
12. WAVES

Wave motion is closely related to the phenomenon of vibration. Sound waves, earthquake waves,

waves of stretched string and water waves are all produced by some source of vibrations. As a sound

wave travels through some medium, such as air, the molecules of the medium vibrate back and forth, the

water molecules vibrate up and down etc.  As wave travels through the medium, the particles of the

medium move in repetitive cycles. Therefore, the motion of the particle bears a strong resemblance to the

period motion of a vibrating pendulum or a mass attached to a spring.

There are three physical quantities characterizing of the waves:  the wavelength, the frequency

and the wave velocity.

One wavelength is the minimum distance between two points on a wave that behave identically.

For  example,  in  the  case  of  water  waves,  the  wavelength is  the  distance between adjacent  crests  or

between adjacent troughs.

Most waves are periodic in nature. The frequency of such periodic waves is the rate at which the

disturbance repeats itself.

Waves  travel,  or  propagate,  with  a specific  velocity,  which  depends  on  the  properties  of  the

medium being disturbing. For example, sound waves travel through air at 20 C with a speed 344 m.s-1,

whereas the speed of sound in most solids is higher than 344 m.s -1. For example, the speed of sound in

iron  is  5130 m.s-1.  A special  class  of  waves  that  do  not  require  a  medium in order  to  propagate  is

electromagnetic waves, which travel through a vacuum with a speed of about .

12.1 Types of waves

On way to demonstrate wave motion is to flip on end of a long rope that is under tension and has its

opposite end fixed, as is shown in Fig.12.1. In this manner a single pulse is formed that travels to the left

with a definite speed. This type of disturbance is called a traveling wave. As we shall see later the speed

of the wave depends on the tension in the rope and on the properties of the rope. Note that, as the

wave travels along the rope, each segment of the rope that is disturbed moves in a direction perpendicular

to the wave motion. A traveling wave such as this, in which the particles of the disturbed medium move

perpendicular to the wave velocity is called transverse wave.

In  another  class  of  waves,  called  longitudinal  waves,  the  particles  of  the  medium  undergo

displacements in a direction parallel to the direction of wave motion.

Sound waves are longitudinal  waves.  The disturbance corresponds to  a  series  hight  and low

pressure regions that travel through air or through any material medium with a certain velocity.
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Example of transverse wave is electromagnetic waves, such as light, radio and television waves.

At a given point in space, the electric and magnetic fields of an electromagnetic wave are perpendicular to

the direction of the wave and to each other, as we shall see later.

Some waves in nature are neither transverse nor longitudinal, but a combination of the two. Surface

water  waves  are  a  good  example.  When  a  water  wave  travels  on  the  surface  of  deep  water,  water

molecules at the surface move in nearly circular path (as is shown in Fig.12.2), where the water surface is

drawn as a series of crests and through. Note that the disturbance has both transverse and longitudinal

components. As the waves pass, water molecules at the crests move in the direction of the wave and

molecules at the through move in the opposite direction. Hence, there is not displacement of a water

molecule after the passage of any number of complete waves.
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12.2 One-dimensional waves

Let us now give a mathematical description of one-dimensional travelling wave. Consider a wave

pulse travelling to the right on a long stretched string with constant v as is shown in Fig.12.3.

Let us denote the pulse at time  as . That is, y is some definite function of x.  The

maximum displacement,  , is called the amplitude of wave. Since the speed of wave pulse is v, it

travels to the right a distance  in time t.

If the shape of the wave pulse does not change with time, we can represent the displacement at any

time t measured in a stationary frame with the origin at O as

(12.1)

if the wave is travelled to the right.. Similar, if the pulse travels to the left, its displacement is given by

(12.2)

The displacement  y is called  the wave function.  This function depends on the two variables  x and  t.

