
22. Measurement of the velocity of sound by resonance

method. Measurement of modulus elasticity in tension

by the method of Kundt`s tube.

Assignment

1. Measure the velocity of the sound in air.

2. Measure the velocity of the sound in metal rod.

3. Determine the Poisson`s constant in air.

4. Determine the modulus of elasticity of the rod.

5. Give complete analysis of the errors in your experiment.

Theoretical part

A classical travelling wave is a self-sustaining disturbance of a medium, which

moves through the space transporting energy and momentum. When we look closely at

real waves (such a waves on string), we see composite phenomena comprised of vast

numbers of particles moving in concert. The media supporting these waves is atomic

and so the waves are not continues entities in and of themselves. The most familiar

waves, and the easiest to visualize are the mechanical waves, among which are waves

on string, surface waves on liquids, sound waves in air and compression waves in both

solid  and  fluids.  Sound  waves  are  longitudinal -  the  medium  is  displaced  in

the direction of motion of the wave. Waves on the string and electromagnetic waves

are  transverse  -  the  medium  is  displaced  in  a  direction  perpendicular  to  that

of the motion  of  the  wave.  In  all  cases,  although  the  energy-carrying  disturbance-

advances through the medium, the individual participating atoms remain in the vicinity

of their equilibrium position.
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We shall take an interest in sound waves. These ones are longitudinal harmonic

waves. These may be described by the equation

, (4.1)

where  is the wave number defined as 

 (4.2)

and

(4.3)

is the angular frequency of the wave. Because , where  is frequency with

which the physical situation varies at every point , we have the important relation

(4.4)

since the period of oscillation at each point is given by

. (4.5)

Let us consider the situation when an incident transverse wave moving to the left

a having the equation  is reflected at the fixed end (see Fig.4.1),

producing  a  new  wave  propagating  to  the  right  and  describing  by  the  equation

. 

The displacement at any point is the result of the interference or superposition of

the two waves

y

x

2/ i n c i d e n t  w a v e

r e f l e c t e d  w a v e

Fig.4.1
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. (4.6)

The  expression  does  not  represent  a  travelling  wave.  It  represents  a  simple

harmonic motion whose amplitude varies from point to point, and is given by

. (4.7)

Therefore, the eq.(4.6) is the special kind of wave called standing or stationary wave.

At  any  point  the  amplitude  is  the  function  of  .  From eq.(4.7)  follows  that  the

amplitude is zero for  , where  n=0,1,2,3,... is an integer. This result also be

written

. (4.8)

These points are called nodes or nodal points. The amplitude has a maximum value

of  and these points are known as the antinodes. This case occurs when the

 is satisfies condition

(4.9)

or

. (4.10)

The results  we have obtained find many applications.  In acoustic,  for  example,

resonating cavity are used for sound analysis. 

Now we  shall  take  interest  in  the  elastic  wave  in  a  solid  rod.  If  we  produce

a disturbance at one end of a solid rod, the disturbance propagates along the rod and

eventually is felt the other end. We can show how its velocity is related to the physical

properties of the rod. Let us consider a rod of uniform cross section  A subject to a

stress along its axis indicated by the force  (see Fig.4.2). The normal stress  at the

section of this rod is defined as
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. (4.11)

Under the action of such forces each sections of the rod suffers a displacement  

parallel to the axis, as is shown in Fig.4.2. If the displacement is the same of all points

of the rod, there is no deformation. When the forces are applied, the section   is

displaced a distance  and section  a distance . The separation between  and

 in the deformed state is then

,

where   is the deformation of the rod in that region. Since the deformation

 corresponds to a length  we see that the normal strain in the rod is 

. (4.12)

Between normal stress  and the normal strain  of the rod exists the relation called

Hook`s law, which states

, (4.13)

where   is called Young’s modulus of elasticity. Introducing eqs.(4.11) and (4.12)

into eq.(4.13) and solving for  we get

. (4.14)

For the case of a rod, which is not in equilibrium, the force is not the same along the

rod. As a result, a section of the rod of thickness  is subject to resultant force to the

right given by

x
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Fig.4.2
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. (4.15)

If the mass of section   is   and acceleration is   applying

Newton’s  second law ( )  equation  (4.15)  we  may write  the  equation  of

motion of the section as

. (4.16)

Taking the derivation of eq.(4.14) with respect to , we have

.

Substituting this result in eq.(4.16) gives

. (4.17)

This is the differential equation of motion of the wave propagating along the rod with

velocity

. (4.18)

Next we shall consider elastic waves in a gas resulting from pressure variation in

the  gas.  For  simplicity,  we  shall  consider  only  waves  propagated  in  a  gas  within

a cylindrical tube. There is an important difference between elastic waves in a gas and

elastic waves in a solid rod. Gases are very compressible and the density of the gas will

suffer the same fluctuations as the pressure.

Let us assume that  and  are the equilibrium pressure and density in gas. If

the pressure of the gas is disturbed, a volume element  Adx is set in motion because

the pressure   and   on one side and the other are different, giving rise to a net

force.  The mass  within the  undisturbed volume element  is   and  disturbed

volume element is  , where   is the density of the disturbed gas. The

conservation of matter requires that both masses must be equal
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or

.

Solving for  we have

.

