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FOREWORD

Mathematics should be as simple as possible,
but not simpler.

Albert Einstein


http://www.goodreads.com/author/show/289513.Benjamin_Franklin




1 Analytic geometry

1.1 Introduction

Analytic or coordinate geometry is the study of geometric properties of figures
determined by algebraic representations and manipulation of equations describing
their positions, configurations, and properties. It can be explained simply as being
concerned with defining geometrical shapes in a numerical way and extracting
numerical information from that representation. Investigation of geometric objects is
performed by means of algebraic operations upon symbols defined in terms of
a coordinate system. René Descartes (1595 — 1650), a well-known French philosopher
and mathematician was the first to apply algebra to geometry, so it is also known as
Cartesian geometry. It is based on the idea that any point in a two-dimensional space
can be represented by two numbers determining its position with respect to
a coordinate system.

The most commonly used is the Cartesian coordinate system, a fixed origin at the
point O, and two perpendicular lines, coordinate axes x and y, meeting at this point.
Any point in a three-dimensional space can be analogously determined by three
numbers, and so on; therefore points in the n-dimensional space are described as n-
tuples of real numbers called Cartesian coordinates.

Other coordinate systems are possible, in a plane the most common alternative is polar
coordinates, while in three dimensions common alternative coordinate systems
include cylindrical and spherical coordinates. Because lines, circles, spheres, and
other geometric figures can be regarded as collections of points in a plane or space
that satisfy certain equations, they can be explored in an analytic way, via their
equations and formulas, in addition to their synthetic representations by graphs.
Generally, most of analytic geometry deals with measuring distances, angles and with
the investigation of the position of basic geometric objects — points, lines and planes,
conic sections, or quadratic surfaces.

1.2 Three-dimensional Euclidean space

Let us consider rectangular right-handed Cartesian coordinate system Oxyz, where O
is origin of coordinates, lines x, y, z are coordinate axes, and planes xy, xz, yz are
coordinate planes. Each point in the 3-dimensional space can be identified with an
ordered triple of real numbers [, y, z], its Cartesian coordinates, whereas coordinates
of the system origin are O = [0, 0, 0].

Distance of two arbitrary points A = [Xa, Ya, za], B = [Xs, Y8, zs] can then be defined by
the Euclidean distance formula

d(A’ B) :\/(XA _XB)Z +(yA - yB)Z +(ZA _ZB)2 .

Thus the 3-dimensional space is called the Euclidean (metric) space with the
Euclidean metric and it is denoted E3.



The Cartesian coordinates of an arbitrary point M = [Xwm, ym, Zm] in the space determine
its distances from the coordinate planes, zw = d(M, xy), ym=d(M, xz), and
xm = d(M, yz), as illustrated in Fig. 1.1.

A z

Fig. 1.1. Cartesian coordinates of point M.

Oriented line segment AB, with the initial (start) point A and terminal (end) point B
determines a vector (direction) in the space, which can be represented by an ordered
triple of real numbers

a = (X8 —Xa, YB —Ya, Zs — Za),

where Xg — Xa, Y8 — Ya, Zg — za are the components of a, as shown in Fig. 1.2.
Components of a vector do not depend on its location.

4z

Fig. 1.2. Components of vectors a = AB, b = OB.

If A =0, then vector b = OB = (g, Vs, Zs) is said to be the position vector of point B.
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The zero vector is denoted 0 = (0, 0, 0), and i = (1, 0,0), j=(0, 1, 0), k= (0, 0, 1) are
unit vectors in the directions of each of the coordinate axes.
If a = (a1, az, az), then the non-negative real number

la|=+a’+a," +a,”
is called the length (magnitude, norm) of the vector a.

Examples
1. |0|=+0%+0%+0% =0
2. |i|=v12+0%+0? =1 j|=0v1* +1*+ 0 =1,|k|=V0* +0° +1* =1

If a= (a1, az as), b = (b1, b2, b3), and A is a real number, then the sum of vectors a and
b is the vector

a+b=(ar+by, az+ by, as+ ba),
and the scalar multiple of vector b by a scalar A is the vector
ﬂ,b = (ﬂ,bl, /1b2, ﬂbs)

See Fig 1.3 for a visual representation of both the sum of two vectors and the scalar
multiple of a vector.

Fig. 1.3. Sum of vectors, scalar multiple of vector.

Two vectors a and b are said to be collinear (parallel), if and only if a nonzero real
number A € R exists, such that b = A.a.

Three vectors a, b, ¢ are linearly independent, if a linear combination of these vectors
ka + Ib + mc = 0 exists, such that at least one of coefficients k, |, and m is a nonzero
real number, i.e. k? + 12+ m? = 0. This means that at least one from vectors a, b, cis a
linear combination of the two others.

Unit vectors i, j, k are linearly independent vectors in E3 forming the ortho-normal
basis of the 3-dimensional Euclidean space. Consequently, any vector a = (ai, az, as)
can be represented as a linear combination of the unit vectors i, j, k with scalars equal
to the vector coordinates in this basis,

azaii+axj+ask.

In E2 we distinguish two kinds of vector products, the scalar (dot) product and the
vector (cross) product.
9



The scalar product of two vectors a = (ai, az, as) and b = (b1, by, bs) is the real number
determined by the formula

a-b=ap +a,b, +ab;.

Remark. It can be proved that another possible definition of the scalar product is
a-b=|a|[b|cosa,

where « is the smaller angle formed by vectors a and b. Hence, two nonzero vectors

a and b are perpendicular if and only if their scalar product equals zero.

Examples
1. Vectorsa=(2,-3,1)and b=(1, 1, 1) are perpendicular, because they are nonzero

vectors, and a-b =2 -3+ 1 =0, while |a|=\/ﬁ,|b|=\/§.
2. The length of vector a = (4, 3, 12) is |a| =16+ 9 +144 = Y169 =13.

The vector product of two nonzero vectors a = (ai, az, as) and b = (bs, bz, bs) is the
vector ¢ = a x b with the following properties:

1. |axb|=|al|b[sine,

2. cis perpendicular to both vectors a and b,

3. vectors a, b, ¢ in this order form what is referred to as right-handed system.

Remark. Property 1. can be geometrically interpreted in the following way: length of
vector ¢ = a x b equals to the area of a parallelogram formed by vectors a and b.

Two vectors a and b are parallel if and only if their vector product is a zero vector.
Some of the basic properties of the vector product are the following:

1. axb=-(bxa),

2. ixj=k jxk=ikxi=j],

3. ax(bxc)=(axb)xc=—(bxc)xa=-cx(axb)= (cxa)xbh.
The relationship between the components of the vector product ¢ = a x b and the

components of both vectors a = (a1, a2, as) and b = (b1, bz, bs) can be derived by
expanding the determinant

i j ok
a, a a a

c=ci+cj+ck=|a a, a,=i bz b3 —jzl1 b3+k211 bz =
bl b2 b3 2 3 3 2

= (a,b; —a,b,,a;b, —ab;,ab, —a,b).

The Lagrange formula is the identity involving both, the scalar and the vector product
of three vectors

ax(bxc)=b(a-c)-c(a-b).
10



The Cauchy-Schwarz inequality states that for any two vectors a and b it holds that
(a-b)2<lallbl.

The scalar triple product of three vectors a, b, c is a real number determined as the
value of the determinant

& 8 8
[a,b,c]=(axb)-c=|b b, b,|.
q % %

Three nonzero vectors a, b, ¢ are said to be coplanar if their scalar triple product equals
to zero. The scalar triple product of 3 nonzero vectors a, b, ¢ is a nonzero number
equal to the volume of the parallelepiped formed by the respective vectors,
V =[a, b, c], as shown in Fig 1.4.

A

c=axb

P=lax bl

Fig. 1.4. Geometric interpretation of vector product and mixed scalar product.

Examples
1. The vector product of two vectors a = (2, -3, 1) and b = (1, 1, 1) is the vector
¢ = (-4, -1, 5) perpendicular to both a and b, because a-¢c=-8+3+5=0, and

b-c=-4-1+5=0, [c|=+16+1+25=+/42.

2. Threevectorsa=(1,3,-1),b=(-2,2,-4) and ¢ = (1, -1, 2) are coplanar, because
their triple scalar product [a, b, c] equals to zero

1 3 -1
2 -4 -2 -4 -2 2
[a,b,c]=]-2 2 -4|= -3 - =0
-1 2 1 2 1 -1
1 -1 2

An angle formed by two nonzero vectors can be determined as
a-b
cosa=——,ae(0,m)
bl
The angle of two collinear equally oriented vectors is « = 0, the angle of two collinear
vectors with opposite orientation is & = w. Perpendicular nonzero vectors a and b form

11



angle « = n/2, and because cos (n/2) = 0, from the above formula for their scalar
product it holds that a- b = 0.

1.3 Linear objects in space

Planes and lines are geometric figures that can be analytically determined by linear

expressions representing relationships between coordinates of their points. Two types

of equations are distinguished in general, implicit and explicit equations. Relations

holding for triples of Cartesian coordinates of object points are called object implicit

equations. Formulas for the evaluation of Cartesian coordinates X, y and z of the object

points are called parametric equations of an object, and they depend on the value of

one or two real parameters. The analytic equation of a plane will be derived from its

geometric definition. A plane can be uniquely determined by any one of the following:
1. three non-collinear points

two intersecting lines

two different parallel lines

a line and a point not on this line

a point and a direction (perpendicular to the plane).

ok~ oo

Fig. 1.5. Plane p determined by point M and direction n perpendicular to p .

Any non-zero vector n = (a, b, ) perpendicular to the plane pis called a normal vector
to the plane p. Let M = [xwm, Ym, Zv] be a point in the plane p, as can be seen in Fig 1.5.
Point M and an arbitrary point X =[x, y, z] in the plane p form the vector perpendicular
to the plane normal vector n, MX = (X — Xm, Y — Ym, Z — Zum), thus the implicit equation
of plane p can be determined from their scalar product as

a(x—x,,)+b(y-y,)+c(z-2z,)=0,a%+b?+c?=0,
which can be rewritten in the following form, called the general equation of a plane
ax+by+cz+d =0, where d =-ax,, —by,, —cz,,.

Constant d = 0 in the equation of the plane passing through the origin O.
The equation of the plane intersecting coordinate axes in the points P = [p, 0, 0],
Q=10,q,0,0]and R =0, 0, r] can be reduced to the intercept form
i+X+£=1.
p g r
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Such plane intersects coordinate plane
xy in line PQ, coordinate plane xz in line
PR and coordinate plane yz in line QR.
View of this plane sketched in the
axonometric  projection method is
presented in Fig. 1.6, as triangle PQR
visible in the rectangular trihedron with
vertex in the origin O, edges in the
positive semi-axis x+, y+, z+, and faces
@=100.2.01 " as parts of coordinate planes Xy, xz, yz.

Fig. 1.6. Plane intersecting coordinate axes.

Planes in special position to the coordinate planes and coordinate axes are determined
by equations of special forms. Views and equations of planes parallel to one from
coordinate axes, therefore perpendicular to coordinate planes determined by the two
other coordinate axes are shown in Fig. 1.7.

plizp Ly z ply.p Lz z

ar+by+d=0,a%0,b#0 ar+cz+d=0,a#0,c#0

pllz,p Loyz z
b+ez+d=0,b#0,c£0

Fig. 1.7. Planes parallel to coordinate axes.

13



Planes parallel to one coordinate plane, therefore perpendicular to the coordinate axis
that is not in the respective plane, are viewed with their equations in Fig. 1.8.

plez,p Ly pllyzp L x
A — L
y="kkeR 1 r=kkeR

pllay.p Lz
z=kkeR I3

Fig. 1.8. Planes parallel to coordinate planes.

Examples

1.

The general equation of a plane passing through the point A = [2, -3, 1] and
perpendicular to the vector n = (1, 1, 1) is x + y + z = 0. This plane passes through
the origin of coordinates, as obviously d =-2+3-1=0.

Plane with the general equation 5x —10y + 4z — 20 = 0 is passing through points
P=14,0,0],Q=[0,-2,0]and R =0, 0, 5] on the coordinate axes.

The equations of the coordinate planes xy, xz andyzarez=0,y=0, and x = 0,
respectively.

The plane defined by the equation x — z = 1 passes in direction of coordinate axis
y through the point P = [1, 0, 0] on coordinate axis x and point R = [0, 0, —1] on
coordinate axis z. This plane intersects coordinate plane xy in a line parallel to
coordinate axis y and passing through point P, and coordinate plane yz in a line
also parallel to coordinate axis y but passing through the point Q. This plane is
perpendicular to coordinate plane xz, and intersects this coordinate plane in a line
determined by points P and Q.

14



.L.“z e

Fig. 1.9. Position of two planes.

Let two planes o1, p> With normal vectors n1, n, be defined by the general equations

a1X+b1y+Clz+d1 =0, n, :(aiibl'cl)v
ax+b,y+c,z+d, =0, n,=(a,,h,,c,).

Planes p1, p» are perpendicular, if their normal vectors n;, n,are perpendicular, which
yields that a;a; + bib2 + €12 = 0.

Planes p1, o, are parallel, if their normal vectors ni, n. are collinear, which means,
there exists a real number A such that (a, b1, ¢1) = A(az, b, ¢2). Parallel planes either
coincide, i.e. they have all points in common, or they have no common points, and we
speak about two different parallel planes. Planes that are not parallel intersect in a
common line, called intersection (or pierce) line of the two planes.

Fig. 1.10. Intersection line of two planes.

Any line r in the space E2 can be determined as the intersection of two non-parallel
planes p1, p». Therefore, the pair of their general equations forms the general equation
of this pierce line r. Vector s = ny x ny, parallel to pierce line r, is called the direction
vector of line r. The line can be unambiguously defined by one point P = [xp, yp, ]
and direction vector s = (Sx, Sy, Sz), and represented by the vector equation

15



PX=ts,teR,
which stands for three parametric equations in the coordinate form
X=Xp+1Sy, Y=yp+tsy, z=2p+ts, teR,

where variable t is called a parameter. Specific value of parameter t determines the
Cartesian coordinates of one point on the line and the position of this point on the line
with respect to the given fixed point P.

Let two lines be represented by the parametric equations
p:X=Xp+1tXy, Yy=Yyp+ty;, z=2zp+tz;, teR, Slz(Xl,yl,Zl),
QX=X+ UXy, Y=Yo+UYs Z=2+UZ, UE€eR, $2=(X2 Y2 22).

Lines p and g are parallel, if their direction vectors s, s, are collinear, which means
there exists a real number A such that (X1, y1, Z1) = 4 (X2, Y2, 22), as seen in Fig. 1.11.

<

4 12 S1

q Q S; = ASl

Fig. 1.11. Parallel lines.
Lines p and g are intersecting, if they have exactly one common point, as shown in

Fig. 1.12. It means, there exist real numbers to and uo such that

Xp+1loX1=Xq + UoXz2, Yp+loy1=Yq+Uoy2, Zp+1toZ1=2q + UoZz.

S1

S2 &

Fig. 1.12. Intersecting lines.

Lines p and q are skew, if they are neither parallel nor intersecting. Skew lines have
no common points and their direction vectors are non-collinear.

Lines p and q are perpendicular, if their direction vectors s, s, are perpendicular,
therefore, if XaXo +y1y2+2122=0.

16



Examples

1.

Parametric equations of the coordinate axes are:

X: x=ty=0,z=0, y: x=0,y=t,z=0, zz. x=0,y=0,z=t, te R,

Planes with general equations pi: x + 2y —z =3 and p: 2x —y + 3z = 1 are
intersecting planes, their normal vectors n; = (1, 2,-1) and n, = (2, -1, 3) determine
the direction vector of their common line, s = (5, -5, —5). One common point of
planes, i. e. one point on their intersection line, can be determined as a point, in
which the line intersects coordinate plane xy with coordinate z = 0. The other two
coordinates can be determined from the equations of these planes, as a solution of
the system of two equations: x + 2y = 3, 2x —y = 1. Its unique solution is x = 1,
y = 1. The parametric equations of the intersection line are
Xx=1+5u,y=1-5u,z=5u,u e R.

Lines p, q determined by equations p: x=-1+t,y=18+9t,z=10+5t,t € Rand
g: x+y-2z+3 =0, 3x -2y + 3z + 9 = 0 are identical, because the direction vector
oflinegisvectoru=(1, 1,-2) x (3,-2, 3) = (-1, -9, -5) collinear with the direction
vector (1, 9, 5) of line p. A common point of lines p and q is point P = [-1, 18, 10]
on line p, whose coordinates satisfy equations of line q.

Parametric equations of line I passing through point L =[1, 0, 0] and parallel to the
line given by the pair of general equationsx—y+z—-5=0,x+ 2y —7 =0 can be
derived by means of its direction vector s. This vector is a cross product of planes
normal vectors defined by equations, n; = (1,-1,1), n.= (1,2,0), and s= (-
2, 1, 3). The parametric equations of line lare: x=1-2t,y=t,z=3t,t e R.

Let plane p:ax+by+cz+d =0 with normal vector n = (a, b, c) be given and line
P:X=Xp+1tX,Yy=Yp+1tys,Z=2p+1tz,t e R, with direction vector s = (s, Ys, Zs).
Plane p and line p are parallel, if normal vector n and direction vector s are
perpendicular, i.e. if axs + bys + cz; = 0.

Plane p and line p are perpendicular, if normal vector n and direction vector s are
collinear, i.e. if there exists 4 € R such that (a, b, ¢) = 4 (Xs, Ys, Zs).

Line p lies in the plane p if

axp + byp + czp +d = 0, and ax; + bys + ¢z = 0.

P s P

Fig. 1.13. Position of plane and line.
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Two intersecting lines define a single plane as do two parallel lines, see Fig. 1.11 and
Fig. 1.12. The plane can be determined by point P = [Xe, yp, zp] and two non-collinear
direction vectors u = (ux, Uy, Uz), V = (Vx, Vy, Vz), and it is represented by a parametric
equation

PX=tu+sv,t,seR,
which is a symbolic form of three parametric equations

X=Xp+tUx+SVy, Y=Yp+tU+SVy, Z=Zp+tU;, +5SV, 1,5 €R,

where variables t and s are real parameters. The values of parameters t and s determine
the Cartesian coordinates of the points in the plane and their position with respect to
the fixed point P and scalar multiples of direction vectors u and v.

Fig. 1.14. Parametric representation of plane.

The general equation of plane determined by three non-collinear points
A = [Xa, Ya, Za], B = [Xs, VB, 28], C = [Xc, Yc, Zc] can be derived from the equation

X y z 1
X z, 1
A yA A — 0 .
XB yB ZB 1
Xe Yo Zc 1

Parametric equations can be composed from one point, e.g. point A, and plane
direction vectors u = AB and v = AC. The normal vector to a plane is the vector
product of vectors u and v, n = u x v, which is perpendicular to vector AX determined
by the point A and an arbitrary point X in the plane, therefore their scalar product is
zero, and the equation of the plane can be represented also as n- AX = 0.

W

Fig. 1.15. Plane determined by three non-collinear points.
18



Equations of planes determined by two parallel or intersecting lines or by a line and a
point not on this line can be derived in a similar way.

Examples

1. The parametric equations of line k passing through the point M = [2, 3, —1] and
perpendicular to the plane p: x + 2y —z =0 are
X=2+ty=3+2t,z=-1-t,teR.

2. Linel: x=2,y=1+3t,z=-3+2t,t € R, and plane p: x -2y + 3z -1 =0 are
parallel, as direction vector s = (0, 3, 2) of line I and normal vector n = (1, -2, 3)
of plane p are perpendicular, because their scalar product is 0.

3. The general equation of a plane p passing in the direction of coordinate axis x and
perpendicularto line g: x +y—-z+3=0,x-y +z+ 9 =0 can be determined from
the unit vector (1, 0, 0) in the direction of axis x and direction vector of line g,
which is the normal vector n of the plane p. Vector n is the cross product of normal
vectors n1 = (1, 1, -1) and n2 = (1, -1, 1), n = n1 x np = (0, -2, —2). The general
equation of plane p is —2y -2z +d =0.

4. The general equation of a plane determined by the line p = AB, A = [3, 1, 1],
B=11,4, 2], and point C = [0, 0, 4] is 10x + 3y + 11z — 44 = 0, normal vector
n = (10, 3, 11) are determined as the cross product of vector u = AB = (-2, 3, 1)
and vector v=AC = (-3, -1, 3), while the value of coefficient d = — 44 can be
achieved from coordinates of any of the points A, B, C.

1.4 Distances and angles

The distance of two points measured by Euclidean formula can be used for measuring
distances of any two objects sharing no common points, e.g. the distance of a point
and a line, a point and a plane, or the distance of two parallel lines or planes.

Let P = [xp, Yp, zr] be a point not in the plane p:ax+by+cz+d =0.