Consider a point P on the string. As wave passes the point P the y component of this point will increase,

reaches  a  maximum,  and  then  decreases  to  zero.  Therefore,  the  wave  function  represents  the  y

component of any point P at any time t. To find the velocity of the pulse, we can calculate how far the

crest  moves  in  a  short  time  and  divide  this  distance  by  the  time  interval.  The  crest  of  the  pulse

corresponds to that point for which y has its maximum. In order to follow the motion of the crest,  ,

must be substituted for . At the time , the crest is at  and at a time  later, the crest

is at . Therefore, in time , the crest has moved a distance . From this

follows, that the wave speed called the phase velocity is given by 

(12.3)
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Note:

The phase velocity must not be confused with the transverse velocity of a particle in medium.

12.3 Harmonic wave

A harmonic wave has a sinusoidal shape as is shown in Fig.12.4. Assume that at the time ,

the displacement of the curve is given by

(12.4)

where the constant  A is  called  the amplitude of the wave.  It  represents the maximum value of the

displacement. The constant  is called the wavelength of the wave. It equals the distance between two

successive maxima or crests, or between any two adjacent points that have the same phase as is shown in

Fig.12.5.

To describe the same point  P on the wave shape, the argument of the sine function must be the same.

Thus we must replace x by in eq.(12.4). Then the displacement is given by

(12.5)

As we can see the displacement repeats itself when x is increased by any integral multiple of . The time

it takes the wave to travel  a distance of one wavelength is called  the period  T. The phase velocity,

wavelength and period are related by 

Fig.12. 4
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  (12.6)

or

(12.7)

From this equation we can express

(12.8)

where . Substituting this expression into eq.(12.5) gives

(12.9)

This form of wave function shows the periodic nature of y. It means, at any time t, y has the same value at

the positions x, , , etc.

We can express the harmonic wave function in a convenient form by defining two other quantities

called the angular frequency  and the wave number k as 

(12.10)

(12.11)

Using these definitions the equation (12.5) can be rewritten in the more general form

(12.12)

This  equation  assumes  that  the  displacement  y is  zero  at   and  .  If  the  transverse

displacement is not zero at  and , we generally express the wave motion in the form

, (12.13)

where  is called phase constant. This constant can be determined from the initial conditions.

Notes:

1. For a wave travelling along the x axis to the left (value of x decreases) the equation of the wave is

in the form

(12.14)

2. Let  us  consider  a  general  wave  of  any  shape  and  suppose  the  wave  has  a  shape  given  by

 at , where y is the displacement of the wave at x and  is some function of x,

which gives the actual shape of the wave. If the wave is travelling to the right along the x axis the

wave will have the same shape but it will have moved a distance  . We must replace  x by

 to obtain displacement at the time  t. Therefore, the displacement is given by equation

.
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Examples

A  sinusoidal  wave  travelling  in  the  positive  x direction  has  amplitude  ,  wavelength

 and frequency . The displacement of the wave at the time   and   is

also . Find

a. The wave number k, period T, angular frequency  and phase velocity v of the wave.

b. Determine the phase constant  and write a general expression for the wave function.

Solution:

This wave is shown in Fig.12.6

a. Using eqs.(12.8), (12.10) and (12.11) we find out the following values:

b. Since the amplitude  then equation (12.13) gives

  

at the time  and  or 

.

Since  we see that . Hence, the wave function is in the form

or

x

y

A



Fig.12. 6
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12.4 Superposition and interference of waves

If two or more travelling waves are moving through the medium the resultant wave function at any

point is the algebraic sum of the wave functions of the individual waves. This principle is called  the

superposition principle.

One consequence of the superposition principle is observation that two travelling waves can pass

through each other without being destroyed or even altered. For example, when sound waves from two

sources move through air they also can pass through each other. The resultant sound one hears at a given

point is the resultant of the both disturbances.

