
11. OSCILLATIONS

11.1  Oscillations of a spring. Simple harmonic motion

We have been interesting in simple harmonic motion last term. We said that any vibrating system

for which the restoring force is directly proportional to the negative of the displacement (as in oscillations

of spring, simple pendulum, physical pendulum etc.) is said to exhibit simple harmonic motion describing

by the equation

, (11.1)

where m is the mass which is oscillating and k is the constant of proportionality. This constant is called

spring constant. Rearranging this equation we obtain

. (11.2)

If we denote  then the equation gives

. (11.3)

This equation is called equation of motion for a harmonic oscillator. General solution of this second-

differential equation is

, (11.4)

where  A and  B are arbitrary constants and   is called the phase constant. We can choose this value

. The speed of the harmonic motion is by definition 

. (11.5)

Applying the initial conditions ,  at time  we have

,

where from the second equation we can see that constant B has to equal zero, . Then the motion is

a cosine curve

. (11.6)

Situation is shown in Fig.11.1.
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Since the simple harmonic oscillator repeats its motion after a time equal to its period, T, and sine

or cosine function repeats itself after  radians we have

or

,

where f is the frequency of the motion and  is called angular frequency. Since  then the

period T equals

(11.7)

and frequency

. (11.8)

From this equation we can see that the period T is independent on the amplitude. It is also clear that

the greater mass  m shifts the spring to the lower frequency. The frequency given by equation (11.8) is

called  natural  frequency.  The velocity  v and acceleration  a of  simple harmonic oscillator is  by the

definition

(11.9)

(11.10)

From these equations we can see that the speed reaches its maximum of

(11.11)
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and acceleration of the oscillator has its maximum

. (11.12)

The displacement x, velocity v and acceleration a as a function of time t are illustrated in Fig.11.2.

11.2 Energy stored in a simple harmonic oscillator

Consider the simple harmonic oscillator such a mass m oscillating on the end of massless spring.

The motion of this oscillator caused by the restoring force is in the form 

(11.13)

By the definition the potential energy of this oscillator equals

(11.14)

since the constant of integration equals zero for initial conditions ,  . The total mechanical

energy equals . Therefore 

(11.15)

(11.16)

where v is the velocity at a distance x measured from the equilibrium position. There are two important

situations:

1. For the extreme points  ,   is the velocity equals zero. Then the total energy is the

potential energy only, it means

. (11.17)

From this equation we can see that  the total mechanical energy of a simple harmonic motion is

proportional to the square of the amplitude.

t

x t( )

T

- A

A

T / 2  
t

v t( )

T

- v m a x

v m a x

3 T / 4
T / 4

t

a t( )

T

a m a x

T / 2

- a m a x

T h e  f u n c t i o n  o f  d i s p l a c e m e n t
p l o t t e d  v e r s u s  t .

T h e  f u n c t i o n  o f  v e l o c i t y
p l o t t e d  v e r s u s  t .

T h e  f u n c t i o n  o f  a c c e l e r a t i o n
p l o t t e d  v e r s u s  t .

Fig.11. 2

163



2. At a equilibrium  all energy is kinetic one

(11.18)

      where  is the maximum value of velocity during the harmonic motion.

3. For any point we can write eqs.(11.15), (11.16).

The graph of potential energy U versus x is shown in Fig.11.3.

Notes:

1. The phase constant corresponds to the choise of the zero of time.

2. If  we start  with  x positive  and  ,  the  return  force gives  an  acceleration which  induces  a

negative velocity. By the time t, x returns zero and the negative velocity is maximum. Then the return

force becomes positive. Finally the velocity is zero, but by that time the displacement is large and

negative, and the process reverses.

3. The angular frequency of oscillation  is related to physical properties of the system:  equals

the return force per unit displacement per unit mass.

4. The examples of the simple harmonic motion are simple pendulum and physical pendulum, if the

angles through they pass are small.

11.3 Damped harmonic motion

The amplitude of  any real  oscillating object  decreases  in time.  The damping is  due to  the

resistance of the air and to the friction. Fig.11.4 shows a typical curve for such an oscillating motion.
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The damping force opposes the motion and in many cases is directly proportional to the speed

, (11.19)

where b is a constant. For a mass oscillating on the end of spring the restoring force is . Using

Newton`s second law we have

(11.20)

or

(11.21)

This equation is equation of motion for damped oscillator. The solution of this equation can be written

in form 

, (11.22)

where A,   and  are assumed to be constant and at  is . To determine the constants 

and  we take the first and second derivate of equation (11.22) as 

.

If we substitute these expressions to the equation of an oscillatory motion then we obtain

(11.23)

This equation must be zero for all time.