P

Fig. 1.16. Distance of point and plane.
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The distance of the point P from the plane p can be measured as the distance of points
P and Q, where Q is the intersection point of the plane p and perpendicular line k
passing through the point P. This distance can be calculated from the formula
|ax,, + by, +cz, +d|

Ja?+b?+c?
The distance of the point P from the line p: X= A +ts,t € R, where A = [Xa, Ya, Za],

s =(a, b, ¢), can be determined as the distance of points P and Q, where Q is the pierce
point of line p and plane p passing through point P perpendicularly to line p.

d(P,p)=d(PQ)=

Fig. 1.17. Distance of point and line.

The distance of two parallel planes p:ax+by+cz+d,=0,7:ax+by+cz+d,=0

equals to the distance of two intersection points of these planes and line k
perpendicular to both of them, and it can be calculated by the formula

d,—d
s

Fig. 1.18. Distance of parallel planes and parallel lines.

Similarly, distance of two parallel lines p| | q is the distance of the pierce points P and
Q of these lines with the plane perpendicular to both parallels p and g.

20



Examples
1. Distance of point M =[1, 3, -1] and plane p: x + 2y -2z =0 is

1+6+2 i:&

d(M, p) = =
J2i224 (22 9
2. Linel: x=2,y=1+2t,z=-3+2t,teR,and point A=[1, 3, -1] are at the
distance, which can be measured in the plane p passing through point A
perpendicularly to the line I. The normal vector of this plane is the direction vector
of line I, therefore plane equation is 2y + 2z — 4 = 0. The intersection point of line
| and plane p is point B = [2, 3, —1], and the distance of points A and B equals to
the distance of point Aand line |, d(A,1)=d(AB)=+/1+0+0=1.
3. The distance of two parallel planes 7:x+y+z+4=0,p:X+y+2+7=0

equals to d(r, p) :uz\@.

V3
4. Two parallel lines, p=PR, P =2, 1, 3], R =[1, 2, -1] and q passing through the
point Q = [1, -1, 3], are at a distance, which can be measured in the plane p
perpendicular to both lines and passing, for instance, through the point Q, and
defined by equation x —y + 4z — 14 = 0. Plane p intersects line p at the point
T =[37/18, 17/18, 50/18] and distance of points Q and T equals to the distance of

lines p and g, which is d(QT) :%w/ﬂs :

The angle formed by two lines equals to the angle of their direction vectors, therefore
parallel lines form angles O or =.

A line with direction vector u and a plane with normal vector n determine the angle
that can be calculated by the formula

un.
julin

A plane and a line parallel to it therefore form angles ¢ = 0, or ¢ = =, depending on
the orientation of vectors u and n.

sing =

Fig. 1.19. Angle of line and plane.
21



The angle of two planes is determined as the acute angle of their normal vectors,

Inyn,|

Fig. 1.20. Angle of two planes. Fig. 1.21. Angle of two lines (example 4).

Examples

1.

Linesp: 2x—y+z+1=0,x+2y—-2z+2=0andq:y-2=0,x+2y-22+2=0
are parallel, because they form an angle determined by their direction vectors
sp=(2,-1,1)x(1,2,-2)=(0,5,5),and sq = (0, 1, -1) x (1, 2, -2) = (0, -1, 1),
(0,5,5)-(0,-11) _ -10 __1.and p=1.
0+25+25+/1+1 10

Planes p: 2x +y -3z +2=0and z: x— 2y + 1 = 0 are perpendicular, because their
(2,1,-3)-(1,-2,0)
Va+1+9+/1+4

The size of the angle formed by linep: x=2+2t,y=1+t,z=-3+2t,t € R, and
plane p: 4x + 2y —4z + 1 = 0 can be calulated by

i (21,2)-(4,2,-4) 2 B .2
MO Tarirdntorats s O g R

Skew linesp:x=1+u,y=1+u,z=1landg:x=v,y=-v,z=0, see Fig. 1.21,
are perpendicular, because the scalar product of their direction vectors equals to
zero, (1,1,0)-(1,-1,00=1-1=0.

Planes x + 2z — 2 = 0, 3x + 6z — 12 = 0 with collinear normal vectors (1, 0, 2) and

(3, 0, 6) are parallel, their distance can be calculated as ¢ = M = i.
J5 V5

Linep:z—3=0, x+y—2 =0is parallel to plane p: x +y + z—4 = 0, because
direction vector s = (-1, 1, 0) of the line p that is the vector product of normal
vectors (0, 0, 1) and (1, 1, 0), is perpendicular to the normal vector n = (1, 1, 1) of

therefore cosg =
J

angle is defined by the formula cos ¢ = =0, and ¢ =m/2.

plane p, as their scalar product is 0. Distance of line p and plane pis d :i.

J3
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1.5 Quadratic surfaces

A quadratic equation in three variables x, y and z in the general form
a,X> +a, Y’ +a,2° +a,Xy +a,X2 +a,yZ+a,X+a,y+a,z+a, =0,

where at least one of real coefficients a,,,a,,,a,,,a,,,8,,,8,, IS NoON-zero can represent
one of the following point sets in the space E3:

1. anempty set, e.g. X2 +y>+1=0
asingle point, e.g. x>+ y2 +z2=0, or X2 +y?+z2—6x+9=0
two planes, e.g. xy =0, or 4x?> —y? =0
asingle plane, e.g. x¥*=0
asingle line,e.g. xX*+y2=0
a quadratic surface, e.g. singular (cylindrical or conical), or regular
(ellipsoid, hyperboloid of one or two sheets, elliptic or hyperbolic
paraboloid).
Any quadratic surface can be analytically represented by a quadratic equation, the
form of which is determined by its position in the coordinate system. Quadratic
surfaces in the basic position, i.e. with axes in one of the coordinate axes or in lines

parallel to coordinate axes and with vertices located on coordinate axes are
represented by equations in the simple canonical forms with real positive constants,

a,b,corr.

© gk~ wb

Cylindrical surfaces

A surface generated by all straight lines passing in a given direction s through points
on a given curve k that is not in the plane in direction s is called cylindrical surface.
Lines on the cylindrical surface are called generators or rulings, while curve k is called
the generatrix (generating or basic curve), or also the directrix.

The analytic representations of elliptic (circular for a = b = r), hyperbolic and
parabolic cylindrical surfaces with a generating ellipse (circle), hyperbola and
parabola in the coordinate plane xy (with axes in the coordinate axes) and rulings in
the direction of coordinate axis z are in the forms

Fig. 1.22. Cylindrical surfaces.
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Analogously, the equations of cylindrical surfaces with a generatrix in other
coordinate planes xz, or yz and rulings in the direction of the respective orthogonal
coordinate axes y or x can be derived. Cylindrical surfaces determined by an ellipse
(a circle) or a hyperbola in a more general position, i.e. with its centre at the point
S =[m, n, 0] and its axes in the direction of one of the coordinate axes, or a parabola
with its vertex at the point V = [m, n, 0] and its axis in the direction of coordinate axis
y can be represented in the form

(x—m)’ +(y—n)2 =1, (x-m)>+(y—-n)*=r?

a’ b’
Com_ Ot (xem)? = 2o(y-n).
a’ b?

A circular cylindrical surface is called cylindrical surface of revolution as it can be
generated by revolving one generator line in a given direction about an axis of the
surface passing through the circle centre in the respective direction.

Conical surfaces

A surface generated by all straight lines passing through a given point V and
intersecting a given curve k that is not in the same plane with the point V is called a
conical surface. Lines on a conical surface are called generators (rulings), point V a
vertex and curve k is called a generatrix (generating or basic curve), or also a directrix.
The analytic representations of elliptic conical surfaces with vertex at the origin and
generating ellipse in the plane parallel to one of the coordinate planes xy, xz or yz (with
axes in the coordinate axes) are in the forms

XZ 2 2 2 2 2

y
¥+F_ZZ=O, ?+b—2—y =0, ?+b—2—x =

s

ﬁig. 1.23. Conical surfaces.

A conical surface of revolution can be created by generating circle k in a plane parallel
to one coordinate plane with centre on the perpendicular coordinate axis that is the
axis of the conical surface of revolution. Such a surface can be also generated by
revolving a line passing through the origin about one of the coordinate axis.

A more general equation of a cylindrical conical surface with a vertex at the point on
one of the coordinate axes can be obtained in the form

XZ y2 5 X2 ZZ X yZ ZZ 5
—+—=-(z-¢)°=0, —+—=-(y-¢)"=0, = +—-(x-c)"=0.
" (z-0) 2 (V9 7 Tpr X0
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Ellipsoids
The canonical form of the equation of an ellipsoid with its centre at origin and axes in
the coordinate axes is

2 2 2
y° oz
? + b—z + C_Z =1.
The coordinate planes xy, xz and yz intersect ellipsoid in ellipses with pairs of semi-
axes (a, b), (a, ¢) and (b, c¢). In the case of two equal semi-axes we speak about an
ellipsoid of revolution, and if all three semi-axes are equal, a = b =c =r, it becomes
a sphere with the centre S= [m, n, p] and radius r that is defined by the general

equation
(= M)+ (y )2+ (2 - p)2 =12

Fig. 1.24. Ellipsoids and sphere.

Hyperboloids
The equation of a hyperboloid of one sheet in the basic position (with its axis in the
coordinate axis z and its centre of symmetry at origin) is

XZ y2 ZZ B

2 b
The intersections of this quadratic surface by coordinate planes xz and yz are
hyperbolas with their centres at origin, their imaginary axes in the coordinate axis z
and semiaxes (a, ¢) and (b, ¢), and the surface intersection by the coordinate plane xy
is an ellipse with semi-axes (a, b) on coordinate axes x and y.

Analogously, the canonical equations of one-sheet hyperboloids in basic positions
with axes in coordinate axes y and z can be derived as

2 2 2 2 2 2

Xy, Xy

+ = + 4
a? b?* c? a? b?* c?
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Fig. 1.25. Hyperboloids of one sheet.

A hyperboloid of two sheets in the basic position (with axis in the coordinate axis z
and centre of symmetry at origin) with the equation

consists of two separated parts. The intersections of this quadratic surface by the
coordinate planes xz and yz are hyperbolas with centres at origin and semiaxes (a, c)
and (b, ¢). The coordinate plane xy does not intersect this two-sheet hyperboloid, but
its intersections by planesy =k, | k| > c, are ellipses.

Fig. 1.26. Hy-perboloids of two sheets.

Paraboloids
An elliptic paraboloid with its axis in the coordinate axis z, y, x and vertex at origin is
determined by the canonical equation

2 2 2 2

x>z 2

?+g—2icz=0, ?+b—zicy=0, §+
while the + sign stands for the positive half-space where z > 0,y > 0, x > 0, and,
obviously, the — sign for the negative half-space, where z <0,y <0, x < 0. A plane
perpendicular to the paraboloid”s axis intersects the surface in ellipses, while fora=b
we speak about paraboloid of revolution with intersections that are circles. Planes
passing through the paraboloid’s axis intersect it in parabolas.

26
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Fig. 1.27. Paréboloids.

A hyperbolic paraboloid with its axis in the coordinate axis z, y, x and its vertex — a

saddle point at origin is determined by the canonical equation
XZ yZ 2 ZZ y2 ZZ
—2——2iCZ=0, g—b—zicyzo, ?—b—ziCX:O.
Its intersections by the coordinate planes are parabolas and/or hyperbolas, a plane
passing through the vertex intersects this surface in a pair of intersecting lines
(singular hyperbola). Contrary to other quadratic surfaces, there are no values of
constants a, b, ¢, for which a hyperbolic paraboloid can be a surface of revolution.

4 -2

Fig. 1.28. Hyperbolic paraboloids.

Examples
1. An ellipsoid of revolution with axis in coordinate axis x, semi-axisa=2,b=c =3

is determined by the equation 9x* +4y* + 42> =36.
2. Equation z = y? — x2 = 0 defines hyperbolic paraboloid with saddle point at origin.

3. Equation z=,/4+x’+y? defines the upper part of a two-sheet hyperboloid of
revolution with its axis in coordinate axis z and semi-axesa=b=c= 2.

4. Canonical form of the equation of a parabolic cylindrical surface with its axis
parallel to coordinate axis y and its basic parabola in coordinate plane xz with a

vertex [0, 0, 2] and parameter p =-2 is x> =-4(z - 2).
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1.6 n-dimensional Euclidean space

A space consisting of all points determined by n-tuples of real numbers, n > 1, with
the distance of two arbitrary points X = [X1, X2, ... , Xal, Y = [V1, Y2, ... , ¥n] defined by
the Euclidean metric

AOX,Y) = (Y = %)% + (Y, = %)+t (Y = X,)

is called an n-dimensional Euclidean space.
If n=1, then, d(X, Y) = |y: — x1|. For every natural number n and for any triplet of
points X, Y, Z € E" the following properties can be proved:

1. d(X,Y)>0, d(X,Y)=0& X =Y
2. d(X,Y)=d(Y,X)
3. d(X,Y)<d(X,Z)+d(Z,Y).

The function d: E" x E" — R is called a metric on E", and the pair (E", d) is the metric
space. Let Xo be a point in the space E", and &> 0 be a real number. Then set

N, (X,)={X eE":d(X,X,) <&}

is the e-neighbourhood of point Xo. N (Xo) is an open interval for n = 1, it is an open
disc for n = 2, and a ball without its spherical boundary for n = 3.

Let M be a subset of E". A point X, € M is called an interior point of the set M, if
there exists &> 0 such that N.(Xo) < M. The set of all interior points of the set M is
called the interior of the set M. The set M is said to be open, if it consists of interior
points only.

A point Xo € E" is called a boundary point of the set M < E", if each neighbourhood
N.(Xo) contains at least one point which belongs to the set M and at least one point
that does not belong to the set M. The set of all boundary points of the set M is called
the boundary of the set M. A set is called to be closed, if it contains all its boundary
points.

Examples
1. The interior of set M = {[x, y]eE*:0<x<10< y<1} is an open plane region

with a square boundary with vertices at origin [0, 0], point [0, 1] on coordinate axis
X, point [1, 0] on coordinate axis y and point with coordinates [1, 1].

2. The space region bounded by a unit cube with vertices on coordinate axes in E® is
the closed set M ={[x,y,z] e E*:0<x<1,0<y<10<z<1},

3. Theset M = {[x, y,Z]eE*:x* +y* +12° < 4} is a closed ball in space E® bounded
by a sphere with centre at origin and radius of 2.

28



4. An ellipsoid of revolution with semi-axes a = 2, b = 3 and ¢ = 3 on coordinate axes
X, ¥, and z and centre at the origin of the coordinate system is the boundary of an

2 2 2
open set determined as M = { [x,y,z]€E® :XT + y? + % <1} :

Set M < E" is called connected, if any pair of its points can be connected by a simple
curve lying entirely in the set M. The set M is called simply connected, if it contains
any bounded region with the boundary in a closed curve k in M, k = M. Simply
connected set contains no holes.

Set M < E" is call bounded, if a real number r € R and a point X, € E" exist such that
for each X € M holds d(X, Xo) <r.

I
ﬁllf ‘
|

gl

Fig. 1.29. Connected, simply connected and bounded sets.

Examples

1. The annulus M = {[x, yleE*:1<x* +y? 316} determined by concentric circles
with centres at origin and radii 1 and 4 is a connected set in the plane, but not
simply connected. It is bounded, as for example for point X, = [0, 0] € E? and any
r>4,d(X, Xo) <r forall X e M, see in Fig. 1.29, left.

2. Tetrahedral region with vertices at origin and unit points on coordinate axes in E3
is set M ={[x,y,z]e E*:x>0,y>0,2>0,x+y+ zsl}, which is closed, simply
connected and bounded set, as for any r > 1 and point Xo= [0, 0, 0] it holds that
d(X, Xo) <r forall X € M, see in Fig. 1.29, right.

A point is called an isolated point of a set M < E", if such ¢-neighbourhood of this
point exists which contains no other point from the set M. A point is called a limit
(cluster) point of aset M — E", if any e-neighbourhood of this point contains infinitely
many points from the set M.

Any bounded infinite set M c E" contains at least one limit point. A limit point is
either an interior or a boundary point of this set. An interior point of the set is always
an element of the set, an exterior point never belongs to the set. A boundary point can
either belong to the set, or it can be not a point of the set.
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Let M c E" be a non-empty set and X, € E" be an arbitrary point. Then exactly one

of the following holds:

1. Point Xo belongs to the set M with at least one of its neighbourhoods N.(Xo) — M.
Point X is an interior point of the set M.

2. Point X, does not belong to the set M and neither does any point from at least one
of its neighbourhoods, N, (Xo) N M = &. Point X is an exterior point of the set M.

3. Any neighbourhood N, (Xo) of the point X, contains at least one point of the set M
and at least one point not in the set M. Point X, is a boundary point of the set M.

4. There exists such neighbourhood N.(Xo) of the point Xo, for which
N, (Xo) N M = {Xo}. Point X, is an isolated and a boundary point of the set M.

Any set of points in E" which is opened and connected is called a region. A set of
points in E" which is the closure of a region is a closed region. Any closed region can
be obtained from a suitable region by adding all its boundary points.

A set M is closed if and only if it contains all its limit points.

Examples
1. Theset M = {[x, y,z]eE*:|z] >1} in Fig. 1.30, left, is a not connected and not
bounded open region determined by all points in two half-spaces with boundary

planes z = -1, and z = 1. Origin O is the exterior point of set M, all points in the
boundary planes are limit points not contained in the set. Complement of set M is

a closed region, a layer between the two planes CM = {[x, y,z]eE* 7| sl}.

2. The region M = {[x, y]eE?:xy>02<x<2-2<y< 2}u {[-2,2],[2,-2]} is a
closed, simply connected, and bounded set, with boundaries in line segments on
coordinate axes x and y joining points [-2, 0], [2, 0] and [0, 2], [0, 2] and both
isolated points [-2, 2] and [2, 2], see in Fig. 1.30, right.

- -—-—-—-——--»

Fig. 1.30. Open region in space (on left), closed region with isolated points (right).
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2 Differential calculus of multivariable functions

2.1 Definition of a function of more variables

Let M be a non-empty subset of the n-dimensional Euclidean space

McE"n>1, M= &

Any mapping f from the set M to R, in which each point X = [Xy, X2, ... , Xo] € M is
attached a unique real number, is called a real function of n real variables.

f: M —> R, X— f(X).

Set M is called the domain of definition of function f, denoted as D(f ).

Image of the point X = [xy, X, ..., Xs] € M in the mapping f, the real number attached
to the point X, denoted as y = f(X) = f (X, X5, ..., Xy), is the value of the function f at
the point X. The range of values of function f is the set

H(f)={yeR:3X eD(f),y = f(X)}.

For n = 2 we use the notation f(x, y) instead of f(x;, X,), and for n = 3 the notation
f(X,y, z) is used instead of f(xy, Xz, X3).
A function of n variables can be uniquely determined by the domain of definition
D(f) < E" and by a formula (or function rule), due to which exactly one real number
y can be attached to any point X =[xy, Xy, ..., X,] € D(f) as a function value y = f(X).
In the same way as for the functions of one real variable, a function rule can be
determined in various forms:

- inwords

- by atable of values

- byagraph

- analytically — by means of a mathematical expression or an equation.
Some of the significant concepts, for example boundedness (boundedness from

below or boundedness from above), maximum or minimum of the function and
operations on functions are defined analogously as in the real case for n = 1.

Let f be a function of n variables defined on the set M of points in the space E", for
n> 1. The graph of function f is aset G(f ) = E™! of all ordered (n + 1)-tuples,
POINtS [Xy, Xo, ... , Xn, Xns1] € E™, for which the following properties hold:

L [Xy, Xo oo, %] €M

2. X =T(Xg, Xy oor s Xp)-

Therefore
G(f) ={[X, %Xy e X, X JEE™ 1 X =[X, Xy, 0, X, ] €M, X, = F(X)}

Geometrically we can directly visualise only graphs of functions of one or two
variables. The graph of a continuous function of one real variabley =f(x),x e | cR
is a plane curve segment.
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Fig. 2.1. Graph of function of one variable.

The graph of a function of two variables f (x, y) is defined on the set D(f ) of points
in the space E? and it is the set of all such points [x, y, z] in the space E, for which:
1.[x,y] € D(f)

2.2=1f(x,y)
therefore

G(f)={[x v, 2] € E*[x,y] € D(f), z=f(x, y)}.
G(f) is aset of those points [, y, z] in the space, whose coordinates satisfy the

equation z = f(x, y), and usually it can be geometrically visualised as a surface patch
in E.

Properties:

1. The orthogonal projection of the graph of
function f(x, y) to the plane xy is the function
domain of definition D(f).

2. Any line parallel to the coordinate axis
z intersects the graph of function f (x, y) in at
most one point.

Fig. 2.2. Graph of function of two variables.