Let  us  consider  two  one-dimensional  waves  of  equal  frequencies  ,  different  amplitudes

 and  different  phase  constants  .  We  shall  assume  suppose  that  the  displacement

direction of the first and the second wave are the same and waves travel down a positive direction of x

axis

(12.15)

(12.16)

where v is the velocity of the waves. Using principle of superposition gives

(12.17)

or 

(12.18)

The terms in brackets are constants and we see that the resultant wave is also harmonic with the

same frequency. To find the amplitude and phase of this wave we express it in standard form

(12.19)

or

(12.20)

where A and  represent the amplitude and the phase angle of the resultant wave, respectively. Equation

(12.18) and (12.20) must be identical for any x and t and we obtain the following expressions

(12.21)

(12.22)
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Dividing of these two equations we find the phase angle 

(12.23)

To find the amplitude A we square equations (12.21) and (12.22) and then we add them 

(12.24)

From this equation follows:

1. If phase difference , where  the amplitude of resultant wave will have

its maximum . This case is called constructive interference.

2. If  the phase difference  ,  where   the amplitude of the resultant

wave will have its minimum 

 if 

     or

 if 

This case is called destructive interference.

3. The displacement at any point x and any time t is described by the function  of two variables

x and t as

(12.25)

If we choose the fixed point , the function  describe the oscillating motion at this point 

and thus for  we can write the function in form

(12.26)

where  is constant which represents the phase delay of the point  with respect to the point

in origin. Thus for any point x we have the relationship

(12.27)

Then the phase difference  of two waves of different phase angle  and  is equal

(12.28)

or

(12.29)
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where  represents the path difference. Therefore, from eq.(12.29) we have

(12.30)

Because for a constructive interference the phase difference equals  then

(12.31)

Condition for the phase difference of a destructive interference is . Threfore,

(12.32)

12.5 Standing wave

If we vibrate one end of a rope and the other end is kept fixed (Fig.12.7) a wave will travel down to

the fixed end and be reflected back. There will be waves travelling in both directions and these waves will

interfere. If vibrations of the rope will be at just the right frequency these two waves will interfere and

standing wave will be produced. This standing wave is the result of two waves travelling in opposite

directions.  The  points  of  destructive interference,  called nodes and of  constructive interference,

called antinodes remain in fixed points.

Each of waves can be described in terms of an equation for the displacement  of a linear

travelling wave as a function of position x and time t. We assume that the amplitudes, frequencies and

wavelengths are the same. Then

(12.33)

(12.34)

Using the identity  we have

(12.35)

w a v e  t r a v e l l i n g  d o w n  t o  f i x e d  p o i n t w a v e  r e f l e c t e d  b a c k

Fig.12. 7
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From this equation we can see that a particle at any point at position of x vibrate in simple harmonic

motion due  to  factor  .  We also  see  that  all  particles  vibrate  with  the  same frequency

.

The amplitude of the motion equals  and depends on x. From this expression follows

that

1. The amplitude of a standing wave has maximum equal to  when . From condition

is valid for  or . Solving it for x gives .

These positions accord with the positions, which is called the antinodes.

2. The amplitude of a standing wave equals zero, when , where  is integer that is

at points  what are the positions called the nodes.

Standing wave on the string fixed at one end is shown in Fig.12.8.

When we consider the string fixed at its two ends, the function given by equation (12.35) is zero at

and , where L is the length of the string. This satisfies the first condition  at .

The second condition is if

  4 L f  v / v / 4 L,  = =1 1

 4 L / 3 f  3 f,  =3 1

f i r s t  h a r m o n i c  f r e q u e n c y

3

 4 L / 5 f  5 f,  =5 15

t h i r d  h a r m o n i c  f r e q u e n c y

f i f t h  h a r m o n i c  f r e q u e n c y

Fig.12. 8
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(12.36)

where n is integer. Since the wave number equals

(12.37)

then equation (12.36) will be in form

(12.38)

or 

. (12.39)

Situation is shown in Fig.12.9.

12.6 The linear wave equation

Let us consider the general  form of function of wave moving to the right  ,

where f is the function of x and t. Let the quantity  be represented by z, where . Then

the first derivate of  equals

(12.40)

and second derivate with respect to t equals

(12.41)

Similarly

L =   

L = 

a n t i n o d e

a n t i n o d e s

Fig.12. 9
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(12.42)

Since  and 

(12.43)

Comparing eq(12.41) and eq(12.43) gives

(12.44)

where v is the wave velocity. This equation is one-dimensional linear equation. It applies in general to

various types of waves moving through non-dispersive media. For the waves on string,  y represents the

vertical displacement, for sound waves, y corresponds to variation in the pressure or density of a gas in

the case of electromagnetic waves, y corresponds to electric or magnetic field components.

