
12. MEASUREMENT OF THE POISSON CONSTANT THE 
METHOD CLEMENT-DESORMES METHOD

ASSIGNMENT

1. Measure the ratio of  
2. Calculate the error of the measurement

THEORETICAL PART

           Substances differ from one to another in the quantity of heat needed to produce a given
rise of temperature in a given amount of the gas. The amount of heat Q required to change the
temperature of a system is found to be proportional to the mass m of the system and the 
temperature change . This can be expressed by the equation

(10.1)
where c is a quantity characteristic of the material and it is called the specific heat.  The 
values of the specific heats depend to some extend on the temperature, but for a small 
temperature changes c can be often considered constant. The specific heat depends also on the
kind of processes heating. In eq.10.1 we assumed the process was carried out at the constant 
pressure-atmospheric pressure. For such a process we usually call c the specific heat at 
constant pressure. and it is denote by the symbol cP . If the volume of the material is kept 
constant, then specific heat is called as specific heat at constant volume and it is denote by 
the symbol cV . For the solids and liquids the difference between cP  and cV is small and we can
write

(10.2)

However the difference of gases between cP  and cV  are quite different This may be 
explain in terms of the first law of thermodynamics and the kinetic theory of gases 
We introduce the molar heat capacity at constant volume as

(10.2)

and the molar heat capacity at constant pressure as

(10.3)

which are defined, as the heat required raising 1mol of the gas by 1K at constant volume and 
constant pressure.  
                We shall imagine that the gas is going from one state to another state 
quasistatistically, by which we mean that the process is carried out extremely slowly through 
a succession of infinitesimally close equilibrium states. The change in internal energy for an 
ideal gas can be expressed as

(10.4)
where  is the molar heat capacity of the gas at constant volume, n is the number of moles 
and

  is the change in the temperature between two states of a gas.
In the limit of differential changes we can use the first law of thermodynamics to express the 
molar heat capacity in the form



(10.5)

The internal energy of the monatomic gas equals

(10.6)

Inserting this equation into eq.10.5 gives the value of the molar heat capacity at constant 
volume as

                  (10.7)

where R is the universal gas constant
Now suppose that the gas is transferred to the system at constant pressure. Let the 

temperature increases by . The heat must be transferred to the gas. Its value is given by
. Since the volume increases in this process, the work done by the gas is

. Applying the first law of thermodynamics we get

or
(10.8)

 If you can see from this expression the part of the heat transferring to the system increases 
the internal energy of the system and second part is used to do external work by moving a 
piston. From this expression follows the very important relation between the molar heat 
capacity at constant pressure and constant volume as
   

(10.9)
If you can see from this expression the molar heat capacity at constant pressure is grater than 
the molar heat capacity at constant volume by an amount of the universal gas constant.
We introduce the a new physical constant 

This constant is dimensionless quantity and it is called the  Poisson constant. Its value 
depends on the number of atoms in the molecule. For an monatomic gas, for example, the 
value of this constant is

(10.10)

The values of and  are in excellent agreement with experimental values for 
monatomic gases. The internal energy and hence the molar heat of a complex gas must 
include contributions from the rotational and vibration motion of molecule. The rotational and
vibration motion of molecules with structure can be activated by collisions and therefore are 
„coupled“ to the translation motion of molecules. The statistical mechanics has shown that for
a large number of particles the available energy is, on the average, shared equally by each 
independent degree of freedom. The equipartition theorem states that at equilibrium each 

degree of freedom contributes, on the average, of energy per molecule. Then for the i  

degree of freedom we have

(10.11)

and



(10.12)

For a diatomic molecule is the situation shown in Fig.10.1

translation motion                     rotational motion                      vibration motion
of the centre of mass                    about various axis                  along the molecular axis

For this molecule we can neglect the rotation about y - axis since the moment of inertia 

and the rotational energy  about this axis are negligible compared with those 

associated with the x and z-axis. Thus there are five degrees of freedom- three degrees of 
freedom associated with the translation motion and two associated with the rotational motion. 
Then from eq. (10.11) we have

(10.13)

Therefore, the value of Poisson’s equation for diatomic molecules equals

(10.14)

If an ideal gas undergoes an adiabatic expansion or compression, the first law of 
thermodynamics together with the equation of state shows that

(10.15)
Equation 10.15 is called the Poisson equation for a adiabatic process.
Using this equation for a gas that transfers from the initial state to another final state we have

(10.16)

From this equation follows

(10.17)

The ratio of the initial and final volume may be calculated by the using the Boyle law as

(10.18)

Then the ratio of heat capacities can be wrote as

(10.19)

THE METHOD - PRACTICAL PART
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Clement and Desormes in 1819
proposed the simple method of
measurement two important constants
of gases: the molar heat capacity 
at the constant pressure and the molar
heat capacity of the gas at the
constant volume. The device for this
measurement is shown in Fig.10.2.

In a bulb B is closed a gas. The open-tube manometer measures the pressure inside the 
bulb. Then the pressure of gas (air) in bulb is equal                                                      

                                                                                         
(10.20)
where b is atmospheric pressure, is the density of the liquid, h is the difference between the
heights of the liquid .in the arms of U-manometer and g is acceleration of gravity

The method is based on the measuring the pressure P1  of the air in the bulb until 
enhanced the pressure through the stopcock K1 and the pressure of the air if the pressure in the
air in the bulb decreases after the stopcock K2  is quickly turn round. Pump the air through the 
stopcock K1 into the bulb and read the difference between the columns of the liquid in 
manometer. Quickly turn round the stopcock K2 .If the air in the bulb is in thermal equilibrium
measure the difference between the column of liquid in manometer again. 

Note the process must be adiabatic, i.e. no heat enters or leaves the system ( ). 
An adiabatic process can be achieved by the performing the process rapidly.

MEASUREMENT

Apparatus: Clement-Desormes apparatus, barometer, thermometer.

We shall measure the Poisson constant of the air. The air consists of 78% of nitrogen, 21% of 
oxygen and 1% of rare gases. All gases are diatomic ones. Therefore, the Poisson constant 
with respect to eq.10.14 has the value of 1.40.
Measure the atmospheric pressure b by the barometer. Measure the temperature t.  Measure 
the pressure of the air in the bulb by the method that is described above. Repeat these 
measurements a few times and record them into Tab.10.1.

CALCULATION

Using eq.10.20 calculate the pressure Pi  and Pf  for every measurement. Using eq.10.19 
calculate the Poisson constant  for each pair of Pi  and Pf.  Remember that the pressure Pi is 
the pressure of the air after the pumping the air into the bulb and Pf  is the pressure of the air if
the air is loose from the bulb. Calculate the percentage error of measurement as

h

B

K



  

where , .
Analyse the source of error in this experiment
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