A surface that is a graph of function f (x, y) of two variables can be projected into
different views using the projection methods of Descriptive geometry, by means of
one of the basic projection methods — Monge method (top view and front view or
side views), or orthogonal axonometry (axonometric view).
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Examples

1. Function f(x,y)=+1-xy is defined on D(f)={[x,y]eE*:xy <1}. Part of the

domain of definition and the corresponding part of the graph of this function, and
the contour plot of the graph are in the Fig. 2.3.

Fig. 2.3. Domain of definition and graphs of function with two variables.

2. Graph of function f (x,y) =1+ arcsin(x + y), the contour plot of the function graph
and its domain of definition M ={[x,y]€E*:-1< x+y <1} are in the Fig. 2.4.

N3 LY
\ “"ﬁ“““““‘
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Fig. 2.4. Domain of definition and graphs of function with two variables.

2.2 Limit and continuity of functions of more variables

Let function f(X) be defined on some neighbourhood of the point A = [ay, ay, ..., a,],
which is the limit point of the function domain of definition D(f ).

Number b is said to be the limit of function f (X) at the point A, if for all £> 0 there
exists such ¢ > 0, that for all points X € Ns(A), X #A, it holds f(X) € N¢(b):

>I(irrLf(X)=b<:>V¢9>OEIc$>O:d(X,A)<§:>|f(X)—b|<g.

The limit of function f(X) of two variables at the point A = [xg, Yo] can be also
written

lim f(X)=b.

X—>{%,¥]
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Let functions f and g have proper limits at the point A

fim £ (X) =by, lim g(X) =b,.

Then there exists (at the point A) also the limit of functions:

1. c,f + c,g, where c,,c; are arbitrary constants and
!(i_rn(clf (X)+c,9(X))=cby +Cb,

2. f.g and )I(inl(f (X).g(X))=hb,

3. i and Iimw— b,

XA =0 =0.
g ~Ag(X) b,

An improper limit of a function of several variables at a proper point, which is the
limit point of its domain of definition, is defined similarly to an improper limit of a
function of one variable:

lim f(X) =c0 < VK >035>0:d(X, A <5 = F(X)>K,
lim f(X) =00 VK >035>0:d(X,A) <5 = f(X)<K.

X—>A

Examples

1.

Function  f(x,y) :% is not defined at the point [0, O] that is the limit
x> +y

point of its domain of definition D(f ) = E* — {[0, 0]}, and it holds that

lim (x> +y?)=0, anyhow there exists an improper limit of function f(x, y) at

X—[0,0]

. . . 1 .
the point [0, 0], XLI% f(x,y)= XL'% Y =0, see Fig. 2.5, left.
Function f(x, y) = In(x + y®), with domain D(f) = {[x, y] € E* x + y* > 0} is not
defined at the points of parabola y* = — x, which are the limit points of its domain
of definition, the function limit at these points is improper and it equals — co.

Fig. 2.5. Improper limits of functions at the limit points of their domains.
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Let function f(X) be defined on some neighbourhood of the limit point of its domain
of definition D(f ), point A = [ay, a,, ..., @,]. Function f(X) is continuous at the point
A, if a proper limit of function f exists at this point, and this limit equals to the value
of function f at the point A

lim £ (X) = f(A).

Function f continuous at all points of the set M — D({) is said to be continuous on the
set M. If M = D(f), we speak about a continuous function f.

Let functions f and g be defined on some neighbourhood of the point A and let them
both be continuous at the point A. Then the functions

le + C2g1 Cy, Cr € R

f.g
are also continuous at the point A.

If g(A) = 0, then the function i is also continuous at the point A.

g
Remark. If A is a boundary point of the domain of definition of function f, then f
cannot be continuous at A in the standard sense. This is the reason why we define a
new concept of continuity of a function at a point with respect to a set, which is a
kind of analogy of one-sided limits of real functions of one real variable.

Let function f (X) be defined on a set M < E" and let point A € M. It is said that the
function f is continuous at the point A with respect to the set M, if for each £ > 0
there exists 6 > 0 such, that if X € Ns(A) n M then f(X) — f(A) < & It is said that
function f is continuous on the set M, if it is continuous at each point X € M with
respect to the set M.

A function of more variables continuous on a closed region has similar properties as
a function of one variable continuous on a closed interval.
Let function f be continuous on a bounded, connected and closed region Q < E".
Then the following assertions hold:
1. Function f is bounded on ©, therefore there exists positive number K > 0 such,
that | f(X) | < K for any point X € Q.

2. Function f has its maximum and minimum on the set Q, therefore there exists
at least one point P; € Q and at least one point P, € Q such, that

f(Py) < f(X) <f(P,) for all points X € Q.

3. Let A and B be different points from the region Q such, that f (A) = f(B). Then
function f reaches any value between f (A) and f (B) at the points from Q,
therefore there exists at least one point Ce Q such, that f(A) < f(C) < f(B).

The range of values of function f of two variables that is continuous on a bounded
closed region Q is a closed interval in R (or a one point set) that is the image of the
region Q in the mapping determined by the function f.
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Examples
1. Range of values of function f (x, y) = sin(x* — y?), with domain D(f) = E?, is the
2

interval H(f) = (- 1, 1) c R, the function graph on the set M :<_2§2§[> IS
illustrated in Fig. 2.6, left.

2. Interval (— 1, — 0.5) < R is the range of function f(x,y) = 2;22 defined on

x> +y? —

the set M ={[x,y]€ E*:x* +y* <1}. The graph of the function f is sketched in
Fig. 2.6, on the right.

Fig. 2.6. Graphs of functions continuous on bounded closed regions.

2.3 Partial derivatives of functions of more variables

Let z="f(x,y) be a function defined on certain neighbourhood of point A = [Xo, Yol
which is the limit point of its domain of definition D(f ). Let us determine the set

M, ={xeR:[x,y,]e D(f)}cE
and define the function
g:M,—>R: ¥xeM, g(x)=Tf(xY,).

The derivative g'(x,) of the function g(x) at the point X,, if it exists, is said to be the

partial derivative of function f (x, y) at the point A = [xo, Yo] with respect to the
variable x, denoted

’ ' af af
fX(XO’ yO) = fx(A) Z&(XOI y()) Z&(A)n
£, yo) = lim 90 =906) _ g FO6Y0) = (%0, o)
X—=>Xo X—X0 X=Xy X—XO
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Fig. 2.7. Partial derivative of function f(x, y) with respect to x at point T = [Xo, Yo, f(Xo, Yo)].

Plane y =y, parallel to coordinate axis z and intersecting coordinate plane xy in the
set My intersects the graph of function f (x, y) in the curve z = f (X, yo). The partial
derivative f/(X,,Y,) can be geometrically interpreted as the slope of the tangent
line t; to this curve at the point T = [Xo, Yo, f(Xo, Yo)], f,(X,, Y,) =tana, where «is
the angle of line t; and the coordinate plane xy, while its direction vector is
S, = (1101 fx’(xm yo)) :

Analogously we can determine the set
M, ={y eR:[%,,yle D(f)}cE'
and define the function
h:M, ->R: vyeM, h(y)="f(x,Y).

The derivative h'(y,) at the point y, of function h(y), if it exists, is the partial

derivative of function f(x, y) at the point A = [xo, Yo] with respect to the variable y,
denoted

of of
fy 0,0=fy’A=— 0: o) =——(A),
y (%o, ¥o) = T(A) 8y(X Yo) ay()

106, o) = lim " =N0) _ iy F00) = 1061 ¥0)
= Y—Yo y=Yo Y—=Yo
Plane x = x, parallel to coordinate axis z and intersecting coordinate plane xy in the

set M, intersects the graph of function f (x, y) in the curve z = f (X, y). The partial
derivative f/(x,,Y,) can be geometrically interpreted as the slope of the tangent line

t to this curve at the point T = [Xo, Yo, f(Xo, Yo)I, f,(X,,Y,) =tang, where g is the

angle that line t, forms with respect to the coordinate plane xy, while this line
direction vector is s, = (0,1, f, (X, Y,)) -
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Fig. 2.8. Partial derivative of function f(x, y) with respect to y at point T = [Xo, Yo, (X0, Yo)]-

Function f(x, y) continuous at the point A may have no partial derivatives defined at
the point A. Function f(x, y), whose partial derivatives at the point A exist, need not
be continuous at the point A.

The plane determined by both tangent lines, 7= t; t, is the tangent plane to the graph
G(f) of function f(x, y) at the point T = [Xo, Yo, f(Xo, Yo)] € G(f).

“ y

A

Fig. 2.9. Tangent plane to the graph of function f(x, y) at the point T = [Xy, Yo, f(Xo, Yo)]-

Let A = [Xxq, Yo] be a limit point of the domain of definition D(f ) of function f(x, y)
and let there exist both partial derivatives of function f at A

fi (%, ¥o) = T (A), (X, Yo) = T, (A) .

Tangent plane 7 to the graph of function f at the tangent point T = [Xo, Yo, f (Xo, Y0)] IS
determined by the equation

2= F(A) = F(AX=x%)+ F(A(Y = ¥,) -
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The normal vector to the tangent plane zis represented as
n= sl XSZ = (_ fx'(Xo’ yo)’_ fyl(X()l yo),l)

and it is the direction vector of a straight line passing through the point T and
perpendicular to the plane 7 called the normal to graph G(f) at T.

Examples

1. Function f(x, y) = x* + y?, with domain D(f) = E? has both partial derivatives at
the point A = [2, 3], while f/(2,3)=4,f/(2,3)=6, and f(2,2) =13, and the
equation of the tangent plane at the point T = [2, 3, 13] is 4x + 6y —z - 13 =0,
while its normal vector is n=s, xs, =(4,6,—1), and parametric equations of the
normal to the function graph are

X=2+4t,y=3+6t,z=13-t,teR.

The graph of function f (x, y), tangent plane and normal to the graph at the
tangent point T are illustrated in Fig. 2.10, left.

Fig. 2.10. Tangent planes and normals to graphs of functions f (x, y).

2. Let function f (x, y) = sin xy, be defined on the closed region (- n/2, n/2) c EZ.
The tangent plane to the function graph at the point O = [0, 0, 0] is the coordinate
plane xy intersecting the graph of function f in the perpendicular line segments
located on coordinate axes x and y and meeting at the origin of the coordinate
system, see in Fig. 2.10, right. The tangent plane equation z = 0 can be
determined from the partial derivatives

f.(x, y)=ycosxy, f/(x,y)=xcosxy,

whose values at the point [0, 0] are equal to zero. The direction vectors of the
tangent plane are the unit vectors of the coordinate axes x and v,
s, =(0,0),s,=(0,1,0), and the normal vector of the plane is the unit vector

n=s,xs, =(0,0,1), as the normal to the function graph is coordinate axis z with
the parametric equations x=0,y=0,z=t,teR.
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3. Function f (x,y) =1-3/x* + y? defined on E? has both partial derivatives

’ 2 2 2 _g ' 2 2 2 ‘%
fx(x,y)=—§><(x +Yy°) 8, fx(x,y)=—§y(x +Y%)

defined on E? except at the origin O = [0, 0] of the coordinate system. Their
values at the point A = [2, 2] are equal, f/(2,2) = f (2,2)=-1/3, and the

equation of the tangent plane to the function graph at the point T = [2, 2, —1] can
be derived in the form x + y + 3z —1 = 0. The tangent plane intersects the graph of
function in the curve with the double point at the tangent point T, see in Fig. 2.11,
left, with the implicit equation

B +y* —x—y-2=0.

Vectors s, =(3,0,-1),s, =(0,3,-1) can be chosen as the tangent plane direction
vectors, while its normal vector is then n=s, xs, =(3,3,9), or collinear vector
n, = (L1, 3). The normal to the function graph can be determined parametrically,
asline x=2+t,y=2+t,z=-1+3t,teR.

W

N y
\\\\\ \

Fig. 2.11. Tangent planes and normals to graphs of functions f(x, y).

4. Equation of the tangent plane to the graph of function f(x,y)=,/4—y? at the

point T=11,0, f(1,0) =2] is z =2, because both partial derivatives at the point
[1, 0] have zero values

f(X)=0, f;(X)=-y(4-y*) 2, f/10)=0.

The tangent plane is parallel to the coordinate plane xy, direction vectors are
s,=(10,0),s,=(0,10), and it is tangent to the function graph in the line
parallel to the coordinate axis z given by equations y =0, z = 2, as illustrated in
Fig. 2.11, right. Normal to the graph of function can be determined
parametrically as line x=1,y=0,z=t,teR.
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2.4 Total differential of functions of more variables

Let M — E? be set of such points from D(f), at which both partial derivatives of
function f (X, y) with respect to x or y exist.

Function determined on the set M, in which any point A € M is attached the partial
derivative of function f (x, y) at the point A with respect to x or v, is said to be the
partial derivative of function f(x, y) with respect to x or y

fx’:i fy':i

OX oy
f,:M—>R f,:M - R
fiA— f/(A) f,rA— f/(A)

Suppose that A = [Xo, Yo] is the limit point of the domain D(f ) of definition of
function f(x, y) and let both partial derivatives f/(A), f;(A) of function f exist and

be continuous at the point A. Then function f is said to be differentiable at the point
A, and function increment Af = f(X) — f(A) is expressible in the form

FOX) = T(A) = f(AX=X)+ F,(A(Y - Yo) + (X)d (X, A),

where d(X, A) is the distance of points X and A and w(X) is the function continuous
at A and such that w(A) = 0.

Remark. It can be simply proved that the differentiability of f at A implies its
continuity at A. On the other hand, differentiability of f at A does not follow from
continuity. A sufficient condition of the function differentiability at a point A is the
existence and the continuity of its function partial derivatives at A.

The total differential of function f at the point A is the expression
df (X, y) = F(A)(X=%) + f (A)Y — Yo) -

An equation of the tangent plane to the graph of function f can be then rewritten in
the form

z—f(A)=df,(X),

from which the geometric interpretation of function f total differential at the point A
can be derived, as illustrated in Fig. 2.12.

Fig. 2.12. Total differential of function f(x, y).
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If: 1. )I(imAd(X,A)=0,
2. function f is continuous at the point A,
3. partial derivatives f!(A), f/(A)exist,

then the condition of the differentiability of function f can be written in the form
Af (X) = f(X)—f(A) = df,(X, y)+@(X)d(X,A).

Omitting the last member of this equality we can obtain an approximation formula
often used in numerical mathematics for the estimation of values of function f in the
neighbourhood of point A

f(X)— f(A) = df,(X)=> F(X)= f(A)+df,(X).

Examples
1

1. The total differential of function f(x,y)=xy(x*+y?) 2 at the point A = [1, -1]
is determined by the values of partial derivatives f!(A), f/(A), while
3 3

By =y 0 +y?) 2, £ y) =X (¢ +y?) 2,
i (0y) = =5 7= D+ o= (y+)

The equation of the tangent plane to the function graph at point T = [1, -1, f(A)]
illustrated in Fig. 2.13 can be determined as z— f (A) =df,(x,y) in the form

z+i 12(x—1)+

1
\/§:_2f ﬁ(y+1)c>x—y+2\/§z=0-

Fig. 2.13. Tangent plane to the graph of function f(x, y).
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2. An approximate value of the number /2.1-8.05 can be estimated, for instance,
using the total differential of function f(x, y):ﬂ at the point A = [2, 8],
which is determined by the partial derivatives of this function

(=, o 1@O=L =5, 169 -2
and the value of function f(A) = (2, 8) =4. Then

f(X)= 1(2,8)+ f/(2,8)(x-2)+ f/(2,8)(y—8)
f(X)=4+x-2+0.25y-2=x+0.25y

f(2.1,8.5)= 2.1+0.25-8.05=4.1125

while the exact value is 4.11157 .
2.5 Partial derivatives of higher orders

Suppose that a function of two variables f(x, y) defined on a set M has both partial
derivatives fy (X) and fy(X). These functions of two variables can again possess

partial derivatives with respect to each of the variables. If such partial derivatives
exist we denote them the second partial derivatives or partial derivatives of the
second order of the function f(x, y). According to the order of differentiation we
obtain four second-order partial derivatives denoted in one from the following ways:

w e O(OF)_ O°f y rem  O(OF) 0%
fxx:[fx] (j_ fxy:[fx]y:_( j_

x:&

ox) ox’ oy\ox)  oxoy’
" o_ rr_gizazf "_ rr:gq:az_f
f”_[fy]“ﬁx(ayj yox' I Lbb ay(ayJ N

Derivatives fry (X), and fyx (X) are called the mixed second partial derivatives.

For most of the functions they are equal. Generally, if they are both continuous, then
they are identical.

Function f of n variables, possessing n partial derivatives with respect to all n
variables has up to n? partial derivatives of the second order. In case n = 2 there exist
2% = 4 partial derivatives of the second order, for n = 3 there are 9 second-order
partial derivatives, etc.

Examples

1. The second partial derivatives of function f(x,y)=x?y+x"y*are the following:
fa(Xy) =2y +12x°y?,
fo (X y)=1L(xy)= 2x+12x%y?,

X

fr(x,y)=6x"y.
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. Function f(x,y)=x"has partial derivatives f'(x,y)=yx’", f (% y)=x"Inx
and its second partial derivatives are

fo (% y) = y(y=1x"2 £ (% y) =x"In*x,
fo(xy)=f(xy)=x"{1+ylnx)

. Function f(x,y,z)=ze” of three variables has the first partial derivatives
fi(x.y,2)=yze?, f)(xy,2)=xze”, f)(xy,2)=¢7,

and the following partial derivatives of the second order

fo(xy,2)=y’ze",

fr(x,y,z)=ye”, f,

fo (XY, 2) =z(L+xy)e”,
fr(xy,2)=z(1+xy)e”, f(xy,2)=x"ze",

(X, y,2) =xe”,

fa(Xy,2)=ye",
fy’;(x, y,z) = xe”,
fr(x,y,z)=0.

Partial derivatives of the first and second order of function f(x,y)=Inxy™,

defined on the set D(f)={[x,y]e E*:xy™" >0}, are functions

fiy)=x" f/(xy)=-y7,
fa(%y)=—x" fl(xy)=x"y?
fy (X, y) = fr(xy)=0,

defined on the same domain.

The partial derivatives of the third and higher orders are defined similarly.

If the second partial derivatives of the function f(x, y) have partial derivatives, then
these are called the third partial derivatives or partial derivatives of the third order of
the function f. The number of the third-order partial derivatives of the function of
two variables is 22 x 2 = 2° = 8. If we differentiate function f(x, y) three times with

respect to both variables, we receive

" ny a azf 831: " "y a aZf an
b=l =2 | =7 |= 2 foy =Lty = =7 | = 5o
ox\ ox OX oy ox ox“oy
m ny 8 aZf 831: m ny a azf an
Fge =Tyl == - ' Fay =[f5y =— T A2
OX\ OXoy ) Oxoyox oy\ oxoy ) oOxoy
m ny a azf a?:f m R a 621: 53f
fyxx:[fyx]x:_ v | T AAv2 ! fyxy:[fyx]y:_ — |
Ox\ oyox | oyox oy |\ oyox |  oyoxoy
" "y a aZf an " nr a 82f 83f
b =Lnh =5 WJay—a fvf“v“v‘a(ﬂw'
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The partial derivatives of partial derivatives of order n — 1 are called the n-th partial
derivatives or partial derivatives of order n. The number of partial derivatives of
function of two variables of order n is 2"* x 2 = 2", and they can be represented as
follows

AU (@“f}anf 0, =100, =2 (5nlf]= ot

& ox™ ) ox o X" ) oxMoy

(0 nl)]_ oM f o f
Loy BRI oy | ox™ 2oy ax“ayax'

f(n) [ (n—l) ] _Y an_lf _ anf
X: XYy XK.. xy 8y ax”*ay ﬁxn’zﬁyz’

(o _rpony _ O[O L _rcawy _ (00
Mx_[ﬁn}.zx_ax aynl 8y”’16x’ yy.ny [ﬁnf}]y ay 8}/”71 _8yn'

Examples

1. Function f(x,y)=3x’y—xy® has non-zero partial derivatives up to order 3,
where mixed third-order derivatives are non-zero constants.

o y)=6xy—y*  f(xy)=3x"-2xy,

fo(x, y) =6y, fo(xy)=f(xy)=6x-2y, f;(xy)=-2x

Fa (X, Y) = T3, (X, y) =0,

fay (X ¥) = (6 y) = f (X y) =6, f5,(xy) = f,(xy) = fa(xy) =

All partial derivatives of function f of order 4 and higher orders are equal to zero.