12.7 The velocity of waves on strings

The velocity of mechanical waves depends only on the properties of the medium through which the

disturbance travels.

At first we shall take an interest in the derivation of the expression for the speed of a pulse traveling

on a stretched string with the velocity v.

Consider a pulse moving to the right with a uniform speed v, as is shown in Fig.12.10a,b. The force

 acts  on each side of  segment  of  length   and mass  .  Mass  of  this  element  is  given by

, where  is the mass per unit length of the spring (linear density). We resolve this force into

two perpendicular components. The horizontal components cancel and each vertical component 

act radially toward the center of arc. Therefore, the total radial force equals

(12.45)
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Since the segment is small,  is small and we can use the approximation

(12.46)

Hence, the force equals

(12.47)

If we apply Newton`s second law to this segment, the radial component of motion gives

(12.48)

Inserting eq.(12.48) into eq.(12.47) gives

(12.49)

where we used expression  (see Fig.12.10). Solving for v gives

(12.50)

Remarks:

1. The derivation of velocity is based on the assumption that the pulse hight is small relative to the

length of the string

2. We were able to use the approximation 

3. The tension force F is the same at all points on the string

4. The velocity of longitudinal wave has similar form for a longitudinal wave traveling along a solid

rod 

(12.51)

   where E is the elastic modulus of the material (Young`s modulus) and  is its volume density

5. For longitudinal wave traveling in a liquid or gas the velocity of the way is given by

(12.52)

    where  B is the bulk modulus of a matter defined as   and   is its density. (The

derivation of this expression will be provided later.)

12.8 Sound waves

The sound waves are longitudinal waves. They travel through any medium (gas, solid or liquid)

with a speed that depends on the properties of the medium. As sound waves travel through a medium, the

184



particles in the medium vibrate to produce the density and pressure changes along the direction of

motion of the wave. This is in contrast to a traverse wave where the particle motion is perpendicular to

the direction of wave motion.

The  displacement  of  longitudinal  wave  involves  the  longitudinal  displacements  of  individual

molecules from their equilibrium positions. This is result in a series of high and low pressure regions.

There are three categories of longitudinal mechanical waves

1. Audible waves. These waves lie within the range of sensitivity of the human ear. This region is

between 20 Hz and 20 000 Hz.

2. Infrasonic waves are ones with frequencies below the audible range. Such a wave is earthquake

wave.

3. Ultrasonic  waves are  longitudinal  waves  with  frequencies  above  the  audible  range.  For

example,  they  can  be  generated  by  inducing  vibrations  in  quartz  crystal  with  an  applied

alternating electric field.

12.9 Velocity of sound waves

We know that a one-dimensional  sinusoidal  wave travelling along  x axis is represented by the

relation

(12.53)

where A is the amplitude of the wave, k is the wave number equals  and  is the angular

frequrncy.

The longitudinal sound wave is parallel to  x axis and represents the displacement of a volume

element from its equilibrium position.

We describe the pressure variation in a sound wave. We know that a pressure change p causes the

fractional change in volume

(12.54)

where B is the bulk modulus and p is the pressure difference from the normal pressure in the absence

of a wave. The negative sign in this equation means that the volume   decreases if the pressure

increases. 

 x

 y

A

d i r e c t i o n  o f  
w a v e
p r o p a g a t i o n

Fig.12. 11
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From the Fig.12.11 we can see that 

(12.55)

where  is the change in the volume and  is the change in the thickness of this layer as it

is compressed or expanded. Taking the limit of  gives

(12.56)

where it is used the partial derivate of y function since this function depends on the x and t.

For a sinusoidal wave the displacement, y, is given by eq.(12.53). Then we have

(12.57)

From this equation we see that the pressure varies sinusoidally as well,  but is out of phase from the

displacement by , as is shown in Fig.12.12.