1. We choose the time . For this time  and the relation (11.23) is reduced to 

(11.24)

2. For the time equal  is  and relation (11.23) reduces to 

 or (11.25)

Inserting this value into eq.(11.24) gives

. (11.26)

Then solution of the equation of oscillatory motion can be written as

, (11.27)

where  is given by eq.(11.26).

The frequency has the value 
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(11.28)

From this expression we can see that  the frequency is less than for an undamped simple harmonic

motion.

From this we can make the following conclusions:

1. If  , the damping is so large and the system is for a long time in the equilibrium. This

system behaves as overdamped (Fig.11.5 curve A).

2. If  the equilibrium is reached in the short time. This system is called critical damping

(Fig.11.5 curve B).

3. If    the  system  makes  several  swings  before  coming  to  rest.  This  system  is

underdamped (Fig.11.5 curve C).

11.4 Forced vibrations. Resonance

Let us suppose that an object may be vibrated at the frequency f due to the external force acting on

it. In this case the vibrations are called forced vibrations.

We shall  take an interest  in  the  important  case  when the  external  force  is  represented by  the

expression

, (11.29)

where  is an angular frequency and  is the amplitude of the applied force. Then the equation

of motion will be in form

(11.30)

or

. (11.31)

Solution of this second-order differential equation is

(11.32)
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where

(11.33)

(11.34)

If  you can see  the  amplitude  of  motion,  ,  depends  strongly  on the  difference  between  the

applied frequency and the natural frequency . The graph of  versus  for three various

values of the damping constant b is shown in Fig.11.6a.

From eq.(11.33) follows:

1. If  (see curve A) the damping is not too large. This case is known as resonance and the

natural frequency  of the system is called resonant frequency of this system.

2. If  ,  resonance occurs at   and the resonant  peak of   becomes infinity (see

Fig.11.6b)

3. For real system, b is never zero and the resonant peak is finite and it does not occur precisely at

.

4. If the damping is large, there is little or no peak (see curve C)

Notes:

Every system has  a  natural  fundamental  vibration frequency.  If  the  forces  are  exerted on that

system at the right frequency and phase, sympathetic vibrations can be excited. Oscillating forces at the

right frequency can cause sympathetic vibrations of catastrophic proportions. For example, if the forces
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applied to bridge by the wind are applied in pulses at a natural frequency of the bridge, the amplitude of

the bridge`s oscillations increases and the bridge could no larger stand the stress.

Another  example  is  vibrations  of  mechanical  machines.  These  are  often  broken  apart  if  one

vibrating part is at resonance with some other moving part.

Finally,  soldiers  marching  in  cadence  across  bridges  have  been  known  to  set  up  resonance

vibrations in the structure, causing the bridges to collapse.

11.5 Superposition of two harmonic motions

Consider  the two simple  harmonic  motions of the same directions.  We shall  assume that  both

motions have the same frequencies  ,  different  amplitudes   and different  phase

constants . Hence the first motion is described by the equation

(11.35)

and second one by 

. (11.36)

To find  the  resultant  motion  we  shall  use  the  principle  of  superposition,  which  says  that  the

displacement of the resultant motion equals to the sum of displacements of both motions. Thus,

(11.37)

Note that the terms in parenthesis are constant. If you can see from this expression the resultant motion is

also  harmonic,  with the  same frequency   but  with different  amplitude and phase.  To find these

unknown quantities we express the displacement of the resultant motion in standard form

(11.38)

where A and  represents the amplitude and phase of the resultant motion. The equations (11.37) and

(11.38) must be identical at every instant of time and so the coefficients at and  must

be the same. Hence

(11.39)

(11.40)

Dividing of these equations gives

(11.41)

To find the amplitude of the resultant motion we square equations (11.39) and (11.40) and after their

adding we have
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(11.42)

From this equation follows:

1. If  , where  then   and the amplitude of the resulting

motion reaches its maximum

(11.43)

2. If  ,  where   then   and  the  amplitude  of

resultant motion reaches its minimum

 if  (11.44)

 if  (11.45)

Example

Consider a particle which undergoes  simple harmonic motion along two perpendicular directions  x

and y describing by the equations

(1)

Determine the resultant motion for these conditions:

1. If phases are the same, it means 

2. The amplitudes are equal  and phase difference 

3. Phase difference  and .

Solution:

1. Since the phases are equal then
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The result is equation of a straight line of slope . From this follows that the resultant motion will

be straight line motion in (xy) plane as is shown in Fig.11.7.

2. , . We rewrite these equations into form

From these equations we have

which is the equation of a circle in the (xy) plane of radius A as is shown in Fig.11.8.

3. , . Inserting these expressions into eq.(1) gives

or

We shall calculate the sum of square of these equations. Hence
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which is the equation of the elipse with  major axis equals   and  minor axis equals   as is

shown in Fig.11.9. 
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