and ζ = 0 for all points on half-line 
2p , while ζ = π for all 

points on the opposite half-line. 

 
Fig. 3.17.  Spherical coordinate system in space. 

 

The spherical coordinate system (S; 
1p , , 

2p ) is related to the Cartesian coordinate 

system (O; x, y, z) in the space, if: 

    1. plane π determining the spherical coordinate system (S; 
1p , , 

2p ) coincides 

with the coordinate plane xy of the Cartesian coordinate system (O; x, y, z) 

    2. point S coincides with the origin O and oriented half-line 
1p  coincides with 

the positive part of the coordinate axis x 

    2. oriented half-line 
2p  coincides with the positive part of the coordinate axis z.  

      

Similarly to polar and cylindrical coordinates, the relation between spherical 

coordinates of a point in the space and its related Cartesian coordinates can be 

determined by the means of three continuous functions of three variables.  
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Let [x, y, z] be the Cartesian coordinates and (ρ, , ζ) be the spherical coordinates of 

point M that is not on coordinate axis z. Then their relationships can be represented 

by the following equations 

x = ρ cos  sin ζ,   y = ρ sin  sin ζ,   z = ρ cos ζ 

and because x2 + y2 + z2  > 0, 

.arccos

0,arccos2,0,arccos

222

2222

222

zyx

z

y
yx
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y

yx
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zyx
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







 

All points with the constant first spherical coordinate ρ = a, a > 0 are points on the 

sphere with the centre at the origin S and radius a. The spherical coordinates are 

appropriate mainly to describe solids enclosed by spheres. 

 

Examples 

1. The equation ρ = 1, for 0    2π, π/2    π in spherical coordinates represents 

a half-sphere with the radius 1 in the half-space determined by the negative part of 

coordinate axis z. This can be described in Cartesian coordinates as the set of points 

whose coordinates satisfy the equation  )(1 22 yxz  . 

2. Equation  = π in spherical coordinates is the equation of the coordinate half-plane 

xz with a boundary line in coordinate axis z and determined by the negative part of 

coordinate axis x, defined in the Cartesian coordinates by equations x = ρ sin ζ, 

y = 0, z = ρ cos ζ, for 0   < , 0    π, and equation  = 0 defines the positive 

half-line in coordinate axis z with the Cartesian coordinates x = 0, y = 0, z = ρ. 

 3. The region defined in spherical coordinates as 

  









4

π
π,20,20:),,( 3*  RzT   

 is illustrated in Fig. 3.18, on the left, a patch of the cylindrical surface of revolution; 

 the region defined as  π0π,,21:),,( 3*   RzT  illustrated in 

Fig. 3.18, in the middle, is a half-annulus in the coordinate plane xz  

 and the region represented in spherical coordinates as 

 









4

3π

4

π
π,20,20:),,( 3*  RzT   

illustrated in Fig. 3.18, on the right, is a ball with the centre at the origin S and 

radius 2, with removed double cylinder of revolution with spherical cap bounded 

by circles with radii 2 in the planes 2z . 



89 
 

   

Fig. 3.18.  Regions in space determined in spherical coordinates. 

 

Transformation of the space with the spherical coordinate system to the space with 

the orthogonal Cartesian coordinate system represents so called spherical 

transformation of the space. The spherical transformation is a one-to-one and regular 

mapping defined on the set 

 π0π,20,0:),,( 3*   RΩ . 

The Jacobi determinant (the Jacobian) of the spherical transformation is represented 

as follows 
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If T*  Ω* is a closed measurable region, and function f of the three variables is 

continuous on the set T = Φ(T*), then it holds 

dzddfdzdydxyyxf
TT

 sin)cos,sinsin,sincos(),,( 2

*

  . 