The quantity kBA is called the pressure amplitude pmax. It represents the maximum and minimum

amounts by which the pressure varies from the normal  pressure.  Using this fact  we can express the

change of pressure in the form 

(12.58)

Now we shall derivate the expression for the velocity of the wave in the air. For simplicity we

consider the wave propagated in a gas within a cylindrical tube, as is shown in Fig.12.13.
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Let us denote  and  the equilibrium pressure and density in a gas. If the pressure of the gas

is disturbed, a volume element  is set in motion because the pressure p and  on one side and the

other are different. As a result, section A is displaced the amount y and section  the amount . The

thickness of the volume element after deformation is

(12.59)

The mass within the undisturbed volume element is 

(12.60)

and mass of the disturbed element is

(12.61)

From these equations we have

(12.62)

or

(12.63)

Since  is small we can use two terms of Binomial expansion and so we have 

(12.64)

or

(12.65)

The pressure is related to the gas density by the equation of state

(12.66)

or

(12.67)

From this we see that the pressure is function of density, i. e. .

Applying the Taylor`s expansion to this function and using the fact that the change in density is

small we give

(12.68)

where we used the first and second terms of Taylor`s expansion only. 
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Using the definition of bulk in form

(12.69)

we have

(12.70)

Inserting eq.(12.65) into eq.(12.70) gives

(12.71)

This expression relates the pressure at any point in the gas to the deformation at the same point. We take a

first derivate of p with respect to x and we have 

(12.72)

since the (  is independent on x).

Now we write the equation of motion for the volume element   of the gas. The mass of this

element equals

and its acceleration is given by

The gas at the left of our volume element pushes to the right with the force  and the gas at the right

pushes to the left within force . Since , therefore, the resultant force acting on this element

along positive x direction equals

or

(12.73)

where  is the infinitesimal change in pressure. Comparing eq.(12.73) with eq.(12.72) gives

or
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You can see that this equation is linear wave equation for a harmonic wave propagating through gas. If

we compare this equation with general form of linear wave equation given by eq.(12.44) we get

(12.74)

From this equation follows that the velocity of the wave is inversely proportional to the density of the gas

12.10Intensity of harmonic sound wave

The intensity, I, of sound is defined as the energy transmitted by a sound wave per unit time across

unit area.

Consider a layer of air of mass  and width  in front of piston oscillating with an angular

frequency  as is shown in Fig.12.14. The piston transmits energy to the layer of air in tube, causing the

layer of width  and mass  to oscillate with amplitude . Since the average kinetic energy

equals the average potential energy in the simple harmonic motion, the average total energy of the mass

 equals its maximum kinetic energy. Therefore

(12.75)

where is the volume of the layer and  is the displacement amplitude. Inserting these values

into definition of I we have

(12.76)

where  is the velocity of the disturbance to the right.

From this equation we see that the intensity of the harmonic sound wave is proportional to the

square of the amplitude (maximum of displacement) and to the square of the frequency. It is convenient

to use a logarithmic scale, where the sound level  is defined by the equation

(12.77)
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Fig.12. 14
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where the constant   is equal the reference intensity taken to be at the threshold of hearing equals

 and I is the intensity in W/m2 at a level  measured in decibels (dB). For example,

the threshold of pain is

(12.78)

Nearby jet plain , rock concert  and normal conversation .

12.11Doppler effect

When a car is moving the frequency of the sound you hear is higher as the car approaches you and

lower as it moves away from you.

We shall have a look at this effect in detail. We shall assume that air is at rest in our reference

system as is shown in Fig.12.15. The distance between two successive wave picks is . If the frequency

of the source is f that the time between emissions of successive wave peaks is equal to the period

(12.79)

where v is the velocity of sound wave in air.

1. In Fig.12.16 the source is moving with a velocity  toward stationary observer. In a time T

the  first  wave peak is  moved at  distance  .  In  this time the source has moved a  distance

.