2. Partial derivatives of function f(x,y)=In(x—y) are functions
Ky =(x=y)" fxy)=-(x-y)",
fe(xY) ==(x=y)*, foxy)=fa(xy)=(x=-y)" fLxy)=x-y)"
foo (% Y) = £, (%, y) = T (x,y) = T (x y) =2(x=y) ",

foy (0 ¥) = T (%, y) = T (x,y) = T, (x y) ==2(x~y)?,
therefore f& =+(h-D)I(x—y)™",

where the sign of a particular derivative depends on the parity of the derivative
order and on the number of differentiations with respect to variable y. In the case
of an odd order of the derivative its sign is positive if the number of
differentiations with respect to variable y is an even number or zero, and it is
negative for odd number of differentiations with respect to variable y. For an
even order of the derivative, the sign is negative for the even number of
differentiations with respect to variable y, and it is positive for their odd number.
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Analogously to the properties studied in calculus of a real function of one real
variable we can investigate various properties of functions of more variables by
means of their partial derivatives of higher orders. This means that we can

o determine all stationary and critical points in the function domain D(f)

¢ identify the existence of points of the local extremes of function, i.e. points at
which function reaches its locally minimal or maximal values

¢ find points at which function reaches global extremes on a closed region
e investigate other special points on the graph of function, e.g. saddle points.

2.6 Local extremes of functions of more variables

Let f be a function of n variables defined on D(f) = E" and let A be an arbitrary
point from its domain of definition. It is said that the value f(A) is the local
maximum, or local minimum of function f, if there exists such neighbourhood N, (A)
of point A that for each point X € N.(A) n D(f) the following inequality holds:

f(X) = f(A), or f(X) = f(A).
If for all points X € N, (A) n D(f), X#A s
f(X) > f(A), or f(X) <f(A),

the function value f(A) is said to be the strict local maximum, or strict local
minimum. The point A is called the point of (the strict) local maximum, or (the
strict) local minimum.

Function f is said to have local minimum, or local maximum f(A) at the point A,
while in case of sharp inequalities we speak about function strict local minimum, or
strict local maximum f(A) at the point A. Together, the local minima and the local
maxima of a function are called local extremes of a function.

Function f can reach local extremes in the following points only:
1. stationary points, at which all partial derivatives, if they exist, are equal to 0
2. points, at which partial derivatives do not exist.

Let f be a function of two variables. Point A € D(f) is said to be a critical point of
the function, if fy(A) and fy(A) vanish or they do not exist. It can be proved that

function f can possess local extremes only at its critical points.
If fy(A)=0,and fB’,(A) =0 but f(A) is not any local extreme of function f, then the

point A is called the saddle point of function f.

The geometric interpretation for the function of two variables is straightforward.

Let [xo, Yo] € D(f) be a stationary point of function f(x, y). The total differential of
function f equals to zero at the function stationary point. Then the tangent plane to
the graph of function f at the point T = [Xo, Yo, f(Xo, Yo)] On the surface G(f) — E® has
the equation z = f(xo, Yo) and it is parallel to the coordinate plane xy.
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An illustration can be seen in Fig. 2.11., right, where function f(x,y)=+4-y’

reaches its local maximum at the point A = [1, 0], at which both partial derivatives
vanish. The tangent plane with equation z = f(A) = 2 is parallel to the plane xy. On
the contrary, function f(x, y) = sin xy reaches no extreme value at the point A =[0,0],
as can be recognised from Fig. 2.10, right, while both partial derivatives vanish at
this point, A is the saddle point of the function and tangent plane intersects its graph.

The stationarity of point A is the necessary but not the satisfactory condition for the
existence of a local extreme of the function at this point. The function can reach
local extremes also in such points, at which it is not differentiable.

Examples

1. Function f(x,y)=+4+x>—y? defined on D(f)={[x,y]eE?:4+x* —y? >0}
is not differentiable at the points of a hyperbola with the equation 4 + x* — y? = 0,

as both partial derivatives, f/(x y)=——>*___ f/(x.y)=———Y ___ arenot
defined at these points. The function reaches its minimal value 0 at these points,
and its range is interval (0, «). The stationary point A = [0, 0] of this function, at
which partial derivatives are vanishing, is the saddle point of function f, tangent
plane to the function graph at this point has equation z = 2 and it intersects the
graph in lines with equations x =y, z=2,and x =—y, z =2, see in Fig. 2.14, left.

Fig. 2.14. Saddle point and points of local extremes of functions f(x, y).

2. Function f(x,y)=—/9—3x"—y* has a minimal value -3 at the stationary point

A =10, 0], and its partial derivatives vanish at this point. Partial derivatives
3x y

fixy)=——.fj(xy)=F/———
\9-3x% —y? \J9-3x*—y?

an ellipse in the plane xy with the equation 9 — 3x? — y* = 0, anyhow, the function
reaches its maximum value O at this points, and its range is interval (-3, 0), as is
illustrated in Fig. 2.14, right.

are not defined at the points of
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From the above examples it is clear that the simple fact of vanishing partial
derivatives fy(A)= fy(A) =0 does not itself guarantee that the function value f(A)

is a local extreme of function. However, if f and its first and second partial
derivatives are continuous on some neighbourhood N,(A) of point A, the second
derivative test exists, and it may verify the behaviour of the function f at the point A.

Let A = [xo, Yo] be a stationary point of function f(x, y) of two variables, and let
there exist continuous first and second partial derivatives of function f on some
neighbourhood N, (A) of point A, while fxy (A) = fyx(A). Let

fo (X0 ¥o) T (X0, ¥o)

= % Yo) 1 (%, ¥o) = (£ (%, o) )
00y 106y oY) Tl o) (0. ¥0))

D(X01 yo) =

Then

a) function f has a strict local extreme f(Xo, Yo) at the point A, if D(x,,Y,) >0,
which is
a strict local minimum, if 7 (x,,y,)>0,0r f (x,,¥,)>0

"

a strict local maximum, if f7(X,,Y,)<0,0r f(X,,¥,) <0,

b) function f does not have a sharp local extreme at the point A, if D(x,,Y,) <0,
but A is a saddle point of the function graph,

c) the test fails if D(x,,y,)=0.

Determinant D is called the Hesse determinant (Hessian) of function f(x, y) of two
variables at the point A from its domain of definition.

The investigation of local extremes of the function of two variables can be therefore
performed in the following steps:

1. Find all stationary points of the function and points, at which the function
does not have partial derivatives.

2. Assess all critical points from step 1 and analyse possible existence of
function extremes at these points.

e At stationary points, at which second partial derivatives are continuous,
Hesse determinant of the function at this point can be used to decide about
the existence of local extremes (D(A) > 0) or saddle points (D(A) < 0).

¢ In the case of a vanishing Hesse determinant (D(A) = 0) at the stationary
point, the behaviour of the function on the neighbourhood of this point
must be investigated by means of definition of local extremes.

e The existence of local extremes at such points, at which partial derivatives
do not exist, can be proved from the definition.
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Examples

1. To find all local extremes of function f(x, y) = x> + xy*> — 27x we must determine
its both first derivatives and all four second partial derivatives, and find all
critical points. This function is defined on E?, and there are also defined its first

partial derivatives f/(x,y)=3x*+y*—27, f/(x,y) =2xy, Which are vanishing
at the stationary points whose coordinates satisfy two equations
3x*+y*—27=0,2xy=0.

From the second equation it follows that either x = 0 or y = 0, and substituting
this condition to the second equation we receive the values of corresponding
coordinates, y =433, or x=13. Four stationary points exist to be
investigated, A =[0,—3v3], A, =[0,+3v3], A, =[-3,0],A, =[3,0]. The function
second partial derivatives are
fo (X Y)=6x, f3 (x,y) =1, (x,y) =2y, f; (X,y) =2x, while the Hesse
determinant can be determined as function of two variables in the form

6x 2y
D(x,y) = ‘

=12x* —4y?.
2y 2

Applying the second derivative test we receive:

D(O,—3\/§) =-108<0, D(O,3\/§) =-108 <0, Hessian value is negative at the
points A; and A,, therefore these are saddle points of function, tangent plane with
the equation z = 0, as f (0,~3+/3) = f (0,3v/3) =0, intersects graph of function in
the line x = 0 and the circle x? + y* = 27, which are presented in Fig. 2.15, right.
D(-3,0)=108>0, f, (-3,0)=-18<0,Hessian value is positive at the point As,
and there is the local maximum at this point with the value f(-3, 0) = 54, Hessian
value D(3,0)=108>0, f(3,0)=18<0 is positive at the point A,, and there is
the local minimum at this point with the value f(3, 0) = —54, Fig. 2.15, left.

Fig. 2.15. Saddle points and points of local éxtremes of functions f(x, y).
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2.7 Constrained and global extremes of functions of more variables

In problems involving the determination of extremes of functions of two variables
we often encounter the so called constrained (conditional) extremes. Let there be
given a function f (x, y) and a set (for example a curve) M < D(f). The problem is to
find a point A € M such that the value f(A) is the greatest or the least, compared to
the values of f at the points of the set M, lying close to the point A. Point A of this
kind is called a point of the constrained extreme.

Let f be a function of two variables defined on D(f) = E?and let a set M < D(f).
Then a point A € M is called the point of a constrained local maximum (minimum)
if such neighbourhood N, (A) exists that for each X € M n N, (A) it is valid

FX)<FA)  (F(X)=FA)).

The set M is mostly given as a set of points from D(f) satisfying a condition given
by the equation g(x, y) =0,

M = {[x, y] € D(f): g(x, y) = 0} < D(f).

The condition determined by the equation, which is satisfied by coordinates of all
points from the function f domain of definition D(f) that are in the set M, is called a
constraint. Extremes of function f, attained on the set M < D(f) determined by the
constraint are called the constrained local extremes of function f .

Point A = [Xo, Yo] is the point of constrained local maximum (minimum) of function f
for the constraint g(x, y) = 0, if such neighbourhood N, (A) of point A exists, that for
all X e N, (A), whose coordinates satisfy the given constraint it holds that

fX) < f(A)  (F) > f(A)),

In case of strict inequalities we speak about a strict constrained local maximum or
minimum. Constrained local minima and maxima of a function are called
constrained local extremes of function.

How to determine all constrained local extremes of function f (x, y)?

It is straightforward and easier to solve this problem in the case, when it is possible
to express one from the variables x or y as a function of the other variable from the
constraint equation g(x, y) = 0. If, for example, we can obtain y = h(x) from the
constraint, then, substituting this expression for y to the original function f, we
obtain a function of one variable F(x) = f(x, h(x)). In this way, instead of
determining constrained local extremes of the function of two variables f(x, y), we
look for local extremes of the function of one variable F(x).

Similarly, if x = h(y), by substitution we receive function G(y) = f(h(y), y) of one
variable y and we look for its local extremes.

Examples

1. Constrained local extremes of function f(x,y) = X + y* + 1, if the constraint is
given by the equation x+ y — 1 = 0, can be determined as local extremes of
function of one variable, because the functiony =1 —x can be substituted to the
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function f(x, y), thus obtaining function F(x) = x> + (1 — x)* + 1 = 2x* — 2x + 2.
This function has the derivative F'(x,y)=4x—2 vanishing at the point x = 0.5,
while value of the second derivative F"(x,y)=4>0 is always positive, and

function has local minimum at the stationary point x = 0.5, which is F(0.5) = 1.5.
This is also the value of the constrained local minimum of function f(x, y) at the
point [0.5, 0.5], as f(0.5, 0.5) = 1.5. Geometric meaning of this problem is to find
a point with the minimal z coordinate on the curve, which is the intersection of
the function graph G(f) - paraboloid of revolution with axis in the coordinate axis
z, and plane passing in the direction of axis z through the line x + y = 1 in the
coordinate plane xy. It is the vertex of the intersection parabola, in Fig. 2.16, left.

B —
Ly —

N
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|
|

Fig. 2.16. Geometric interpretation of constrained local extremes of functions f(x, y).

. Function f(x,y)=xy defined on E? whose graph G(f) is the hyperbolic
paraboloid, has a saddle point A = [0, 0], as it is the stationary point of its partial
derivatives f/(x,y) =Yy, f/(x,y) =x, and from the values of the function second
partial derivatives f;(x,y)=f,(x,y)=0, f (x,y)=f (x,y)=1 follows the
constant value 1 of the Hesse determinant. Constrained extremes of function
f(x,y) for constraints x —y = 0 and x + y = 0 can be found expressing one
variable as function of the other one. Function F(x) = x?, received from the first
constraint, with derivatives F'(x) =2x,F"(x)=2, has its local minimum at the
point x = 0 with value F(0) = 0, which is the local constrained minimum of
function f(x,y) = xy at [0, 0]. Function G(y) =—y? derived from the second
constraint with derivatives G'(y)=-2y,G"(y)=-2, has its local maximum at
the point y = 0 of value G(0) = O that is the local constrained maximum of
function f(x, y) = xy at the point [0, 0]. Intersection parabolas of graph G(f) and
planes passing in direction of coordinate axis z through the lines with equations
defining constraints in the coordinate plane xy meet at the point [0, 0, 0], whose z
coordinate defines values of both local constrained extremes, and which is the

51



highest point at one and the lowest point at the other parabola, as can be observed
in Fig. 2.16, right.
However, if the constraint g(x, y) = 0 is too complicated to express one of the
variables in terms of the other, then another method can be used, namely the method
of the Lagrange multipliers. To determine the points at which the function f attains
constrained local extremes we form an auxiliary function

F(x,y) =f(x, y) + Ag(x, y),

where A is a suitable constant called the Lagrange multiplier. It is clear that the
function F(x, y) is defined on the set M and moreover

F(x,y) =f(x,y) foreach[x,y] e M.

It can be easily proved, that if a point A = [X,, Yo] € M is a point of a local extreme of
the function F(x, y), then A is a point of a constrained local extreme of the function
f(x, y) subject to the constraint g(x, y) = 0. The converse of the latter proposition is
not valid. It might not be possible to find all constrained local extremes with the aid
of this method.

Applying the method of the Lagrange multipliers, we create first the following
system of three equations in three unknowns x, y and 4

F(xy) = f,(xy)+4g,(x,y) =0

Fi(xy)=fj(x,y)+1g;(x,y) =0

g(x,y)=0

Solving this system we obtain the critical points of the function F(x, y). Then we
must verify (for example by means of the second derivative test) whether these
points are points of extremes.

Examples

1. Optimisation problem "At which point of the circle x* + y* = 1 does the sum x +y
have the extreme value?" can be solved by determining the constrained local
extremes of the function of two variables f (x, y) = x + y with the constraint
defined by equation x* + y* — 1 = 0. None of the variables can be represented as
function of the other one, so we form function F(x, y) = x +y + A(x* + y* — 1)
with the Lagrange multiplier A and find the solution of the system of equations

F(x,y)=1+2x4=0

F (X y)=1+2yA=0

x> +y*-1=0

From the first two equations it follows that x=y= _% , which after
substituting to the third equation gives the values 4, , = +1/2/2. Thus we receive

two stationary points of function F(x, y) that have to be investigated, namely
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A =[—212-212],A =[N212,212].
The second partial derivatives of function F(x, y) are
Fa(y)=F (xy) =24, Fi(xy)=F(xy)=0,

and the value of the Hesse determinant is D(X) = 44%> 0, so function F attains
local constrained extremes at both points. It is a local constrained minimum at
point A; determined by the positive value of 4, with value F(A;) = f(A) = — /2.
At the point A,, determined by the negative value of A, function F attains a local
constrained maximum with the value F(A;) = f(A;) = v/2 .

This situation can be interpreted geometrically as looking for such points on an
ellipse that are extremely located with respect to their distance to the coordinate
plane xy. The ellipse is the intersection curve of a plane determined by equation
x +y—z =0 and a cylindrical surface of revolution x* + y* = 1. The axis of this
cylindrical surface is in the coordinate axis z and its radius equals 1. The values
of the constrained extremes are equal to z coordinates of the two extremely
located points, as illustrated in Fig. 2.17, left. Then the answer to the
optimization problem is the following: "The sum x + y has its maximum value
V2 at the point A; on the circle x? + y> = 1 and it has the minimum value —+/2 at
the point A, of the circle."

‘ o - ,\;, e e .,;
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Fig. 2.17. Geometric interpretation of constrained local extremes of functions f(x, y).

2. Finding the greatest and the least values that the function f(x, y) = xy takes on the
2 2
ellipse %er?: 1 we are looking for constrained local extremes that could be

investigated by the method of the Lagrange multipliers, as the constraint equation
does not allow elimination of any of the variables. Forming the new function
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F(x,y) = xy + A0 + 4y? — 8) we can define the system of three equations for
determination of its stationary points

F/(X,y)=y+2x1=0,

F (X, y) =x+8yA=0,

x> +4y* -8=0.

From the first and the second equations follows ;7 — _Zl _ _8X
X y

after some manipulations we receive y = + Xx. Substitution into the third equation
gives values y,, =+1 and therefore x ,=+2. Thus we receive four stationary

points of function F(x, y) that have to be investigated, namely

A =[-2-1]. A =[-21]. A =[2-1]. A, =[2]],

while the corresponding values of the respective Lagrange multipliers are
A=-141,=1/4,1,=1/4,2,=-1/4.

The second partial derivatives of function F(x, y) are

Fa (X y)=24,F; (x,y) =84, F (X, y)=F (X y) =1

and the value of the Hesse determinant is D(X) = 164*—1, which gives D(A) = 0
foralli=1, 2, 3, 4. Thus the method fails and function F must be investigated in
the neighbourhoods of all stationary points. It attains equal values at pairs of
points, as F(A;) = F(As) = 2 and Ay, A, are points of local constrained maxima,
while F(A;) = F(As) = -2, and points A,, Az are points of local constrained
minima, see in Fig. 2.17, right. Then, the greatest value that function f(x, y) = xy

, from which

2 2
takes on the ellipse %er?:l equal to 2 at the points A; = [-2,-1], A4 =[2, 1],

while the least value equal to —2 is reached at the points A, = [-2, 1], As =[2, —1].

Investigation of the constrained local extremes of function f(x, y) of two variables
can be therefore summarized in the following steps:

1.

Variable y can be extracted from the constraint g (x, y) = 0 and determined as a
function of variable x, y = h(x). This function can be substituted into the function
f(x, y), while a composite function of one variable x defined on the set M can be
obtained, f(x, h(x)) = F(x). All local extremes of function F (x) on the set M are
constrained local extremes of function f(x, y) of two variables on the set M.

. Variable x can be extracted from the constraint g (X, y) = 0 and determined as a

function of variable y, x = h(y). This function can be substituted into the function
f(x, y), while a composite function of one variable y defined on the set M can be
obtained, f(h(y), y) = F(y). All local extreme of function F (y) on the set M are
constrained local extremes of function f(x, y) of two variables on the set M.

. In the case that none from the variables x or y can be extracted from the constraint

g(x, y) =0 and expressed in terms of the other, the method of the Lagrange
multipliers can be used. We define an auxiliary function called Lagrange function
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Fxy) =f(x,y) + 29(xy),
where A is an arbitrary constant called the Lagrange multiplier. Function F(x, y)
is defined on set D(f), and moreover, as g(x, y) = 0 in the points of set M, it holds
that F (x, y) = f(x, y) on M. If any point A = [Xxo, Yo] € M is the point of a local
extreme of function F = f + A g, then point A is the point of a constrained local
extreme of function f for the constraint g(x, y) = 0.

Geometric interpretation of constrained local extremes of function f can be derived
as z-coordinates of extremely located points on a curve that is the intersection of
graph G(f) of function f with the cylindrical surface determined by a curve defined in
the plane xy by the respective constraint, while lines on this surface are in the
direction of coordinate axis z.

In many, especially in optimization problems, we are interested in the greatest or the
least value of a function on a subset of its domain of definition, in other words, in
the global extremes of a function on a set. Global extremes of a function of more
variables are defined in the following.

Let f be a function of n variables, n > 1, defined on the set M < D(f). Maximum
(minimum) of the set H(f), which is the range of function f for all X € M is called
the global, or absolute maximum (minimum) of function f on the set M. Global
maxima and minima are referred to as the global extremes of function f on the set M.
If M is an open region, function f may not attain any global extremes on this set. If
M is a closed bounded set and f is a function continuous on M, then the global
extremes on M are attained, and they can be found in the following steps:

1. We find all local extremes of function f inside set M, while it is sufficient to find
values at all critical interior points of M.

2. We find all local extremes of function f on the boundary of set M, which are
constrained local extremes of function f on the boundary of set M.

3. Global maximum (minimum) of function f on the set M is then the greatest (least)
from all found values, local extremes of f inside the set M and constrained local
extremes of f on the boundary of the set M.

Examples
1. Let us find all global extremes of function f(x, y) = 2x* + y* on the closed disc in

the plane xy, set M = {[x, y] € E*: x* +y? <4}. Local extremes of function f
inside set M can be found at stationary points obtained from vanishing conditions

of the first partial derivatives f/(x,y)=4x, f (X,y)=2y, while one point

A =[0, 0] is determined, which is the point in the set M. The Hesse determinant
value can be calculated as D(x, y) = 8 > 0, from the constant values of the second

partial derivatives fl(x,y)=4, f (x,y)=2,f1(x,y)=f,(x,y)=0, therefore

point A is the point of a local minimum, the value is f (0, 0) = 0. Constrained
local extremes on the boundary of set M, which is the circle x*+ y*= 4, can be
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investigated introducing the function F(x, y) = 2x* + y* + 1(x*+ y*— 4). From the
partial derivatives of this function the system of equations is formed

F/(X,y) =4x+2xA4=0,
F (X, y)=2y+2yi1=0,

X*+y?—4=0,

and stationary points can be found, as follows.
Forx=0,4=-1,y=42,and A; = [0, -2], A, = [0, 2],
fory=0,A=-2,x=42,and A; = [-2, 0], A, =[2, 0].