 

Examples 

1. To evaluate the triple integral  
T

dzdydxzyx )( 222  on the set T determined by 

the relations x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 = 1 is quite simple after transformation 

to spherical coordinates, receiving thus integral 
*

sin4

T

ddd   over region 










2

π
0,

2

π
0,10:),,( 3*  RzT , leading to the evaluation 

of the  following integral 
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2. The integral  
T

dzdydxyx )( 22  on the set defined in the Cartesian coordinates 

 0,94:],,[ 2223  zzyxzyxT E  can be simplified by transformation 

to the spherical coordinates, leading to an integration on the set 
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3. The integral 
T

dzdydxz  on the set  zzyxzyxT  2223 :],,[ E  can be 

simplified by transformation to the sphericaél coordinates, leading to integration 

on the set  

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Region T is ball bounded by sphere with Cartesian equation x2 + y2 + z2  z = 0, 

which can be rewritten as  x2 + y2 + (z  0.5)2 = 0.25, with radius 0.5 and its 

centre at the point [0, 0, 0.5] on the coordinate axis z. Equation of this sphere in 

spherical coordinates is  = cos , for   0, /2. 
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3.10 Applications of multiple integrals 

 

Double integrals were primarily introduced for the calculation of volume. The most 

natural application of double integrals, which can be easily visualized geometrically, 

is that if f(x, y) is a non-negative (continuous) function defined on a region R  E2, 

then the double integral of function f over region R represents the volume of a solid S 

bounded by the graph of f, surface z = f(x, y) form above, by the coordinate plane xy 

from below and laterally by a cylindrical surface generated by vertical lines passing 

through all points of the boundary of R, 


R

dydxyxfSV ),()( .  

 

Examples 

1. Volume of a tetrahedron bounded by coordinate planes and plane z = 4  4x  2y   

in Fig. 3.19, left, can be evaluated as a double integral over the region 

   xyxyxR 220,10:],[ 2  E , 
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2. Volume of a solid in the first octant that is bounded from above by the paraboloid  

 z = 12  (x2 + 3y2) and laterally by the surfaces y = x2 and y = 2  x2 illustrated in  

Fig. 3.19, middle, equals to the double integral over the region  

 222 2,10:],[ xyxxyxR  E , 
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3. The solid bounded by the surface z = ey-x, plane x + y = 1 and coordinate planes, 

Fig. 3.19, right, has its volume represented by the double integral  
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Fig. 3.19.  Solids bounded by surface patches and planes. 

 

4. The relationship between the volumes of other basic geometric solids (Fig. 3.20) 

that were discovered by Archimedes (287 BC - 212 BC) are the following: 

 A2. Paraboloid has a volume of three-halves of the inscribed cone and one half of 

the circumscribed cylinder. 

          

Fig. 3.20. Archimedean problems A2. 

 

Consider the paraboloid z = 4  (x2 + y2) and the inscribed cone 2224 yxz   

with a common disc x2 + y2  4 in the coordinate plane xy. Their volumes can be 

evaluated by means of a transformation to polar coordinates over the region  

 π20,20:],[ 2*   RR , 
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Fig. 3.21. Archimedean problems A3. 

 

A3. Semi-sphere has a volume of two-thirds of the circumscribed cylinder and 

double the volume of the inscribed cone. 

The volume of a semi-sphere with the centre at the origin and radius r can be 

calculated as a double integral dxdyyxrSV
R

  222)(  over the region  

 22222 ,:],[ xryxrrxryxR  E . 

Using the transformation to polar coordinates calculation can be simplified to an 

integration over region   π20,0:],[ 2*   rR R , 
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Volume of a cylinder circumscribed to the above semi-sphere equals to the integral  

dxdyrCCV
R
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Using the transformation to polar coordinates and integration over the region  
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The volume of a cone inscribed to the above semi-sphere is  

  dydxyxrCIV
R

  22)( ,

 22222 ,:],[ xryxrrxryxR  E . 

Transforming to polar coordinates as above we obtain 
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From the geometric meaning of double integrals it easily follows that if f (x, y) and 

g (x, y) are two continuous functions defined on a region R  E2 and such that for each 

[x, y]  R holds f (x, y) ≤ g (x, y), then the volume of the solid S enclosed by the graph 

of function f (x, y) from above, by the graph of function g (x, y) from below and 

laterally by a cylindrical surface generated by vertical lines passing through all points 

of the boundary of R is 

  
R

dydxyxfyxgSV ),(),()( . 

Examples 

1. The volume of a solid bounded by the conical surface  z2 = x2 + y2  and by the 

cylindrical surface x2 + y2 = 4 in Fig. 3.22, left, can be calculated, due to its 

symmetry with respect to the coordinate plane z = 0, as the double integral 

 
R

dydxyxV 222 ,  222 44,22:],[ xyxxyxR  E . 