The distance 

(12.80)

is the distance between two successive wave peaks. Then the change in wavelength is 

(12.81)

d = s o u r c e
a t  r e s t o b s e r v e r

Fig.12. 16
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sv
d =  /

Fig.12. 15
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From this equation we can see that  is proportional to the speed of the source. A new frequency

(12.82)

Since  then

(12.83)

This expression is valid for the source moving toward stationary observer. From this follows

 (12.84)

since the denominator is less of 1.

If the denominator will move away from observer (or receiver) the new wavelength will be

 and the change in wavelength will be

(12.85)

and new frequency

(12.86)

From this equation we can see that 

 (12.87)

due to the denominator which is greater of 1.

2. Doppler  effect  also  occurs  when  the  source  is  at  rest  and  the  observer  is  in  motion.  The

wavelength  is not changed in this case but the wave velocity with respect to observer is changed.
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Fig.12. 18

s o u r c e
f i x e d o b s e r v e rov

d T= 

v
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Let the  observer moves toward the source with a velocity   (Fig.12.16). The velocity of the

wave relative to the observer is 

(12.88)

and new frequency

(12.89)

Since  then the new frequency equals 

(12.90)

if the observer moves toward stationary source. When the observer is moving away from the source

the wave velocity relative to the observer is now

(12.91)

and

(12.92)

Example

The siren emits sound at frequency of 500 Hz. This sound wave falls on an object moving at a speed 3.4

m/s toward the stationary source. What is the frequency of the reflected wave?

Solution:

First, we must calculate the frequency of the moving object (observer). This frequency is given by eq.

(12.90) as 

Substituting the values of , frequency of the source  and speed of the sound

on air  gives

. (1)

At second we calculate the frequency  of the reflected wave. In this case the object (observer) acts like

a moving source emitting the reflected wave of the frequency  given by eq.(12.83)

(2)

192



Comparing eqs.(1), (2) gives that the reflected wave is shifted in frequency relative to the incident wave

by 5 s-1.

Remarks:

Doppler  effect  is  a  phenomenon  common  to  all  harmonic  wave.  For  example,  there  is  a  shift  in

frequencies  of  light  waves  (electromagnetic  waves)  produced  by  the  relative  motion  of  source  and

observer. Astronomers use this effect to determination the relative motion of stars, galaxies and other

celestial objects. There is known the red  (or low frequency end)  shift of the visible light of receding

galaxies toward the red end of spectrum, lending confirmation to the theory of an expanding universe.

Another example of applicability of Doppler effect is in police radar system to measure the speed

of cars.

12.12 Electromagnetic waves. Maxwell`s equations

In mechanics we found set of equations that would define completely the object or particle. These

equations are called Newton`s law of gravitation.

The Scottish physicist Maxwell showed that electric and magnetic phenomena could be described

by the help four equations involving electric and magnetic field. In electric field we introduced idea that a

magnetic field is producing by any current

(12.93)

where the second term in this equation, , called displacement current is defined as  and

. Farady`s law of induction states that 

(12.94)

Gauss` law of electricity relates the electric field to its source and electric charges in form

(12.95)

In opposite the Gauss` law of magnetism states that the lines of induction are continuous it means that

they do not begin or end. This fact is expressed in form

(12.96)

These four equations are called the Maxwell`s equations in integral form. The properties of material is

described by three equations in forms

(12.97)
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(12.98)

(12.99)

12.13 Hertz`s discoveries

Maxwell showed that the electromagnetic waves are a natural consequence of the fundamental

Maxwell`s equations. These waves were first generated and detected in 1887 by Hertz using electrical

source. His experimental apparatus is shown in Fig.12.19.