The second partial derivatives of function F(x, y) are
Fa(X,Y)=4+21, Fi(x,Y)=2+21, Fi(x,y)=F,(X,y)=0

and the Hesse determinant equals D(X) = 44% +121 + 8, which gives for both
values of A equal values D(A)) = 0 for i = 1, 2, 3, 4. Thus the method fails and
function F must be investigated in the neighbourhoods of all stationary points. It
attains equal values at pairs of points, as F(A;) = F(A,) = 4, and A;, A, are points
of local constrained minima of function f (x, y), while F(As) = F(A;) = 8, and
points A;, A4 are points of local constrained maxima of function f (x, y), see
geometrically represented in Fig. 2.18. Here the graph of function f(x, y) is an
elliptic paraboloid with axis in the coordinate axis z and vertex at origin, while
boundary of the set M, circle x* + y? = 4 determining constraint is represented by
a cylindrical surface of revolution with the axis in coordinate axis z and radius 2.
The constrained extremes are z coordinates of the extremely located points on the
intersection curve of the two surfaces. Comparing values of local minimum and
constrained minimum we obtain the final solution of the initially posed problem.
Global extremes of function f(x, y) = 2x* + y* on the closed disc M are attained at
the following points - global minimum at the point A = [0, 0], value is f(0, 0) = 0,
global maximum at points As = [-2, 0], A; = [2, 0], value is f(A3) = f(A4) = 8.

Fig. 2.18. Global extremes of fur;ctions f(x, y) on set M.
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3 Integral calculus of multivariable functions

3.1 Basic concepts of multiple integration

Integration of functions in several variables is done applying the principles of
integration of functions of one real variable. There, for example, we calculated the
area under a graph of a continuous non-negative function f(x) defined on an interval
in real numbers, | =(a, b) R, by accumulating the area. First we divided interval |
into n not overlapping sub-intervals {xi.1, xi), i = 1, ..., n, then we chose an arbitrary
point & € (Xi1, Xi) in each of them, and formed the sum of areas of small rectangles
with sides equal to the lengths of sub-intervals Ax; = xi — xi.1 and the value of function
f(&) at the chosen point from the respective interval. Thus we obtained an
approximate formula

A:Zn:f(c_’fi).Axi

for the calculation of the area of the defined curvilinear trapezoid, see in Fig. 3.1. The
denser the division, the more precise results can be obtained. In a limit process for
number of sub-intervals n tending to infinity we arrive to the concept of definite
integral of function f(x) over an integration domain | = (a, b)

A= @Z F(2).A% :T f(x)dx.

a Ti-1 & @ b

Fig. 3.1. Area of a curvilinear trapezoid.
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Consider now the following problem.

Let D < E2 be a bounded region and f(x, y) be a non-negative continuous function of
two variables defined on D. We want to find the volume of a curvilinear cylinder
determined by D and f(x, y), it means the volume of the solid bounded from below by
D lying in the plane xy, by the surface G(f) that is the graph of function f(x, y) from
above, and by the corresponding cylindrical surface generated by lines passing
through the boundary points of D and parallel to the coordinate axis z. The procedure
is analogous to that for computing the area of a curvilinear trapezoid.

First we divide D into n sub-regions D1, D3, ..., Dn not overlapping and such that areas
A(Da), A(D2), ..., A(Dn) can be computed. Then we choose an arbitrary point from
each sub-region [&, 7] € Dy, i =1, 2, ..., n. Finally we form the sum

v =if(§i,m>.A(Di)-

This number is equal to the volume of a solid bounded by parts of planes z = f(&, )
from above, therefore depending on the division of the region D and the choice of
points [&, 7] € Di, i=1,2, ..., n. It is natural to consider the acquired sum as an
approximation of the desired volume of a given curvilinear cylinder, in Fig. 3.2.

Fig. 3.2. Volume of a curvilinear cylinder.

This idea leads to the concept of double integrals for functions of two variables, over
plane regions. We will first discuss a simpler case, with the region D considered as a
two-dimensional interval, i. e. a rectangle, and function f(x, y) is not necessarily non-
negative.
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3.2 Double integrals
Let | — E2 be a two-dimensional interval, which is the Cartesian product of two closed
intervals (a, by and {c, d), i.e. a rectangular region
I={[x,y] e EZa<x<h,c<y<d}=(a by x{(c,d).
Let us take an arbitrary division of the interval (a, b)
A=X<X1< ... <Xn1<Xn=b
and an arbitrary division of the interval {c, d)
C=Yo<V1<..<Ym1<Ym=d

where n and m are any natural numbers. By means of these two divisions, a division
is given of the two-dimensional interval (rectangle) | consisting of n.m two-
dimensional sub-intervals (rectangles)

lij = (Xia, Xy x Vi, Vi), 1 =1, ... ,on, j=1, ..., m

such that
1=J1, and A()=D A(,).
i, j=1 i,j=1

Now let f(x, y) be any function of two variables, defined and bounded on I. In a similar

way to above we can compute the sum Z f(&.n,;).A(1;) for any division of | and
ij=1

any choice of points [&, 7] € lij, i=1,2, ...,n,j=1, .., m, as the area of the two-

dimensional sub-intervals equals A(lij) = AxiAy;.

This number is called the integral sum of function f(x, y) over the rectangular region,

two-dimensional interval I.

If the limit of the integral sums exists as the area of the greatest two-dimensional sub-
interval (rectangle) approaches zero, it is called the double integral of function f(x, y)
on (over) region | and denoted by J'_[ f (x, y)dxdy . Therefore

|

[] 6 yydxdy = lim zm: f (& 7m;)-AC) -

max A(l;;)—0

Function f(x, y) is then called integrable on I.

Sufficient condition of integrability

If a bounded function of two variables possesses only a finite number of points of
discontinuity on any two-dimensional interval | < E? then it is integrable on this
interval.

Corollary. Every function of two variables, continuous on a two-dimensional interval
| — E?is integrable on I.
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Examples

1. Any function defined by the relations: f (x, y) = 1 if x.y is rational, and f (x, y) =0
if x.y is irrational, is not integrable on any two-dimensional interval in E2.

2. Function f(x,y) = c, where c is an arbitrary constant, is integrable on any two-
dimensional interval and

J'J. f (X, y)dxdy =cA(l).

Geometric interpretation of double integral of function f (X, y) > 0 on region | is the
volume of solid T in E3that is bounded by planesz=0,x=a,x=b,y=c,y=dand
by the graph of function f, surface patch G(f) with equation z = f(x, y)

T={[xy,z2] e E:[x,y] e ,0<z<f(xy)}.

Fig. 3.3. Solids determined by various functions.

Fubini theorem (simple form)
Let function f(x, y) be continuous on a rectangular region | =<a, b) x {c, d, then

|

f (X, y)dydx:jUf(x,y)ddex.

”f(x, y)dxdy =

f(x,y)dxdy =

f(x,y) dx}dy =

T O —
SR —

I
D — T O ——O
O —O D — T

Two-dimensional intervals are planar regions with measurable areas. Any region,
whose area is measurable is called a measurable region. All of the above
considerations can therefore be rewritten for double integrals defined on measurable
regions. Some basic properties of double integrals on measurable regions are
presented in the following.
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Properties of double integrals:

1. Linearity: Let functions fi, f,, ..., fc be integrable on a measurable region M < E?
and let ¢, Cy, ..., ck be real numbers, then

”(cl .0, y)+¢, f,(x y)+...+ ¢ f (X, y))dxdy =
= clﬂ f, (X, y)dxdy+c2” f, (X, y)dxdy +...+c, _U f, (X, y)dxdy

2. Additivity: Let function f be integrable on a measurable region M — Ethat is the
union of a finite number of measurable regions M; — E?with no common interior
points, then

M =Lij|v|i jjf(x y)dxdy = Z“f(x y)dxdy -

i=1 M,

3. Monotonicity: Let functions f, g be integrable on a measurable region M < E?and
let for all points X =[x, yJe M hold that f(x, y) < g(x, y), then

J'J' f(x, y)dxdys”g(x, y)dxdy .

4. Positivity: Let function f be integrable on a measurable region M < E?and let
f(x,y)=0 forall X=[x,y] € M, then

Hf(x,y)dxdyzo.

5. Let function f be integrable on a measurable region M < E?, then function | f| is
also integrable on M and

”f(x, y)dxdy smf(x, y)|dxdy .

Examples
1. Double integral of function f(x, y) = x3 — 2xy + y? over a two-dimensional interval
(-1, 1) x {0, 2) can be evaluated in two ways:

iJ(X —2xy +y?)dxdy = j(j X _2Xy+yz)dxjdy=

L -1
_2 X4 1 2y 16
v o-fore- ]2
[0 ~2xy + v oy - I(f X = 2xy + Y )ddex:
0~ 0

2
Xy —xy? + % dx—j[2x3—4x+§jdx=
3 | 3

-1
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. Double integral of function f(x, y) = sin(x — y) over a two-dimensional interval
(—m, m ) x {0, ) can be evaluated as follows:

T

ITsin(x— y)dx dy = ][.Usin(x— y) de dy = ]E[— cos(x—y) ]z dy =
= T(cos y —cos(z —y))dy =[sin y +sin(z - y)]*. =0, or
ﬁsin(x— y)dxdy = ]E( ]r'sin(x— y)ddex = ]r'[cos(x— )7, dx =

= j(cos(x — 1) —cos(x + z) )dx = [sin(x — ) —sin(x+ 7) |7 =0.

The plane region

My ={[x,y] e EZa<x<b,g(x)<y<h(x)}

where a, b € R, a < b, gand h are continuous functions defined on interval (a, b),
while for all x € (a, b) it holds that g(x) < h(x), is called regular region of type xy.
Various forms of regular regions of type xy are illustrated in Fig. 3.4.

Fig. 3.4. Regular regions of type xy.

Similarly, various forms of regular regions Myx of type yx can be determined, while
the description of a regular region My, can be derived analogously to the description
of the regular region My, simply by exchanging variables. Therefore the independent
variable x becomes a dependent variable and vice-versa, so that variable y is
considered as an independently changing variable.
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The plane region
My ={[x, yl e E2 c<y=<d, g(y) <x<h(y)},

where ¢, d € R, ¢ < d, and functions g and h are continuous on interval {c, d ), while

forally e {(c,d) itholdsthat g(y) < h(y), is called a regular region of type yx.

Examples

1. Set M ={[x,y]e E®:1<x<y<2} can be described in both ways, as a regular
region of type xy, M, ={[x,yle E?:1<x<2,x<y<2}, oras aregular region
of typeyx, M, ={[x,y]eE*:1<y<2,1<x<y}.

2. Region M ={[x,y] € E?: x* + y* >1 A x* + 4y® <4} can be described as a union of
regular regions sketched in Fig. 3.5, M ="M, U "M, where

M, ={[x y]eE?:-1< y <1, - [4—4y? <x<—\1-y?},
M, ={[x, y]€ E?:-1< y <1, {1-y? <x<.,[4-4y?}.

T -
N <
N\
- \ -
. / \ N
\ \
/ \ \
|
/ /
- \\ \ /‘/
4 /
\\ AN / /,/'
— N / -
—~— - - p—

xxxxxxxxxxxxxxxxxxx

Fig. 3.5. Regular region M.

The double integral of function f(x, y) of two variables on a regular region My or My
can be defined similarly to a double integral on the double interval | = (a, b) x {(c, d).

Let function f be integrable on a regular region M, then the double integral of f over
M exists and it is denoted

j j f (X, y)dxdy .

M

Analogous properties to those stated for integrals over measurable regions (double
intervals) are valid also for double integrals on regular regions My or My, or on any
union of a finite number of regular regions. Areas of these measurable regions can
then be evaluated using these properties as double integrals of function f(x, y) = 1 over
the respective regions.
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These properties are:
0. Sufficient condition of integrability
1. Linearity
2. Additivity
3. Monotonicity
4. Positivity

5, ”f(x,y)dxdys

For the evaluation of double integrals on regular regions, a strong form of the Fubini
theorem can be used.

Fubini theorem (strong form)
Let function f(x, y) be continuous on a regular region of type X,

My ={[x,y] € E2a<x<b,g(X)<y<h(Xx},

h(x)
Hf(x y)dxdy = j{ jf(x y)dyjdx :

then

alg(x
For function f(x,y) continuous on regular region of type y

My = {[x, y] € E> g(y) <x<h(y), c<y<d}

it holds that
h(y)
jjf(x y)dxdy = j jf(x y)dx |dy -
c\a(y)
Examples

1. The double integral of function f (x,y) = X over set M ={[x,y]eE*:1<x<y<2}
y

can be evaluated as a double integral over a regular region of type xy,

jj dxdy = j(j ddex [Dxtnfy|J? dx = jxlnz xIn|x|)dx =

2 2 2 X2 2
¥ na] - X In|x j dx |=22-tin2-2m2+| X | =2 _my2.
2] 2 Y, 2 2 4] 4

2. The double integral of function f (x,y) = e’ over M ={[x,y]eE*:0<x<y<1}
can be evaluated as a double integral over a regular region of type yx only,
M, ={[x,y]e E?:0<y<1 0<x<y}, it cannot be evaluated over region My,

[ dxdy =jﬁey2dedy = j[xeyz ]Zdy =jyey2dy zl[eyz]z _e-1
M 0\ 0 0 0 2 2
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3. The double integral of function f(x,y)=x*+y over the set bounded by two

parabolas with equations y = x? and x = y2 can be evaluated as an integral over a
regular region of type xy, see in Fig. 3.6.

M,, ={[x y]eE? 0<x<1Lx*<y<x},
X

KA”(XZ +y)dxdy = j;(jf(xz +Y) ddex = szy+y22} 2 dx =

1
_ I(rstFF 3] 3
2
0

7 4 10| 140

0

Fig. 3.6. Regular region and graph of function of two variables.

4. The double integral of function f (x,y)=e*"* over unit disc with centre in the
origin, M, = {[x, y]eE? i —1<y <1 —1-y? <x<,1-y? }

cannot be evaluated analytically. Analogously, the double integral of function f
over region bounded by two parabolas with equations y=x>—1and y =—x?,

M, ={[x,y]eE? Z—\/ZESXS\/ZE,XZ—]_S y<—x},

but these double integrals can be evaluated numerically, e.g. using the symbolic
algebra system Mathematica we can receive the following approximated results

”ex*ydxdy =~ 3,99524, j j e*"Ydxdy = 0,371421.

My M,y

Both regular regions with graphs of function f(x,y)=e*" over them are
presented in Fig. 3.7.
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Fig. 3.7. Regular region and graphs of function of two variables.

5. Archimedes (287 BC - 212 BC) discovered relation between volumes of basic

geometric solids (Fig. 3.8), which can be verified by the evaluation of volume by
means of double integrals.

Al. Volume of a parabolic section of a cylinder of revolution equals to one-sixths
of the volume of a prism circumscribed to this cylinder.

1

Viex? . 1 1
I{Zydxdy = I[ 1!2.\/dyjdx = jl[yz]j;dx = (1 )ox :[X—XgL =%,

M -1 -1

[[2axdy = TUzdedy = j[Zx]fldy = j'4dy = [ay]2 =8.

Fig. 3.8. Archimedean problem.
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3.3 Triple integrals

Consider the following problem. Let a physical body occupy a bounded region D in
space, D < E?, and let this body be non-homogeneous, meaning its mass density varies
depending on the position of a point in the body. We can assume that the density is
represented by a non-negative continuous function of three variables o(x,y, z)
defined on D. We want to find the total mass of this non-homogeneous solid. The
procedure for the estimation of this mass is analogous to that for computing the
volume of a curvilinear cylinder. We divide region D into n sub-regions D1, Dy, ... ,
Dn, not overlapping and such, that volumes V(D:), V(Dy), ..., V(Dn) can be computed.
Then we choose an arbitrary point from each sub-region [&, mi, 5] € Di,i=1,2,...,n
and form the sum

m=0(&.,7) V(D).

This number is equal to the mass of a by parts homogeneous solid, depending on the
division of the region D and the choice of points [&, mi, @]. It is natural to consider
this sum as an approximation of the desired mass of the given physical body. This
idea leads to the concept of triple integrals for functions of three variables over space
regions. In what follows we will discuss a simpler case, where the region D is a three
dimensional interval, i. e. a rectangular parallelepiped, and the function f(x, y, z) is not
necessarily non-negative.

Let | < E® be a three-dimensional interval, which is the Cartesian product of three
closed intervals (a, b), {c, d) and (e, h), i.e. a prismatic region

I={[x,y,z] e B> a<x<b,c<y<de<z<h}={(a b)x{c, d)x/e h).
Let us take an arbitrary division of the interval (a, b)

A=X<X1< ... <Xn1<Xn =D
an arbitrary division of the interval (c, d)

C=Yo<VYyi<..<Ym1<ym=d
and an arbitrary division of the interval (e, h)

€=20<71<..<Zp1<Zp=h

where n, m and p are any natural numbers. These three divisions specify a division of
the three-dimensional interval (prism) | consisting of n.m.p three-dimensional sub-
intervals (prisms)

lijk = ( Xit, Xiy X (Vir, Vi) X (Zer, Y, 1= 1, 0,0 j=1, ..., mk=1,..,p

n,m,p n,m,p
suchthat I = | JI;;,, and V(I)= D V(l;)-
ijk=1 i,jk=1
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Now let f(x, y, z) be any function of three variables, defined and bounded on I. In a
n,m,p

similar way to above we can compute the sum > f(&,n;,7,).V () for an
i,j.k=1

arbitrary division of the three-dimensional interval | and an arbitrary choice of points

[& m, 6] € ligi=1,2,...,n,j=1,...,m k=1, ..,p, while the volume of the three-

dimensional sub-intervals equals V(lijk) = Axi Ay; Az.

This number is called the integral sum of function f(x, y, z) over the rectangular region,

namely the three-dimensional interval 1.

If the limit of the integral sums exists, as the volume of the greatest three-dimensional
sub-interval (prism) approaches zero, it is called the triple integral of function
f (x, Y, z) on (over) region | and it is denoted by J'J'J’ f (x,y,z)dxdydz - Therefore

I

n,m,p

[[[feay.zydxdydz=lim > 7f(&,7;,7).V (1)

maxv(lijk)_)oi,j,k:l

Function f(x, y, z) is then called integrable on I.

Sufficient condition of integrability

If a bounded function of three variables possesses only a finite number of points of
discontinuity on a three-dimensional interval 1 < E3, then it is integrable on this
interval.

Corollary. Every function of three variables continuous on a three-dimensional
interval | = E* is integrable on 1.

Example
1. Function f(x, y, z) = ¢, where ¢ is an arbitrary constant, is integrable on any three
dimensional interval | and J.”. f(x,y,z)dxdydz=c.V(l).
|

The physical interpretation of a triple integral of function o(x, y, z) > 0 on region | is
the mass of a non-homogenenous prism I in E*that is bounded by planes x = a, x = b,
y=c,y=d, z=-e z=h, while its density varies according to a non-negative
continuous function of three variables o(x, y, z) defined on I.

Fubini theorem (simple form)
If function f(x, y, ) is continuous on rectangular region | = (a, b) x (¢, d) x (e, h),

then
J'” f(x,y,z)dxdydz = _TUU f(x,y,2) dx]dyjdz ,

e\ c\a

In computing triple integrals over three-dimensional intervals by means of this
theorem we can interchange the order of integrals appearing on the right hand side of
the above equality. In fact, we have 6 possibilities how to rearrange them.
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Three-dimensional intervals are space regions with measurable volumes. Any space
region, whose volume is measurable is called a measurable region. All above
considerations can be therefore rewritten for triple integrals defined on measurable
regions. Some properties of triple integrals on measurable regions are given in the
following.

Properties of triple integrals:

1. Linearity: Let functions f;, f,, ..., fc be integrable on a measurable region M c E3
and ci, Cy, ..., Ck are real numbers, then

m(cl f.(XY,2)+C,f, (XY, 2) +..+C f (X, y,2)) dx dydz =

= Cl.m f,(x,y,z)dxdydz + sz f,(X,y,z)dxdy dz+...+cC, m. f, (X,y,z)dxdydz.
M M M

2. Additivity: Let function f be integrable on a measurable region M < E®that is the
union of a finite number of measurable regions M; < E* with no common interior
points, then

k k

M=| M, f(x,y,z)dxdydz = f(x,y,z)dxdydz.