This integral can be simplified using polar coordinates to an integral on the region 

 π20,20:],[ 2*   RR , 
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2. The solid with the boundary in the conical surface 22 yxz  and hemisphere 

 224 yxz   depicted in Fig. 3.22, in the middle, has the volume equal to the 

value of the double integral    
R

dydxyxyxV 22224  on the region 

 222 22,22:],[ xyxxyxR  E  . 

Simplification using polar coordinates yields an integration over the simple 

transformed region  π20,20:],[ 2*   RR , therefore 
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3. By means of double integration the volume of a solid in the first octant given by 

inequalities x + y ≤ z ≤ 2, the tetrahedron in Fig. 3.22, right, can be calculated as  
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Fig. 3.22. Volumes of solids. 

 

Double integrals can be also used for the calculation of the area, both of a surface 

patch, or a plane region. For the purpose of the area of a region R in the plane xy we 

consider the solid consisting of points between the plane z = 1 and region R in the 

plane z = 0. The volume V of this solid is equal to the value of the double integral of 

function f over region R, and simultaneously this volume equals to the product of the 

area of the region R and the height of this solid, V = A(R) . 1, from which immediately 

follows that 

 
R

dydxRA 1)( . 

 

Examples 

1. Area of a region enclosed by curves y2 = 9  x and y = 3  x in Fig. 3.23, left,  

 32,93:],[ 22  yyxyyxR E  
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equals to the value of the double integral  
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2. The area of the region R bounded by graphs of functions y = sin x and y = cos x 

on interval 0  x  π/4 equals to the double integral 

     12cossin)sin(cos1)( 4
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   xxdxxxdxydydxRA
x

x

x

x

. 

3. Transformation to polar coordinates can be used for the calculation of the area of 

the region enclosed by the three-level rose  = sin 3  (see Fig. 3.23, middle). One 

sixth of the entire region lies between the lines through origin forming the polar 

angles  = 0 and   = π/6 with the polar axis, Fig. 3.22, right. Using the symmetry, 

area of the region can be evaluated as  
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Fig. 3.23. Integration regions. 

 

If a function f(x, y) has continuous first partial derivatives on a closed region R  E2, 

then the area of a surface patch S given by the equation z = f(x, y), [x, y]  R equals 

    
R

yx dydxyxfyxfSA
22

),(),(1)( . 

This formula can be used for the calculation of a surface area of any surface patch 

determined as graph of function of two variables differentiable on a closed measurable 

region in E2. 

 



97 
 

Examples 

1. The area of a paraboloid patch z = x2 + y2  over the region 

  222 11,11:],[ xyxxyxR  E , Fig. 3. 24, left, 

equals to the value of the double integral over this region from function 

    22
),(),(1 yxfyxf yx

 , while  

yyxfxyxfyxyxf yx 2),(,2),(,),( 22  , therefore 
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dxdyyxSA . This integral can be simplified by means of 

polar transformation to double integral over the region 

  π20,10:],[ 2*   RR , 
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2. The area of the cylindrical surface patch x2 + z2 = 4 above the rectangular region 

R = 0, 1  0, 4  E2 illustrated in Fig. 3.24, right, equals to  
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Fig. 3.24.  Surface patches as graphs of functions f(x, y) on set R. 
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Let us consider a thin plate (lamina) in E2 occupying a regular region R. The plate is 

supposed to be sufficiently thin so that the mass density is a function of only two 

variables, namely x and y, denoted as (x, y). Then the total mass M of this plate is 


R

dydxyxM ),( . 

By means of the double integration we can also find other physical characteristics of 

the plate, for example its static moments about the coordinate axes and the coordinates 

of its centre of mass (centre of gravity). 

The static (first) moments about coordinate axes of the plate are 

 
R

y

R

x dydxyxxSdydxyxyS ),(.,),(.  . 

Denoting T = [xT, yT]  E2 the centre of mass of the plate, then the coordinates of T 

are computed as follows 


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Rx
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Ry
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S
y

dydxyx

dydxyxx

M

S
x

),(

),(.

,
),(

),(.









. 

In the special case of a homogeneous region (lamina) R, (x, y) = const., the centre of 

gravity is called the centroid of the region, and its coordinates are consequently 

calculated as 

 
R

T

R

T dydxy
RA

ydydxx
RA

x
)(

1
,

)(

1
. 