An induction coil is connected to two spherical electrodes a narrow gap between them-transmitter. The

coil provides short voltage surges to the spheres, making one positive, the other negative. A spark is

generated between the spheres when the voltage between them reaches the breakdown voltage for air. As

the air in the gap is ionized, it conducts more readily and the discharge between the spheres becomes

oscillatory.  This  is  equivalent  to  an CL curcuit,  where  the  inductance  L is  that  of  the  loop and the

capacitance  C is  due  to  the  spherical  electrodes.  Since  L and  C are  quite  small,  the  frequency  of

oscillation is very hight  100 MHz. Electromagnetic waves are radiated at this frequency as a result of

the oscillation on free charges in the loop. Hertz was able to detect these waves using a single loop of

wire with its own spark gap (receiver). This loop, placed several meters from the transmitter, has its own

effective inductance, capacitance and natural frequency of oscillation. Sparks were induced across the gap

of  the  receiving  electrodes  when  the  frequency  of  the  receiver  was  adjusted  to  match  that  of  the

transmitter. Thus, Hertz demonstrates that the oscillating current induced in receiver was produced by

electromagnetic waves radiated by the transmitter.

i n d u c t i o n  c o i l

t r a n s m i t t e r

r e c e i v e r

+

Fig.12. 19
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12.14 Plane electromagnetic waves

The properties of electromagnetic waves can be deduced from Maxwell`s equations. The following

assumptions will be made

1. We shall  assume that  the  electromagnetic  wave  is  a  plane  wave  it  means  that  it  travels  in  one

direction. If the wave propagates in the x direction, the electric field  is in y direction and magnetic

field  is in z direction as is shown in Fig12.20. Waves in which the electric and magnetic fields are

restricted to being parallel to certain lines in yz plane are said to be linearly polarized waves.

2. We assume that   and   at any point depend upon  x and  t and not  y and  z coordinates of this

point.

We shall use third and fourth Maxwell`s equations in form

(12.100)

(12.101)

In empty space ,  and therefore we have

(12.102)

Using these equations and plane wave assumption we obtain the differential equations relating  and

. From these equations follows that

(12.103)

x
z

z

y

y

E

c
B

B c

E

Fig.12. 20
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(12.104)

(see derivation of these equations on the end of chapter)

Now we take the derivate of eq.(12.103) with respect to x and combine this with eq.(12.104). We

drop the subscripts  and  and so

or

(12.105)

This equation is called the wave equation for electromagnetic wave in free space.

In the same manner taking a derivate of eq.(12.104) with respect to x and combining this with eq.

(12.103) we get

(12.106)

Eqs(12.104),(12.105) both have the form of the general equation

(12.107)

with the speed

(12.108)

Taking   and   we find the value of velocity of the

electromagnetic wave as  . Since the speed is the same as the speed of light in

empty space one is led to believe that the light is an electromagnetic wave.

Simple plane wave solution is sinusoidal wave for which the field amplitudes E and B vary with x

and t according to the expression

(12.109)

(12.110)

where ,  are the maximum values of the fields. Constant  is the wave number and

 is the angular frequency equals  . Remember that frequency f is the number of cycles per

second. The ratio
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(12.111)

If you can see this ratio equals the velocity of the light.

Remarks:

1. The solution of third and fourth equation are wavelike, where E and B satisfy the same wave equation

2. Electromagnetic waves travel through empty space with the speed of light (12.108)

3. The electric and magnetic field components are perpendicular to each other and also perpendicular to

the speed of wave propagation

4. Electromagnetic waves obey the principle of superposition

12.15 Spectrum of electromagnetic waves

Since all electromagnetic waves travel through the vacuum with a speed  c their frequency  f and

wavelength  are related by expression

(12.112)

The various types of electromagnetic waves are shown in table (Fig.12.21)
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APPENDIX

We start with Faraday`s law

We assume that the electromagnetic wave travel in the x direction with the electric field  in positive y

direction and the magnetic field  in the positive z direction.

Consider a thin rectangle lying in the xy plane as is shown in Fig12.22. Then the integral

(12.113)

We know that the magnetic flux through the rectangle of area  is approximately equals

since  is small compared with . Taking the derivate of  with respect to t gives
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(12.114)

Substituting eq.(12.113) into (12.114) gives

or

(12.115)

In similar way we can derivate the eq.(12.104).

x

z

y

E

E + Ed

d x

Fig.12. 22
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