Il 21l

3. Monotonicity: Let functions f, g be integrable on a measurable region M < E®and
let it hold for all points X =[x, y, z] e M that f(x,y, z) < g(x,V, ), then

[[] f (. y,2)dxdydz < [[[g(x, y,z)dxdydz.

4. Positivity: Let function f be integrable on a measurable region M — E3and let the
inequality f(x,y,z)>0 hold forall X=1[x,y, z] € M, then

_U_[f(x, y,z)dxdydz >0.

5. Let function f be integrable on a measurable region M < E?, then function | f| is
also integrable on M and

JI[ 0y 2ydx dydz)< [[[| £ (x.y, 2] xdydz.

Using the above properties, triple integrals over measurable regions can be evaluated,
namely triple integrals defined over three-dimensional intervals, prismatic regions
I =(a, b) x {c, d) x (e, hy = E®and their unions. It is easy to show that for function
f(x,y, 2) = r, where r is an arbitrary real constant, the value of a triple integral of
function f over region | is equal to the r-multiple of the region volume V(1),

mrdXdde =rV(l)=r(b-a)(d-c)(h-e).
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Examples

1. The volume of a prism | =(a, b) x (¢, d ) x (e, h) can be evaluated as triple integral

m Ldxdydz = | (I U dX)ddez = E[E[X]idy] dz = m(b—a)dy] dz =

— (o-a)f[y):cz = (- a)(d ~c)f oz = (b a)(d )zl =(b-a)(d ~c)ne).

2. The triple integral of function f(x, y, z) = 2(x + z) over | =0, 1)% equals:

| Ij [2(x+2)dxdydz = IUU 2(x+ z)de dy]dz - IU (2 + 220} dyj dz =

0\ 0\o0 0\0

= j(j(1+ 22)dy)dz = j[y+ 2yz]ydz = j(1+ 27)dz = [z+2%], = 2.

0

3. The triple integral of function f(x, y, z) = x3 + xy + yz over the three-dimensional
interval (0, 1) x {0, 2) x 0, 3) can be evaluated for example as follows:

.m(x3 +xy+yz)dxdydz = jUU(ﬁ + Xy +yz) dx] ddez -
= J:ﬁ{xgjtizh xyz} dy} dz = E@[%+%+ yzj dyj dz =

0 0

3 2 3 3
I{ } dz_f[3+22jdz {3z+22} :2.
0 o 5 2 2 0o 2

4. Triple integral of function f(x, y, z) = sin(x + y + z) over three-dimensional interval
| =(0, m)® equals:

.msin(x+ y+z)dxdydz = j[fﬁsin(wr y+ z)dx) dy}dz =

0\ 0\O0

T(T cos(X+Yy+ z)]gdyj dz = IUZcos(y+ z)dyJ dz =
T [2sin(y +2)]7dz = 4j sin(z)dz = 4[cos z]; =-8.

In E3 we can distinguish six types of regular regions: xyz, yxz, xzy, zxy, yzx, zyx. These
represent various combinations of variables for functions of two variables and
functions of one variable determining the boundaries of a generalised solid T in E®
that is the domain of definition of function f(x, y, z) integrated over this region.
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For example, the sets

Ryz ={[X, ¥, 2] € B3 [X,y] € M, za(X, y) <z < 22(X, ¥)}
or

Ry ={[X, ¥, 2] € B3 [X,y] € M, zs(X, ¥) <2 < 25(X, ¥)}
where zi(x, y) < z2(x, y) are continuous and bounded functions on regular region

M={[x,y] e EZa<x<b,gi(X) <y<g2(x)}
or
M'={[x,y] € EZc<y<d, hi(y) <x<hy(y)}

are regular regions in E® with respect to the plane xy, regular regions of type xyz
Ry = {[x, y,z]eE*:a<x< D,9,(X) <y <09,(x),z,(X,y) 2= 7,(X, y)}

or of type yxz
R;yz = {[x, y,z]eE*:c<y< d,h(y)<x<h,(y),z, (X y) £ 2L 2,(X, y)}.

Examples

1. SetR={[x,V, z] c B3, x? + y2<72< 4,z > 0} can be described as a regular region
of the type xyz, see in Fig. 3.9, left.

nyz:{[x,y,z]eE3:—2£x32,—\/1—x2 SY<VL-X2, X2+ y? SZS4}

Fig. 3.9. Regular regions of types xyz and yxz.

2. The solid generated as a sub-space in E®bounded by two paraboloids with the
equations z = x? + y?, z = 4 — (x? + y?), sharing a common circle x> + y?= 2 in the
plane z = 2, see in Fig. 3.9, right, can be described as a regular region of type yxz,

Myx:{[X1y]€E2:—\/§SyS\/§,—\/2_y2 SXS\/Z—yZ},
Ry = {6 Y, Z1€ EX [x,yleM,,, X’ +y? <z<4—-(x2+y? ).
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Fubini theorem
For function f(x,y, z) continuous on a regular region R of type xyz it holds that

2, (X.y)

mf(x Y, z)dxdydz_” jf(x y,z)dzdxdy =
M z(xy)
b | 92(X)| z2(x,y)
:J' J' _[f(x,y,z)dz dy bdx.
a | ()| zn(xy)
If function f(x, y, z) is continuous on a regular region R' of type yxz, then
2, (X.y)
mf(x Y, z)dxdydz_” jf(x y,z)dzdxdy =
M’ 2,(x,y)

d | ha (V)] z2(%.y)
=H j { jf(x,y,z)dz}dx}dy.
¢ (hMMLakxy)
All properties of double integrals on region (a, b) x {c, d ), or on a regular region M,
analogously hold for triple integrals on region {(a, b) x (¢, d ) x (g, h), or on regular
regions R, R in E3, or on any set that is a union of a finite number of regular regions.
These properties are:
0. Sufficient condition of integrability
1. Linearity
2. Additivity
3. Monotonicity
4. Positivity

5. J'J'.[ f (x,y,z)dxdydz S”ﬂf (x,y,2)|dxdydz

Examples

1. Triple integral of function f(x, y, z) = 2z on a region defined by equalities x = 0,
y=0,z=1,x+y+z=2istriple integral over a regular region of type xyz,

R:{[x,y,z]eE3:O§x§1,0§ y£1—x,132£2—x—y},

and its value is

—X-y

deXdde —f f ( JXdZJdVdX —I[I XZ]ﬁ”dyjdx = E[T(ZX—XZ —xy)ddex -

x 2 3 4t
2xy — X y_xy dx:lj‘(3x—4x2+x3)dx=l XA xh_5
2 |, 29 2| 2 3 4] 24

O ey
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2. Triple integral of function f(x, y, z) = x +y + z over a region defined by
R:{[x,y,z]eE3: x>0,y>0,2>0, x+y+zsl}

can be evaluated as triple integral on regular region of type xyz,

”I(x+ y+z)dxdydz = j{ljx(lizx +y+ z)dz]dy} dx =

0o\ 0

1( 1-x 72 Ix-y 1 1l—x
= XZ+ Yz +— dy l[dx = [| = [ (1= x*=2xy — y?)dy |dx =
I R B

0 0

3 6 4

0

1 e | DR T Sl
== [ly=-xy-xy’ = | dx==[(2-3x+x)dx=2|2x-—+=| ==.
Zl{y y =Xy !( )k = ; =5

3.4 Multiple integrals

Multiple integral of function f(X) of more variables on an arbitrary measurable closed
region G — E", n > 1 is a generalisation of the concepts of double or triple integrals,
therefore it can be defined in a similar way.

Region G is called measurable, if there exists its measure, a unique positive real
number denoted as u(G).

Let region G can be divided into n partial measurable not overlapping sub-regions Gi
with measures denoted as x(Gi), while

1. GinGj=g foralli=j,i,j=1,..,n
2. UGi=G, fori=1,..,n.

If for any sequence of integral sums of function f(X) on G with the norms w(Gi)
convergent to zero

> 1(X)-4(6)

a unique proper limit exists, then this number is called multiple integral of function f
on region G denoted

| :mif(xi).y(ei):jf(xmx

and function f (X) is said to be integrable on region G — E".
Function f integrable on a measurable closed region G — E" is bounded on this region.

Function f continuous (up to finite number of points) on a measurable closed region
G c E" is integrable on this region.
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Properties of multiple integrals

1. Linearity: If functions fi, f,, ..., fc are integrable on aregion G < E" and ci, C;,
.., Cx are real numbers, then

J.(lel(X)+cz f,(X)+...+¢ f (X))dX =

=, £,(X)dX +c, [ £,(X)dX +..+¢, [ i (X)dX
G G G

k

2. Additivity: Let function f be integrable on region G — E"and let G = U(;i :
i=1

where G; c— E" are measurable regions with no common interior points, then

[ £(x)dx =Zk:jf(X)dX.

i=1 G
3. Monotonicity: Let functions f, g be integrable on a measurable region G c E"
and let for all points X € G hold that f(X) < g(X), then

[ F(X)dX < [g(X)dX .

4. Positivity: Let function f be integrable on a measurable region G — E"and let
f(X) >0 forall X e G, then

j f(X)dX >0.
G
5. Let function f be integrable on a measurable region G < E", then function | f(X) |
is also integrable on G and

jf(X)dx

< [F(x)ax .

3.5 Transformations in the plane

Let M" < E? be a non-empty set. A mapping (transformation) @ from set M~ to the set
E? is a rule by which every point [u, v] € M*can be associated with a unique point
[x, y] € E2 Point [x, y] is the image of point [u, v] in the given mapping denoted
[x, yI = &([u, v]),

while set M~ is the domain of this mapping @.
Transformation @ is determined by two functions of two variables

X = @i(u, v)

y = 92U, V)
defined on set M~
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Transformation @: M*— E? is called a one-to-one mapping, if for any two points
[u1, vi], [uz, V2] € M* it holds that
[U1, V1] * [Uz, V2] = @([Ul, Vl]) * @[Uz, Vz],

which means that the images of two different points are two different points.
For any one-to-one mapping @ there exists a mapping @ from the set M = &(M*) to
the set M * such, that for any [x, y] € M = @(M”) it holds

D ([x, y]) = [u, V] & @([u, v]) = [x, y].
Mapping @1 is called the inverse mapping of the mapping @ and it is determined by
the equations
u=g@i'(x,y)
V=2l y) .
Mapping @: M* — E? determined by relations

[u, VI =[x, y] = [9a(u, V), @2(u, V)]

is said to be continuous at the point [uo, Vo] € M, if functions ¢1, @, are continuous
at this point. In the case of functions ¢1, ¢> continuous on set M*, mapping @ is said
to be continuous on set M *.

Any one-to-one continuous mapping maps a simple curve to a simple curve.
Mapping @: M*— E?, M" = 0, M*c E? is said to be regular on M*, if the following
properties hold:

1. functions @1, @> have continuous partial derivatives on set M * with respect to
both variables

2. forall[u,v] e M~
O (u,v) O (u,v)

_ ou ov .
YUV =50, wy)  ap,uv)|*°
ou ov

Determinant J(u, v) is called the Jacobi functional determinant of mapping &, or the
Jacobian in short. The sign of the Jacobian J(u, v) of any regular mapping @ on the
set M *is the same at all points [u, v] e M*,

Any regular mapping on M*, @: M* — EZis continuous on M*.

A one-to-one mapping maps any regular region to a regular region, and any closed
region to a closed region.

Let Q" = E? be a regular region and let mapping @: Q" — E2 be one-to-one and regular
on Q. If G" — Q" is a measurable closed region, then G = &(G") is also a measurable
closed region and

1(G) = j\J(u,v)\dudv.
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3.6 Double integrals in polar coordinates

Transformation to polar coordinates is a useful technique leading to a considerably
easier representations of many curves and regions described by complicated formulas
in Cartesian coordinates. It is often used for the description of domains of integration,
which are plane regions bounded by arcs of circles, and for evaluation of double
integrals of functions defined by formulas, in which square roots of sums of squares
of variables appear. This is namely the case of functions whose graphs are parts of
quadratic surfaces.

Let P be a fixed point in the plane. The half-line 0 with the start point P and a
revolution about point P in the positive (anti-clockwise) sense determine a polar

coordinate system (P, 0, ¢) in the plane. Point P is called the pole (origin) of the
coordinate system, half-line ois the polar axis of this system.

Each point M in the plane can be attached an ordered pair of real numbers, M = (p, ¢),
whose geometric interpretation is clear from Fig. 3. 10:

1. p = |PM]| is the distance of point M to the pole P,
2. ¢ = |«(0,PM )] is the size of positively oriented angle with the vertex in the
pole P, formed by the polar axis 0 and half-line PM .

Ordered pair of real numbers (p, ¢) is called the polar coordinates of a point, number
p € (0, ) is the modul, while number ¢ € (0, 2x) or ¢ € (—=, ) is the polar angle.

A
¥y
M=(x),5,,)
%Y 5
M p |
o)

? /0( 0y d : >
” P=0 Xy 0%

Fig. 3.10. Polar coordinates in plane.

Let both, polar (P; 0, @) and Cartesian (O; X, y) coordinate systems be determined in

the plane E2, while P = O, and polar axis o coincides with the positive part of the
coordinate axis x, as in Fig. 3.10. These two systems can be mapped to one another,
and the relations between the two pairs of coordinates of point M # O are defined by
the equations

XM=pCOS @, Ym=psing, 0<p<on, 0<¢p<2m.
Because x;, +Y,.#0, the following equations hold
X ,
CosSp =———, smgo=%.
XM +yM XM +yM
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In the case p = 0, and therefore x =y = 0, the polar angle is not defined by the equations
above, and for polar coordinates of the pole holds P = (0, ¢), for arbitrary number ¢.

Mapping of the plane with the polar coordinate system to the plane with the Cartesian
coordinate system is called the polar transformation of the plane.
Polar transformation is a one-to-one and regular mapping

&0 ={(p, p) e R*|> 2 ={[x, y] e E?}

defined on the set Q:{(p, ¢) € R? :0<p<oo,0£(p<2n} and determined by the

relations

X =p COS ¢,y = p sin ¢, while p:,/x2+y2,(p=arctan1,x¢0,
X

while p=7/2 forx =0,y >0, and ¢=3w/2 forx =0,y <O0.

The Jacobi determinant (Jacobian) of the polar transformation is
cosp —psing
sinp  pcose

There are many important plane curves consisting of the points whose polar
coordinates, in contrary to the Cartesian coordinates, satisfy a simple equation of the
form p=1f(¢), e.g. the polar equation of a circle is p =asin ¢, a>0.

J(p, 9)= =pcos’ g+ psin®p=p>0.

Examples

1. Graphs of some curves with polar equations
p =a(l-cos ¢),a>0,0< o< 2, cardioid
p=,/acos2¢,a>0,0 < ¢< 2, leminscate of Bernoulli
p =ap a>0,0< < 2x, Archimedean spiral
p=a|sinng|,a>0,n-natural, 0 < ¢ <2, 2n leaved rose
are presented in Fig. 3.11, from left to right.

Fig. 3.11. Graphs of curves determined in polar coordinates.

Domain of integration is often a plane region not bounded by lines, but by curves, as
for instance: combinations of line segments, arcs of circles, or parts of other conic
sections, like ellipses or hyperbolas. Especially in these cases it is simpler to describe
the regions in polar coordinates.
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Examples
1. Regular region described in Cartesian coordinates
R= {[x, y]eE*:1<x* +y? < 9} in Fig. 3.12, left,

can be rewritten in polar coordinates as
R'={(p, p)eR?*:1< p<3,0<p<2r},
and region R = {[x, y]eE?: x> -2y +y? > 0AX*+y* <4,y > 0} in Fig. 3.12,

middle, as R = {(p, p)eR?:2sinp< p<2, 0S§0£n}.
2. Closed set of points in E? bounded by two circles x2 + y? = 2, x2 + y? = 6 and two
linesy = x, y = —x for x > 0 can be easily described in polar coordinates as the

region R” :{(p, 0)eR2:\2 < p< /6, —%Sgpﬁ%}, see in Fig. 3.12, right.

> //
k\\\ //
_— P4
/ \
N ~ R
/ \\ / g \\ \
y \ y \ \
~ <
,\ ‘: A )
) | . /
\ / / N /
\ A / & /
\ ’," . /
A = </
)
N 4 D

Fig. 3.12. Planar regions described in Cartesian coordinates.
3. Below regions described in polar coordinates are sketched in Fig. 3.13.
Rz{(p, 9)eR?:0< p<2sing, 7z/2§(0$7r,}
R={(p, p)eR*:0< p<4cosp,0<p<r/2}
R={(p, p)eR*:0< p<dp,0<p<r/2}
R {(p, p)eR?:0< p<1+cose, OS(DSZﬂ'}

Fig. 3.13. Planar regions described in polar coordinates.
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The rule for change of variable in the definite integral plays an extremely important
role in practical integration. It states: If ¢ is a function defined on an interval | such
that the derivative of ¢ is continuous and different from zero on the interval I and f is
a function continuous on ¢(l), then

[ £ 00dx=[ f (o) ¢/t
o(l) |

Change of variables in double integrals is used not only in the case of too complicated
integrands (functions to be integrated), but also in the case of too complicated domains
of integration. The rule for change of variables in the double integrals is essentially
more complicated, therefore we will restrict all considerations to the final formula and
to the case of the transformation from Cartesian coordinates to polar ones.

Let Q" — E? be a regular region and let the mapping @: Q" — E? be a regular and one-
to-one transformation on Q"given by formulas

X= ¢l(u1 V)’ y= @2(U, V)v

where @1 and ¢, are real functions of two variables. Let G — Q" be a measurable
closed region and let function f(x, y) be continuous on the closed region G = &(G").
Then the formula for change of variables in double integrals has the form

[] £ xy)dxdy =Hf((pl(u,v),(oz(u,v))p(u,v)|du dv,

G
where J(u, v) is the Jacobian of transformation @.

Remark. Note that functions ¢1, @2, f and their partial derivatives must be continuous
on their respective domains of definition.

Applying the general formula to the transformation @ from Cartesian coordinates
[, y] to polar coordinates (o, ) given by the formulas

X = ¢i(p, ) = p COS @

y = @2p, @) =psin ¢
with the Jacobian
cosp —psing
singp  pcose

the formula for polar transformation in double integrals can be obtained

[[ f (x y)dxdy =[[ £ (pcos g, psin p)pdpde,
/]

R

J(u,v) =

=p>0

where R"= @ *(R). Regions R and R" are domains of integration in the plane E2, while
pand ¢ can be interpreted as Cartesian coordinates in the plane.

The presented change of variables may substantially simplify the given integral, as it
may lead for instance to constant limits of integration in the transformed integral.
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Examples
1. The integral ”(xz +y?)dxdy over the region R = {[x, yleEZ:x*+y° < 4} can
R
be easily evaluated in polar coordinates as an integral on the region

R'={(p, ) eR?:0< p<2,0<p<2n},
22n

JJ 0+ y*)dxdy = [[ (0" cos® 4 sin’ g) pdpde = | [ p'dg dp =
R R 00

2

!ﬁ[w]ﬁ"dp%[p“]ﬁ =8m.

2. The evaluation of the integral [[(x*+y”)dxdy on more complicated region
R

described in the Cartesian coordinates as R = { [, YIeE*:1< X’ +y* <4,y >|x| }
can be simplified by means of transformation to polar coordinates, over the

integration region R :{(p, p)eR*:1<p< zlgg(pg%},

[J o+ y?)dxdy = [[(p* cos® p+p7sin’ ) pdpde = | [ p*dp dp =
R R

b —
b\ﬁ'—ab“ﬁ’

2 3n 472
Nplddp=T| P :15_71.
{p [(P]% o 2{4}

1

3. The integral ”xdxdy , While R is the set bounded by the curve x? + y? — 2y = 0,
R

can be evaluated in polar coordinates. The boundary of the set R is a circle with
the unit radius and shifted centre, x? + (y — 1)2 = 1, therefore in polar coordinates
itis describedasR™ = {(p, 9p)eR*:0< p<2sing, 0<p< n}, see Fig. 3.13, left.
Transformation to the integral yields

n 2sin g T 3 2sing
”dedy=”p2COS¢dpd§0=I JpZCOS§0dpd(o=ICOS(p Pl dp=
R R 0 0 0 3 0

sinp=t
f cospdep =dt e
=I§Sin3¢COS¢d¢= 1 =§_[t3dt:0.
03 p=0=t=0] 9y
p=n=>1t=0
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3.7 Transformations in the space

Let T < E® be a non-empty set. A mapping (transformation) @ from the set T to the
set ES attaching to every point [u, v, w] € M a unique image, point [x, y, z] € E® is
determined by three functions of three variables

X = @i(u, v, W)
y = @2(u, v, W)
Z= @3(u, v, w)

while set T" is the domain of this mapping @.
Mapping @: T — E® determined by the relations
[u, v, Wl =[x, y, 2] = [@a(u, v, W), @2(u, v, W), @3(u, v, W)]

is said to be continuous at the point [uo, Vo, Wo] € T, if functions @i, ¢, and @3 are
continuous at this point. When all three functions @1, @2, 3 are continuous on set T",
mapping @ is said to be continuous on set T".