 

Examples 

1. The lamina bounded by coordinate axis x, line x = 1 and curve y = x with density 

(x, y) = x + y illustrated in Fig. 3. 25, left, has a mass equal to the value of the 

double integral over the region  xyxyxR  0,10:],[ 2
E ,  
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Coordinates of the centre of gravity of this lamina are 
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2. The mass of a rectangular lamina with vertices [0, 0], [0, 2], [3, 0], [?, ?] in E2, 

Fig. 3.25, middle, and density (x, y) = xy2 can be calculated as the double integral 

over the region  20,30:],[ 2  yxyxR E , 
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Fig. 3.25.  Laminas with centre of gravity in plane E2. 

 

3. The centroid of a planar homogeneous region enclosed between line y = x and 

parabola y = 2 – x2 in Fig. 3.25, right, can be found as  
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If R  E3 is a regular region (of any type), then its volume V(R) is computed by the 

triple integral 


R

dzdydxRV 1)( . 

Examples 

1. Volume of region from Fig. 3.9, right, described as regular region of type yxz 

  222 22,22],[ yxyy:yxM yx  E  ,       

  22223 4,],[],,[ yxzyxMyx:zyxR yxyxz  E , 

 can be calculated as the triple integral 
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transformed to cylindrical coordinates to an integral over the region 
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2. The space region illustrated in Fig. 3.18, on the right and described in spherical 

coordinates as 
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3. Solid S given by inequalities 3x2 + 3y2 ≤ z ≤ 1  x2  y2 is bounded by two 

paraboloids with common axis in coordinate axis z sharing one circle with 

equation 3x2 + 3y2 = 1  x2  y2, which yields x2 + y2 = ¼. Their common circle 

with radius ½ is located in the plane z = ¾. Due to the symmetric form of this 

solid, see Fig. 3.26, left, its volume V(S) can be calculated over the region S4 
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Using cylindrical coordinates, the calculation is much simpler 
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Fig. 3.26.  Solids in space E3. 
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If a physical body occupies a regular region R  E3 and its point density is given by 

the function (x, y, z), then the total mass of the body is  


R

dzdydxzyxM ),,( . 

If we denote by T = [xT, yT, zT]  E3 the centre of mass of the body R, then the 

coordinates of T are computed as follows 
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By analogy with a 2D case, for a homogeneous body R we speak about its centroid. 
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  222 22,22],[ yxyy:yxM yx  E ,  

       22223 4,],[],,[ yxzyxMyx:zyxR xyyxz  E , 

 with the point density (x, y, z) = z  can be calculated as the triple integral 

 

  












2

2

2

2

4
2

2

22

22

y

y

yx

yxR

dydxdzzdzdydxzM

yxz

, 

and transformed to cylindrical coordinates as an integral over the region 

 223* 4π,20,20:),,(   zzT R , 

   

       .π812π8
4

π82π824

816
2

1
816

2

1

2
)(

2

0

4
2

2

0

3π2

0

2

0

3

2

0

π2

0

3

2

0

π2

0

442

2

0

π2

0

4
22

0

π2

0

4

*

2

2

2

2

























  

   


















dd

dddd

dd
z

dddzzdzddzRV
T

yxz

 

 



103 
 

Coordinates of the region centre of gravity are  
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2. The total mass of the solid S from Fig. 3.26, left, with the constant point density 

function (x, y, z) = k, k  R, can be calculated as 
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3. The volume of a homogeneous solid T bounded by the spheres x2 + y2 + z2 = 1, 

x2 + y2 + z2 = 4 and by the conical surface of revolution x2 + y2 = z2,  while z ≥ 0 

(Fig. 3.26, right) equals to the value of the triple integral over the region described 

in spherical coordinates as 
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Finally, we can summarize that the main purpose of this section on multiple integrals 

lies primarily in the usefulness of the general theory of double and triple integrals for 

calculations of geometric and physical characteristics of planar or spatial objects, 

representing physical objects as 2D laminae in E2, or 3D solids in E3.  

The geometric characteristics of these objects are given by the areas of the surface 

patches and by the volumes of the solids. The physical characteristics comprise the 

total mass, the static moments about the coordinate axes, and the coordinates of the 

centres of gravity (or centroids in homogeneous case) of these object. 
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