Since  in  general   is  small,  we  can  replace   by   using

Binomial equation, resulting in 

. (4.19)

The pressure is  related to the gas density   by the equation of state.  From it

follows that  . For relatively small changes in density we keep only the first

two terms in Taylor`s expansion and write

. (4.20)

The term

(4.21)

is called the bulk modulus of elasticity. Inserting this value into eq.(4.20) gives

. (4.22)

This  expression  corresponds  to  Hook`s  law  for  gas.  Using  eq.(4.19)  to  eliminate

we have

. (4.23)
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This expression relates the pressure at any point in the gas to the deformation at the

same  point.  We  take  derivative  eq.(4.23)  with  respect  to  x and  remember  that

 through the gas then

(4.24)

Now we derive the equation of motion of the volume element. The gas at the left

(see Fig.4.3) of our volume element pushes to the right with a force  and the gas at

the right  pushes  to  the  left  with  a  force  .  Then the  resultant  force  in  the  x-

direction is

, (4.25)

where  and the equation of motion of this element is

, (4.26)

where  is acceleration of volume element . If we compare eq.(4.24) and

eq.(4.26) we obtain an equation similar to the wave equation. Then the velocity with

which the disturbance propagates in a gas as

. (4.27)
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Fig.4.3

7



Wave motion in gases in generally an adiabatic process, it means that no energy is

exchanged in the form of heat by a volume element of the gas. Under these conditions

the pressure of the gas is proportional to  as 

, (4.28)

where   is  a  quantity  characteristic  of  each  gas,   is  a  constant.  We take the

derivation of  with respect to  as 

. (4.29)

Using eq.(4.21) we have the expression for bulk modulus of elasticity in form

.

Inserting this value into equation (4.27) and dropping the subscript 0 we find

(4.30)

or using the equation of state we give

, (4.31)

where   is  the  velocity  of  sound  under  conditions,

, , , T is the temperature of

air where the velocity of sound is measured.
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The method-practical part

A. Measurement of the velocity of sound in air by resonance method

Apparatus is shown in Fig.4.4. 

Apparatus consists of the tube closed at one end. The length, , of the air column is

varied by moving the tube vertically. Because the tube is closed at one end and open at

other , the sound waves generated by the tonal generator are reinforced when the length

of the column corresponding to one of the resonant  frequencies of the tube.  If  the

number of resonances at any frequency detected by oscillograph equals  and  is

the distance between first and final resonance then we can calculated the velocity of

the sound in air by the relation

(4.32)

Since  the  frequency used  for  loud is  known the  velocity  of  sound in  air  may be

calculate from this equation.

Poisson’s constant  can be determined from eq.(4.31). Rewriting of this equation

gives

h

g l a s s  r e s o n a n t  t u b e

r e s e r v o i r  o f  w a t e r

Fig.4.4
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, (4.33)

where , v is the velocity of sound in air corresponding to the temperature t.

Measurement

Apparatus: glass resonance tube, laboratory stand, water reservoir with rubber tubing

for connection to resonance tube, tonal generator. microphone, oscilloscope.

Experimental procedure:  Set up the position of microphone at the top glass tube so

that it will be barely clear the glass vibrating. Rise the water level in the glass tube

until it is near the top. While the microphone is vibrating lower the water level slowly

until the first resonance point is reached. Determine the position of the resonant point

accurately.  In  like  manner  determine  the  last  point  of  resonance  and  determine

the number  of  resonances  in  tube.  Repeat  the  entire  process  with  five  different

frequencies.

Calculation: From the measurement taken with the resonance tube calculate the value

of  the  velocity  of  sound  in  air  for  each  of  the  five  frequencies  using  eq.(4.32).

Determine the mean value of the velocity of sound in air. Compare your experimental

value with the correct value of the air at the recorder temperature calculating form eq.

(4.31). Calculate the Poisson`s constant given eq.(4.33). Compare your experimental

value with the value for diatomic gas .

B. Measurement of the velocity of sound in metal rod

Kundt’s method of measuring the velocity of sound in metals depends upon setting

up standing waves in the air  inside a glass tube, which has one end closed. These

waves in air are created by longitudinal vibrations in a metal rod, which is positioned

axially within the glass tube as is shown in Fig.4.5.
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The  form of  the  stationary  waves  in  air  may  be  deduced from observation  of

configurations into which cork dust falls as the air in the tube vibrates in resonance

with  the  natural  vibration  frequency  of  the  metal  tube.  The  rod  itself  is  stroked

longitudinally  with  the  hammer.  They  may  be  a  variety  of  cork  dust  pattern,  but

regardless  of  the  particular  pattern  observed,  the  distance  between  corresponding

points of adjacent configurations will be one-half a wavelength of the sound wave in

air.

Measurement

Apparatus: Kundt`s tube, metal rod, cork dust, hammer, meter stick.

Experimental  procedure: Measure  the  length   of  metal  rod  and temperature  

of the air. Clamp the test rod exactly at its midpoint. One end of the rod is fitted with

the disk and this end is inserted into the long glass tube. The glass tube should be

stopped at the other end and should contain enough cork dust to cover lightly the tube.

Set  the rod in vibration by stroking the free end with hammer.  Adjust  the position

of the glass  tube  until  the  best  possible  cork  dust  patterns  are  produced.  Measure

the distances between the nodal points and record them into data table. The resonance

condition is given by

where  and  are frequencies of oscillations in air and rod, respectively. Using eq.

(4.7) we have 

l

Fig.4.5
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.

Solving for 

, (4.34)

where , note that  is length of the rod.

Calculation: Using  eq.(4.34)  determine  the  velocity  of  the  sound  in  metal  rod.

Determine the modulus of elasticity from eq.(4.19), where  is density of the metal

rod. Give a complete analysis of the sources of errors in this experiment.
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