Any one-to-one continuous mapping of the space maps a regular surface patch to a
regular surface patch.

Mapping @: T"— E3, T" =2 0, T < E® is said to be regular on T", if the following
properties hold:

1. functions @1, @2, s have continuous partial derivatives on set T" with respect
to all three variables

2. forall [u,v,w]eT

dp (U VW) g (Uv,W) B (u,v,w)
ou ov oW
J(U'V'W):acoz(;,v,w) awz(;v,w) a(pz(;&v,w) o
u
dp,(UV,W)  Og,(UV,W) O, (U,v,W)
ou ov oW

Determinant J(u, v, w) is called the Jacobi functional determinant (the Jacobian) of
mapping @. The sign of the Jacobian J(u, v, w) of any regular mapping @ on the set
T"is the same at all points [u, v, w] € T".

Any regular mapping on T, @: T — EZis continuous on T".

A one-to-one mapping maps any regular region to a regular region, and any closed
region to a closed region.

Let Q" — E® be a regular region and let mapping @: Q" — ES be one-to-one and regular
on Q. If G" — Q" is a measurable closed region, then G = &(G") is also a measurable
closed region and

#(G) = [[3(u,v,w)|dudvdw.
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3.8 Triple integrals in cylindrical coordinates

Similarly to the two-dimensional plane, the rectangular coordinate system in three
dimensional space is not appropriate to all types of problems. There are circumstances
in which other systems are more convenient. In some problems concerning triple
integrals over some special types of domains of integration we will use cylindrical
coordinates, which can be regarded as a simple three dimensional extension of the
polar coordinate system.

Let a plane = and perpendicular line p be given, while a polar coordinate system
(P;B , @) be determined in the plane = such, that the pole P is the intersection point of
plane 7z and line p. Plane z with the polar coordinate system and coordinate axis p with

origin at the point P determine a cylindrical coordinate system (P; 0, o, p) in the three
dimensional space.
Any point M in the space is attached a unique triple of real numbers, its cylindrical
coordinates M = (p, ¢, z), while
1. p, @ are polar coordinates of the orthogonal view M; of point M to plane z in
polar coordinate system (P; 0, ®)
2. zisan oriented distance of point M and plane =
and it holds p € (0, ), @ € [0, 2x), or @ € (—x, ], and z € (—o0,00).

z=p

Fig. 3.14. Cylindrical coordinate system in space.

Pole P is the orthographic view of an arbitrary point M on coordinate axis z to plane
=, therefore cylindrical coordinates of all points on the axis z are represented by a
triple of real numbers (0, ¢, z), for an arbitrary number ¢.
Let the Cartesian coordinate system (O; X, Y, z) and the cylindrical coordinate system
(P; o, ¢, p) be given. These two coordinate systems are said to be related, if:
1. plane = determining the cylindrical coordinate system (P; 0, o, p) coincides
with the coordinate plane xy of the Cartesian coordinate system (O; X, vy, 2)
2. the polar coordinate system (P; 0, ¢) and the Cartesian coordinate system
(O; x,y) in the plane z are the related coordinate systems

3. axis p of the cylindrical coordinate system (P; 0, @, p) coincides with the
coordinate axis z of the Cartesian coordinate system (O; X, Y, 2).
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Let [x, Y, z] be the Cartesian coordinates and (p, ¢, z) be the cylindrical coordinates of
point M not on the coordinate axis z, then their relation can be determined by the
following equations

X=@ilp, ) =pCcos @, y=@Ap, ) =psing, 2= p3(p, ) =2
and because x? +y? >0

p=X+y’

@ = arccos , Yy >0, go=27r—arccosL, y <0.

X
/XZ + y2 X2 + yZ
All points with the constant first cylindrical coordinate p = a, a > 0 are points on the
cylindrical surface of revolution with a basic circle in the plane x. The centre of this
circle is at the point P and its radius equals a. The coordinate axis p is the axis of this

cylindrical surface of revolution, while all generatrices — lines on the surface, are
parallel to this axis, see in Fig. 3.14, on the right.

Transformation of space E2, in which a cylindrical coordinate system is transformed
to the Cartesian orthogonal coordinate system is called a cylindrical transformation of
the space. The Jacobi determinant (the Jacobian) of the cylindrical transformation is

cosgp —psing 0O

J(p, p,2)=|sinp pcosp O0O|=
0 0 1

cosgp —psing
singp  pcose

Therefore, the cylindrical transformation of the space is a regular transformation at all
points in E3, but the origin of the coordinate system.

The cylindrical coordinates are suitable mainly to describe solids enclosed by the
cylindrical surfaces.

Examples

1. Equation p =1, for 0 < ¢ < 2w, 0 <z < 1in cylindrical coordinates represents a patch
of the cylindrical surface of revolution with radius 1 and axis z of a unit height.
This can be described in the Cartesian coordinates as a set of points whose
coordinates satisfy the relations x? + y?=1and0<z<1.

2. Plane of symmetry of coordinate planes xz and yz passing through the coordinate
axis z can be represented in cylindrical coordinates by the equation ¢ = /2, while
the equation z = a, a € R represents a plane perpendicular to the coordinate axis z.

3. The equation z =\/; in the cylindrical coordinates represents a paraboloid of

revolution with vertex at origin and axis in the coordinate axis z, while the equation
z = p describes the positive part of a conical surface of revolution with the vertex
at origin and generatrices forming angle n/2 with coordinate planes Xy, which are
depicted in Fig. 3. 15 on the left and in the middle.
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4. Inequalities 1 < p<3,0< p<m/2, 1 <z <2 describe apart of a cylinder of revolution
with axis in coordinate axis z, radius 3 and height 1, illustrated in Fig. 3.15, right.

Fig. 3.15. Space regions described in cylindrical coordinates.

A change of variables in triple integrals is used in a similar way as in double integrals
not only in the case of complicated integrand functions, but even more frequently for
complicated domains of integration. Domain of integration is often a space region not
bounded by planes but by several surfaces, which could be, for instance, parts of
cylindrical or spherical surfaces. Especially in these cases it is simpler to describe the
regions by means of cylindrical instead of Cartesian coordinates.

Let Q" — E® be a regular region and let mapping @: Q" — E® be a regular and one-to-
one transformation on Q"given by formulas

X = @1(u, v, W), ¥y = @2(u, v, W), Z = @3 (U, v, W)

where @1, @2 and g3 are real functions of three variables. Let T" < Q" be a measurable
closed region and let function f(x, y, z) be continuous on a closed region T = &(G").
Then the formula for the change of variables in triple integrals has the form

”I f(x,y,z)dxdydz = ”.[ f (¢, (u,v, W), 0, (U, v, W), , (u,v,w))|J (u,v,w)|du dvdw,

where J(u, v, w) is the Jacobian of transformation &.

Remark. Note that functions @1, @2, @3, f and all their partial derivatives must be
continuous on their respective domains of definition.

Applying the general formula to the transformation @ from Cartesian coordinates
[, y, z] to cylindrical coordinates (o, ¢, z) given by the formulas

X=pip, p,2)=pCoS o, Y=g2Ap, p2)=psing, z=psp, p,2)=1
with the the Jacobian J(u,v,w) = p >0, the formula for cylindrical transformation in
triple integrals can be obtained

m f(x,y,y)dxdydz = J“ f(pcoso, psing,z)pdpdedz,
T T

where T"= @}(T). Regions T and T~ are domains of integration in the space E3, while
p, @ and z can be interpreted as Cartesian coordinates in the space.
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Examples
1. ”'[zdxdydz , where T is bounded by surfaces x2 +y2 =4, z =1, z = 3 (illustrated
J

in Fig. 3.16, left) can be represented in the cylindrical coordinates as the integral

mp zdpdg dz , while region T is thus transformed to the region
J;

T = {(p, 0,7)eR*:0<p<2,0<p<2m,1<2< 3}, which yields the evaluation
2n

3 228 2 8
ijzdzdgodp:.[‘[p[?} dpdp=
01 00

1

.mzdxdydz =.”ij dodedz :Jz'

T T* 0
2n2 21 2

= [[4pdpde = [2]p*];dp = [8dp =8[p] " =16
00 0 0

2. Integral m'(xz +y?)dxdydz onset T ={[x, y,z2] e E°: 3%+ y? <27,y <0,2 < 2}
T

illustrated in Fig. 3.16, middle, is represented in the cylindrical coordinates as the

integral [[[ p°dpdg dz , on the region described in the cylindrical coordinates
.

2
T*={(p, (p,z)eR3:0£p32,n3¢£2n,%szs2},

leading to the evaluation

2n2

jjj(xz +y?)dxdydz = I[Ipsdpd¢ dz = zjf j.psdz dpdg = “.ps[z]iidpdgo =

710,072 n 0 2

Fig. 3.16. Integration regions in space.
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3. Evaluation of integral m'z(x2 +y?)dxdydz on the set T bounded by planes z =0,
T

z = 1 and by surface x? + y? = 2x, while y > 0, illustrated in Fig. 3.16, right, can be
simplified by transformation to the cylindrical coordinates, leading to integration

on the set T*:{(p, (p,z)eRSZOSpSZCOS(a,—nSgpSn,OSZSl}, which

yields the following integration
1 n 2cosp

[[[20¢ +y*)dxdydz = [[[ p°zdpdepdz=[[ [p°zdpdp dz=
T T 0-n 0

- 2c0s . . - n
:“z{%‘} wdqodz:jj4zcos4god(pdz=J1.4z[%”_M+M} dp=
0-n -

0 0-m 0 4 32
snfz0e=21["], =%

3.9 Triple integrals in spherical coordinates

Another coordinate system that proved to be useful for the description of special sets
in space E® is the spherical coordinate system. The most fruitful and generally known
application of the spherical coordinate system can be seen in cartography and geodesy.
The position on the globe as a model of the Earth can be easily determined by two
angles, known as azimuth (longitude) and elevation, which describe the position on
the globe related to the set of defined meridians and parallels. These angles simply
represent the position as two specific angles of revolution. One of them is the angle
of revolution about the axis of the globe measured in the counter-clockwise orientation
from the prime meridian passing through London to the actual position, called azimuth
(longitude). The other, elevation, is the angle of revolution from the plane passing
through the globe’s centre perpendicularly to the axis of the globe. The equator located
in this plane is the parallel circle with the largest radius, i.e. radius equal to the radius
of the Earth estimated as r = 6378 km.

Let S be a fixed point in the plane z, and let half-line E with the start point S and
counter-clockwise revolution about point S in the plane = determine the polar
coordinate system (S; El , @) in this plane. Let line FZ be passing through the point S

perpendicularly to the plane z, FZ 1 z. Plane 7 with the polar coordinate system and
half-line p, form the spherical coordinate system (S; p,, ¢, p,) in the space. Half-

lines E and FZ are coordinate axes and pole S is the origin of this spherical
coordinate system.

Any point M in the space can be attached a unique triple of real numbers,
M = (p, ¢, {), whose geometric interpretation can be understood from Fig. 3. 17.
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The following relations are valid:
1. p =|SM|, therefore p is the distance of points M and S

2. p= |<(E, SW; )|, therefore ¢ is the oriented angle with the vertex at the
point S, with the starting arm formed by half-line E and the end arm by half-
line S—l\/ll , While My is the orthographic view of point M in the plane =

3.0=1%(p,, SM )|, therefore (is the angle formed by half-lines p, and SM .

The ordered triple of real numbers (p, ¢, ) determines the spherical coordinates of
point, where p € (0, ©), ¢ € [0, 2n), of @ € (-, w], { € [0, m).

All points M on line p are attached spherical coordinates in the form (p, ¢, {), where
@ is an arbitrary number, and {'= 0 for all points on half-line E while ¢ = & for all
points on the opposite half-line.

Fig. 3.17. Spherical coordinate system in space.

The spherical coordinate system (S; El . @, E) is related to the Cartesian coordinate
system (O; x, y, z) in the space, if:

1. plane = determining the spherical coordinate system (S; E , @, E) coincides
with the coordinate plane xy of the Cartesian coordinate system (O; X, vy, 2)

2. point S coincides with the origin O and oriented half-line E coincides with
the positive part of the coordinate axis x

2. oriented half-line E coincides with the positive part of the coordinate axis z.

Similarly to polar and cylindrical coordinates, the relation between spherical
coordinates of a point in the space and its related Cartesian coordinates can be
determined by the means of three continuous functions of three variables.
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Let [x, y, z] be the Cartesian coordinates and (p, ¢, {) be the spherical coordinates of
point M that is not on coordinate axis z. Then their relationships can be represented
by the following equations

X=pcosgsing, y=psinesin, z=pcos{
and because x? + y? + 22 > 0,

p=AX+y>+17°

(pzarccosL,yzo, ¢)=27z—aI’CCOSL, y<0
X2+y2 X2+y2

__r
X+ Y2+ 77
All points with the constant first spherical coordinate p = a, a > 0 are points on the

sphere with the centre at the origin S and radius a. The spherical coordinates are
appropriate mainly to describe solids enclosed by spheres.

¢ =arccos

Examples

1. The equation p = 1, for 0 < ¢ < 2w, 7/2 < {'< w in spherical coordinates represents
a half-sphere with the radius 1 in the half-space determined by the negative part of
coordinate axis z. This can be described in Cartesian coordinates as the set of points

whose coordinates satisfy the equation z =—/1—(x*+y?) .

2. Equation ¢ = & in spherical coordinates is the equation of the coordinate half-plane
xz with a boundary line in coordinate axis z and determined by the negative part of
coordinate axis X, defined in the Cartesian coordinates by equations X = —p sin ¢
y=0,z=pcos{ for0< p<oo, 0 < ¢<m, and equation £'= 0 defines the positive
half-line in coordinate axis z with the Cartesian coordinates x =0,y =0, z=p.

3. The region defined in spherical coordinates as

T*={(p, 0,2) e RS:OSpSZ,OS(pSZR,g”z—%}

isillustrated in Fig. 3.18, on the left, a patch of the cylindrical surface of revolution;
the region definedas T™ = {(p, 0,71)eR*:1<p<2,p=m0<¢ < n} illustrated in
Fig. 3.18, in the middle, is a half-annulus in the coordinate plane xz

and the region represented in spherical coordinates as

4

illustrated in Fig. 3.18, on the right, is a ball with the centre at the origin S and
radius 2, with removed double cylinder of revolution with spherical cap bounded

by circles with radii 2 in the planes z = +/2 .

T*:{(p, (p,z)eR3:0Sp£2,0£gpﬁ2n,%£§£3—n}
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Fig. 3.18. Regions in space determined in spherical coordinates.

Transformation of the space with the spherical coordinate system to the space with
the orthogonal Cartesian coordinate system represents so called spherical
transformation of the space. The spherical transformation is a one-to-one and regular
mapping defined on the set

Q*:{(p,(o,é’)eR3:OSp<oo,0£go<2n,O<§<n}.

The Jacobi determinant (the Jacobian) of the spherical transformation is represented
as follows

cospsing  —psingsing  pCcoseCos¢
J(p, ¢,¢)=|sinpsin  pcosepsin  psingcoss |=
cos¢ 0 —psing
—psingsing  pcos@cos¢ cosgsing  —psingsing’|
pCosesing  psingcosd sinpsing  pcosgsind |
=-p’singcos’ ¢ - p®sin®¢ =—p?sing <0.

=C0S¢

If T"< @ is a closed measurable region, and function f of the three variables is
continuous on the set T = @(T*), then it holds

.[” f(x,y,y)dxdydz = ”J' f (pcosesing, psingsin, pcosd)p?sin & dpdepdz .

Examples

1. To evaluate the triple integral m'(x2 +y? +z%)dxdydz on the set T determined by
T

the relations x>0,y >0, z> 0, x? + y? + z2 = 1 is quite simple after transformation
to spherical coordinates, receiving thus integral ‘mp“ sin¢dpdp d¢ over region
&

T

5 04 < g} leading to the evaluation

T*={(p, 9,2)eR*:0<p<10<p<

of the following integral
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oct—|
ot—n|

j”(xz +y? +2%)dxdydz = _[_Up“sin Cdpdepdd = jp“sin Cdpdede=

J:-:[smé[ } dpd¢= I3|n§[¢]§d§_—j5|n§d§_—[—cos§]§ =1

2. The integral [[[(x* +y*)dxdydz on the set defined in the Cartesian coordinates
T

T= {[x, y,z2]eE*:4<x’ +y* +7°<9,2> O} can be simplified by transformation
to the spherical coordinates, leading to an integration on the set

={(p, 0.7) R3:23p£3,03¢£2n,03§Sg} , therefore
[[Jo¢ +y?)dxdydz = [[[ p*sin*¢ dpdgdg =
T T

2n

”Tp“Slng(l cos {)dgdpdgoz”j'p“(sing—sin{coszg)dg’dpdq)z

2%3 29 p° T’ 422% 422 ... 844
:ﬁllp“dpd‘”:ﬁ“ 035 19035 b 15”'

3. The integral mzdxdydz on the set T = {[x, y,2]€E*:x? +y? + 2> <z} can be
T

simplified by transformation to the sphericaél coordinates, leading to integration

on the set T*={(p, 9.{)eR® :OSpSCOSQ',OSgDSZn,OSg“Sg} as follows

T
21 Cosg

[[[zdxdydz = [[[ p*sin¢ cos¢ dpdeds = [ | [ p°sing cos¢ dpdg do=

2ng 4 cos¢
=”sing’cosg{p—} dsdp=
00 4

0

19 1 2 n
== || —=cos dp=—— =——|p[ =——.
41[ 6 40 v I Y 12

Region T is ball bounded by sphere with Cartesian equation x? + y? + 72—z = 0,
which can be rewritten as x? +y? + (z — 0.5)? = 0.25, with radius 0.5 and its
centre at the point [0, 0, 0.5] on the coordinate axis z. Equation of this sphere in
spherical coordinates is p = cos ¢ for ¢ € (0, n/2).
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3.10 Applications of multiple integrals

Double integrals were primarily introduced for the calculation of volume. The most
natural application of double integrals, which can be easily visualized geometrically,
is that if f(x, y) is a non-negative (continuous) function defined on a region R < E2,
then the double integral of function f over region R represents the volume of a solid S
bounded by the graph of f, surface z = f(x, y) form above, by the coordinate plane xy
from below and laterally by a cylindrical surface generated by vertical lines passing
through all points of the boundary of R,

V(S):”f(x, y)dxdy .

Examples

1. Volume of a tetrahedron bounded by coordinate planes and plane z = 4 — 4x — 2y
in Fig. 3.19, left, can be evaluated as a double integral over the region

={[x,y]eE2:0£xsl,Os ysZ—Zx},

Y =” f (x,y) dxdy =.|1'27'[224—4x—2y)dydx=.1[[4y—4xy—y2]§72 dx =
R 0 0 0

1 1 3 1
= H4(2—2x)—4x(2—2x) —(2—2x)2]dx = 4j(x2 —2X+1)dx = 4{%— X2+ x} =%.
0 0 0
2. Volume of a solid in the first octant that is bounded from above by the paraboloid
z =12 — (x* + 3y?) and laterally by the surfaces y = x?and y = 2 — x? illustrated in
Fig. 3.19, middle, equals to the double integral over the region
R:{[x y]eE?:0<x<1 x* < y£2—x2}

12-x?

V= _”f(x y) dxdy = Ij[lz (x> +3y?)]dydx = j[lZy X2y — y]z dx =

1
HZ4 12x% = 2%+ x* = (2-x?)® —(12x* - x" - xe)]dx =
0

1 s . -
= [(16-14x" —4x* +2x°) dx = {16 lax” _4x7 |, 2x } _ 1136
0

| ==
5 7 105

3. The solid bounded by the surface z = ¢'*, plane x + y = 1 and coordinate planes,
Fig. 3.19, right, has its volume represented by the double integral

V= ﬁxe” dy dx = j[e“ Jrax= j(e”* —e™)dx =
00 0 0

1-2x 1 1 a Y
= _e 'l'ei)< :—e_+e’1_(_g+]_)=e_+g_1= (e 1) )
2 0 2 2 2 2 2e
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00

Fig. 3.19. Solids bounded by surface patches and planes.

4. The relationship between the volumes of other basic geometric solids (Fig. 3.20)
that were discovered by Archimedes (287 BC - 212 BC) are the following:

A2. Paraboloid has a volume of three-halves of the inscribed cone and one half of
the circumscribed cylinder.

Fig. 3.20. Archimedean problems A2.

Consider the paraboloid z = 4 — (x? + y?) and the inscribed cone z =4—2,/x* + y?

with a common disc x? + y?< 4 in the coordinate plane xy. Their volumes can be
evaluated by means of a transformation to polar coordinates over the region

R*={[p,(p]eR2:OSpSZ,OSgDSZn},

2( Jax?
[ J 4—x2—y2)dyjdx= [[@=p")pdpde=
- R"

212

2n 2 2n
[[p-p")dpdep=| [2/32 —’ﬂ dp = [4dp =8,
00 0 0

0
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2n2

V(CI):J‘J‘(4—21/XZ+y2)dxdyzﬂp(4—2p)dpd¢= [[@p-2p")dpdp=

flor 25 il

V(CS) = ”4dxdy j( jx4 J ” 4pdpde=[p]".[2p?] =167
Ja—x2 00

Fig. 3.21. Archimedean problems A3.

A3. Semi-sphere has a volume of two-thirds of the circumscribed cylinder and
double the volume of the inscribed cone.

The volume of a semi-sphere with the centre at the origin and radius r can be
calculated as a double integral V (S) = ”,/rz — x?— y2dxdy over the region

R
R:{[x,y]eEz:—rSXSr,—\/rz—x2 gygx/rz—xz}.

Using the transformation to polar coordinates calculation can be simplified to an
integration over region R" = {[p,(o] eR?:0<p<r,0<p< 27:},

v<s>W—pwwTsz-pzpdde{_ J(rz—ﬁf] ot

3 3

0
Volume of a cylinder circumscribed to the above semi-sphere equals to the integral

V(CC):“rdxdy, Rz{[x,y]eEz:—rgxsr,—\/rz—x2 gygx/rz—xz}.
R

Using the transformation to polar coordinates and integration over the region
R :{[p,gp]e R? :OSpSr,OSq)SZn},

the circumscribed cylinder volume equals

2nr

V(CC) = ”rpdpdgo ”rpdpdgo J{ }d(p— J-re’d(o nr’
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The volume of a cone inscribed to the above semi-sphere is

V(CI):”(r—\/szryz)dxdy,
Rz{[x,y]eE2 T <XST,—\r*=x* <y<ri-x? }

Transforming to polar coordinates as above we obtain

2nr

V(€ =[[(r-plpdpde= [ [(ro—p*)dpdp =
R 00
ZT[E_ﬁ}rd¢:%Tl’3d(ﬂ= 7'[_"3

From the geometric meaning of double integrals it easily follows that if f(x, y) and
g(x, y) are two continuous functions defined on a region R < E2 and such that for each
[x, ¥] € R holds f(x, y) <g(X, y), then the volume of the solid S enclosed by the graph
of function f(x, y) from above, by the graph of function g(x, y) from below and
laterally by a cylindrical surface generated by vertical lines passing through all points
of the boundary of R is

V(S) = [[(g0xy)— F (x,y))dxdy .

Examples

1. The volume of a solid bounded by the conical surface z2=x?+y? and by the
cylindrical surface x? +y? = 4 in Fig. 3.22, left, can be calculated, due to its
symmetry with respect to the coordinate plane z = 0, as the double integral

Y, :2”w/x2+y2dxdy,Rz{[x,y]eEz:—2£x£2,—\/4—x2 syS\/4—x2}.
R

This integral can be simplified using polar coordinates to an integral on the region
R"={[p.¢]eR?:0< p<2,0<gp<2r},

22m 2

2
V=2 [p*dodp=2] plpldp = 4n] pidp =[] - 28
00 0 5

3
2. The solid with the boundary in the conical surface z =./x*+ y? and hemisphere
2=J4—(x*+ y? ) depicted in Fig. 3.22, in the middle, has the volume equal to the
value of the double integral v = ”‘(\/4_()(2 Ty -t y? )dxdy on the region
R

R:{[x,y]e E2:—J2<x<2,-v2-x2 Sys\/Z—xz}.

Simplification using polar coordinates yields an integration over the simple
transformed region R” = {[p,(p] eR2:0<p</2,0<p< Zn}, therefore
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V= fT(‘l Ja-p? p)pdcodp ]p(\/4 o’ p)[ Jordp =
an(p 4 p? p)dp nJ.Zp\M prdp— Zn.[p do=

R s = A B B A )

3. By means of double integration the volume of a solid in the first octant given by
inequalities x +y <z < 2, the tetrahedron in Fig. 3.22, right, can be calculated as

= fzjx(z x—y) dydx = j[(z x)y——z} i :j%dx:

0
2 372
=I 2— 2x+— dx = 2x—X +X— :ﬂ.
5 6 3

0

Fig. 3.22. Volumes of solids.

Double integrals can be also used for the calculation of the area, both of a surface
patch, or a plane region. For the purpose of the area of a region R in the plane xy we
consider the solid consisting of points between the plane z = 1 and region R in the
plane z = 0. The volume V of this solid is equal to the value of the double integral of
function f over region R, and simultaneously this volume equals to the product of the
area of the region R and the height of this solid, V = A(R) . 1, from which immediately
follows that

A(R) :ﬂldxdy.

Examples
1. Area of aregion enclosed by curves y>=9 —x and y = 3 — x in Fig. 3.23, left,

R:{[x,y]eE2:3—y3xs9—y2,—2£ y£3}
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equals to the value of the double integral

3 2 373
125
A(R 1dxdy = [[x]2dy= [(6+y—y2)dy=|6y+ L ¥ | =2
(R)= Uy y = I[] y I2( y—y*)dy {y > 3}2 -
The area of the region R bounded by graphs of functions y = sin x and y = cos x
on interval 0 < x < z/4 equals to the double integral

T L
4 COSX

4 T
A(R) = [ [1dydx —j JGomvx = [ (cos x—sin x)dx = [sin x+ cos x]¢ =2 -1.
0

sin X
0 sin x

. Transformation to polar coordinates can be used for the calculation of the area of
the region enclosed by the three-level rose p=sin 3¢ (see Fig. 3.23, middle). One
sixth of the entire region lies between the lines through origin forming the polar
angles ¢ =0and = /6 with the polar axis, Fig. 3.22, right. Using the symmetry,
area of the region can be evaluated as

T T

6 sin3p 27| sin3p
A(R) = ej jpdpd¢ aj{ } do =

0

sin’3pde =

O'—.m\?—i

38 3l 1. s =
=—|(@-cosbp)dp=—| p—=sin6 ==,
2!( p)dp 2[50 - co} 2

0

Fig. 3.23. Integration regions.

If a function f(x, y) has continuous first partial derivatives on a closed region R < E?,
then the area of a surface patch S given by the equation z = f(x, y), [X, ¥] € R equals

AS) = [[1+(£(x ) +(f;(x y)Fdxdy

This formula can be used for the calculation of a surface area of any surface patch
determined as graph of function of two variables differentiable on a closed measurable
region in E2.
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Examples
1. The area of a paraboloid patch z = x? + y? over the region

R= {[x, y]eE?:—1<x <1, —V1-Xx* <y<+1-%° } Fig. 3. 24, left,
equals to the value of the double integral over this region from function

YL+ (£ )Y + (£, y) P, while

f(x,y)=x>+Vy? f/(x,y)=2x, f/(x,y) =2y, therefore

1 J1-x2
A(S) :J' J' J1+4x% +4y2dydx . This integral can be simplified by means of

-1_1_x2
polar transformation to double integral over the region

R ={[p.¢]eR?:0< p<1,0<p<2x},

12n 1 1
AS) =] [N1+4p pdpdp - %[{p]ﬁ"f8p\/1+ 4p*dp=" [8p\L+ap’dp =
00 0 0
512 sy} | -2foi5-1)
0

2. The area of the cylindrical surface patch x? + z2 = 4 above the rectangular region
R =(0, 1) x (0, 4) < EZillustrated in Fig. 3.24, right, equals to

1

A(S):ﬁ\/“ Xzzdydxz[Y]gj 2 dx=4{arcsin§} _8n.
00 4—x 5 14_X2 2 . 3

N

P <

~/
1.0

Fig. 3.24. Surface patches as graphs of functions f(x, y) on set R.
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Let us consider a thin plate (lamina) in E? occupying a regular region R. The plate is
supposed to be sufficiently thin so that the mass density is a function of only two
variables, namely x and y, denoted as o(X, y). Then the total mass M of this plate is

M =.[J'a(x, y)dxdy .

By means of the double integration we can also find other physical characteristics of
the plate, for example its static moments about the coordinate axes and the coordinates
of its centre of mass (centre of gravity).

The static (first) moments about coordinate axes of the plate are

S, =”y. o(x,y)dxdy, S, = J'J'x o(x,y)dxdy.

Denoting T = [xr, yr] € E? the centre of mass of the plate, then the coordinates of T
are computed as follows

) :_y:_gx.a(x,y)dxdy :i_gy.a(x,y) dxdy.

”a(x,y)dxdy I M ﬂo(x,y)dxdy

In the special case of a homogeneous region (lamina) R, o(x, y) = const., the centre of
gravity is called the centroid of the region, and its coordinates are consequently
calculated as

1 1
X =WL‘[xdxdy, Yo :mgydxdy.

Examples

1. The lamina bounded by coordinate axis x, line x = 1 and curve y = Vx with density
o(x, y) = x + y illustrated in Fig. 3. 25, left, has a mass equal to the value of the

double integral over the region R = {[x y]eE*:0<x<1,0<y< \/;}
1x 2 1

M:J'J.x+y dydx = j[nyr—} dx = J'(\/_+ jdx{ \/_ }
00

0

20

Coordinates of the centre of gravity of this lamina are

1Jx

J.J'xx+ydydx 2015, 201, xy? Jx
X, =220 =— | |(X*+xy)dydx=—|| xX°y+—=—| dx=
R LA

20

204 15, X 20[ 2 b 20(2 1) 190
2 e D |ax =2 S | =2 L2222
13{[ 2 13| 7 6| 1317 6) 273
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o'—.i‘

1
[ [y(x+y)dydx 1& U
0 20 20 {xy +y} dx =

o= 13 _EHXVW Olydx_lsI 2 3
20

1
_@j_ I, 20/ ¥ 2 —Q(h%—ﬁ
13502 3 138|615 , 1316 15) 13
2. The mass of a rectangular lamina with vertices [0, 0], [0, 2], [3, 0], [?, 7] in E?,

Fig. 3.25, middle, and density o(x, y) = xy? can be calculated as the double integral
over the region R:{[x yle E?:0<x<3,0< ysz},

4 ¥ “Tx]° 89
M = ”x “dydx = 1= ==.==12.
J] 3| |2 2

0 0 3

0

Coordinates of its centre of gravity are

”xzy dy dx 372 573
oo Ly Xy 184 5
12 12 3|3, 12'3

I
xy® dy dx i12 273
y, =8%8— == yx dx:i.4.g=§.
12 1204 2], 12772 2

Fig. 3.25. Laminas with centre of gravity in plane E2.

3. The centroid of a planar homogeneous region enclosed between line y = x and
parabolay = 2 — x? in Fig. 3.25, right, can be found as

1 2-x?

; 2-x* i 2_ 3 [XZ _X73 _XA} 1
jjxdydx _[x[y]x dx J'(Zx—x ~x*)dx o

3 4
XT:_lsz(xz == e :21( 2) = R 1 :_E’
dyd “d 2—x—x°)d A
-'[2 3[1 a J.Z[y] " J; T [ZX 2 3 }2
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12-¢ Y2 2% L o_F 2 5¢ x5 1"
Ifydydx I[zl dx :II( sy dx 2X—?+E o,

Yr :_122sz 721 - 1 ) T :g
g —x—-x?)d XX
L!ldydx J;[y]x X J;(Z X—X ) X |:2X : 3}2

If R < E® is a regular region (of any type), then its volume V(R) is computed by the
triple integral

V(R) :j”ldxdydz .

Examples
1. Volume of region from Fig. 3.9, right, described as regular region of type yxz

Myxz{[x,y]eEz:—\/Es y<~2,—y2-y? SXSJZ—yZ},

={[X, y,zZ]€eE%[X,yleM X’ +y* < ZS4—(x2+y2)},

yx1
can be calculated as the triple integral

V2 2yt a(iey?)
V(Ryxz):jﬂldxdydz: j j jldzdxdy
R)'XZ

~2_[ooy2 XP+y?

transformed to cylindrical coordinates to an integral over the region
T*={(p, A RS RSZOSpS\/E,OSgoSZn,pZ SZS4—,02}
J2 2r 4-p? J22n

V(Ryxz)zj”pdpd(pd2= II Ipdzdwdpz j I(4p—2p3)d¢dp=

4

V2 72
:4nj(2p—p3)dp=4n{p2—p—} = 4n(2-1)=4n.
0 0

SN

2. The space region illustrated in Fig. 3.18, on the right and described in spherical
coordinates  as T*={(p, ¢, 7)eR® ;ogpgz,oggogzn,Zggg?’I} has
volume equal to the triple integral

2n

!

4 2 8 16v2n
[eosc]; Bl Mo_ﬁ.zn.s_ a3
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Solid S given by inequalities 3x? + 3y? <z <1 — x? — y? is bounded by two
paraboloids with common axis in coordinate axis z sharing one circle with
equation 3x? + 3y? = 1 — x2 — y2, which yields x? + y? = ¥. Their common circle
with radius % is located in the plane z = %. Due to the symmetric form of this
solid, see Fig. 3.26, left, its volume V(S) can be calculated over the region Ss

={[x,y,z]e E3:03xs%,0£ ysW/%—x2,3x2+3y2 3231—(x2+y2)},

Ildzdydx 4j J'l 4x* -4y )dydx—

3x2+3y?

1 2 1
e 2

1
=4ﬂ(1—4x2)y—4—3{’3} dx:%j(1—4x2 1-4x° dx =
0 0

1
Jl 4 o | X6-8CN1-4x* arcsin2x | _=
Vi-4 6 4 ], 8

Using cylindrical coordinates, the calculation is much simpler

1

21[1-;32

[ [pdzdpdp = jp(l 4p%) g dp =

1
2 2
=2n p——p4 =2n(1—l]=£.
2 o 8 16) 8

V(S)=mpdpd(pdz=f

Fig. 3.26. Solids in space E®.
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If a physical body occupies a regular region R < E2 and its point density is given by
the function o(X, y, z), then the total mass of the body is

M = ”Ia(x, y,z)dxdydz.

If we denote by T = [xr, yr, zr] € E® the centre of mass of the body R, then the
coordinates of T are computed as follows

X = %jﬂx.a(x, y,z)dxdydz
R

Y, = ﬁm.y .o(X,y,z)dxdydz
R

z; =$m'z.o-(x, y,z)dxdy dz.
R

By analogy with a 2D case, for a homogeneous body R we speak about its centroid.

Examples
1. The total mass of the region from Fig. 3.9, right

M, = {[x,y]e Ex-J2<y<2,—J2-y? SXSW/Z—yZ},
Ry = {[x, y,z2]€ E%[x,y]e M, X +y* <z< 4—(x2 + yz)},
with the point density o(X, y, z) = z can be calculated as the triple integral
J2 W 4—(x2+y2)
M =m'zdxdydz= I I jzdzdxdy,
Ry 7\/57\/? x2+y?

and transformed to cylindrical coordinates as an integral over the region
T*={(p, 0, 2) e R3:OSpS\/§,OS(o£2n,p2 SZS4—p2},

22m 4-p?

VZan 4p Vo L2774
V(R,o)=[[[zpdpdpdz=| | jzpdzdwdp=HpH dodp =
T 00 p? P’

1\/721[ 1
=5Hp16 8p* +p' - p* dwdp—E

0

JE 7z 42
4.[ 2p-p° [(p]0 dp= 8nj(2p—p3)dp=8n[p2—%} =8n(2-1)=8n.
0

0 0

N

o'—.ﬁ

j16p 8p° dgadp:
0

o
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Coordinates of the region centre of gravity are

X; :i{gx.zdxdydz :i‘wpz cos@.zdpdpdz=0

Yy = %J..F[_[y.zdxdydz = %Lﬂpzsin ¢.2dpdepdz =0,

fznap fzn /3 4—p

=5 dexdydz—— Zded(pdp—— D dpdp =

o 3 frese-2145]

P

1 J22n
24,[[[/’ 64-48p° +12p" 25" )dpdp =

f
1 n-([SZp 24p° +60°~p )[p]"d
V2 0z
TR —

The total mass of the solid S from Fig. 3.26, left, with the constant point density
function o(x, y, z) =k, k € R, can be calculated as

kn
M = ||| k. pdpdedz =k dpodpdz=k.V(S)=—,
ISH pdpde Isﬂp pdp 5
Coordinates of its centre of gravity, centroid T, are

X, =:¥n£gxdxdydz :%Lﬂpz cospdpdpdz =0,

A =%Iﬂydxdydz :%Lﬂpzsin pdpdpdz=0,

% -p* %2 27"

8 8 2nl 8 H z
:Gj‘gk.zdxdydz=k—u £ -ded(PdP:nMP[ZLPZ dpdp =
1 !
ifj (L-2p7+ p* -9p )dcodp—*f(/? 2p°-8p°)[p]i" d

00
1
2 4p6 E_ 1 1 1 _7
o207 05 W=l - -, }0‘4(4‘16‘24]‘12-
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3. The volume of a homogeneous solid T bounded by the spheres x? + y? + z22 = 1,
x? +y? + 72 = 4 and by the conical surface of revolution x? + y? = z, while z>0
(Fig. 3.26, right) equals to the value of the triple integral over the region described
in spherical coordinates as

T*:{(p, qo,é’)eRs:lﬁpSZ,OSQJSZn,OSgS%},

2n

/

~[oosci o ]2;{/;1 [ L) (81)- T

Coordinates of the centroid of this solid are

V(1) = [[[1dxdydz = [[[ p*sin¢ dpdedg = jpzsingdgdgodp =

H'—,N

3 2 3 H

XT ZWLU.XdXdde 2—3\/57[: er.U.p COS(DSII’I ;dpd@dg =0,
3 2 3 - - 2

Ve =—7'(2_\/§)n'[}”ydxdydz =mj‘ﬂp singsin®¢ dpdpds =0,

2n

3 2214 .-
szmJ‘ﬁzdxdy T2 \/_ J;Mp sing'cosd{ dedp =

22n

3 22n
:7.(2—J§) J[r { o 4 de p_mﬂp dpdp=

10

Ip [p]o"d

Ip p=

8. (2 J_) 14(2 14.(2-2)

_L{P_‘T_L
T 14.(2-+2) 4 |, 56.(2-+2)

Finally, we can summarize that the main purpose of this section on multiple integrals
lies primarily in the usefulness of the general theory of double and triple integrals for
calculations of geometric and physical characteristics of planar or spatial objects,
representing physical objects as 2D laminae in E2, or 3D solids in E®.

The geometric characteristics of these objects are given by the areas of the surface
patches and by the volumes of the solids. The physical characteristics comprise the
total mass, the static moments about the coordinate axes, and the coordinates of the
centres of gravity (or centroids in homogeneous case) of these object.
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directrix 23 -, two-dimensional 59
distances 19 -, three-dimensional 67
domain, of definition 31 Jacobian 75, 81
ellipsoid 25 -, of polar transformation 77
-, of revolution 25 -, of cylindrical transformation 84
edge 13 -, of spherical transformation 87
equation 12 Lagrange, formula 10
-, general 12 lamina 98

-, implicit 12
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leminscate of Bernoulli 77

length, of vector 89
limit, of a function 33
-, improper 34
linearity 61, 69, 74
lines, intersecting 15
-, parallel 15

-, skew 15
magnitude 9
mapping 74

-, continuous 75

-, inverse 75

-, one-to-one 75

-, regular 75

mass, of a solid 67, 98, 102
-,ofaprism 68
moment, static 98
monotonicity 61, 69, 74
multiplier, Lagrange 51

multiple, integral 73
neighbourhood 28
normal 38

paraboloid, elliptic 26
-, of revolution 26

-, hyperbolic 27
parallelepiped 12
plane, tangent 38

point, boundary 28
-, cluster 29
-, critical 46
-, exterior 30
-, interior 28
-, isolated 29
-, limit 29
-, of local extreme 46
-, saddle 46

-, stationary 46
positivity 61, 69, 74
projection, axonometric 13

quadratic surface 23
range 31

region, open 30

-, closed 30

-, measurable 60, 63, 68, 73
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-, regular 62
rose 77
rulings 23
set 28
-, bounded 29
-, closed 28
-, connected 29
-, open 28

-, simply connected 29
space, metric 28

surface, quadratic 23
-, cylindrical 23
-, conical 24

-, of revolution 24
transformations 74

-, in plane 74

- -, polar 77

-, in space 81

- -, cylindrical 83

-, patch 96

- -, spherical 88
trapezoid, curvilinear 57
trihedron 13
variable 31

vertex 13

vector 8

-, direction 15, 37

-, normal 12, 39

-, position 8

-, product, scalar 10
-, product, cross 10
-, product, scalar triple 10
-, unit 8

-, Zero 8

volume 12

-, of curvilinear cylinder 58
-, of prism 69

-, of solid 60, 91, 94, 99
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