
10. MAGNETIC FIELD

The phenomenon of magnetism have been known to the Greeks around 800 B. C. They discovered

that certain stones, now called magnetit (Fe3O4) attract pieces of iron. In 1269 Pierre de Maricourt found

that the directions formed lines that encircle the sphere passing through two points diametrically opposite

to each other, which he called poles of the magnet. The experiments showed that every magnet, regardless

of its shape, has two poles, called north and south poles, which exhibits forces on each other in a manner

analogous to electric charges. That is, like poles repel each other and unlike poles attract each other.

In 1600 Wiliam Gilbert extended these experiments to a variety of materials. Using the fact that a

compass needle orients in preferred direction, the suggested that the earth itself is a large permanent

magnet.  In 1750 John Michell  used a torsion balance to show that magnetic poles exert attractive or

repulsive forces on each other and these forces vary as the inverse square of their separation. Although

the forces between two magnetic poles are similar to the forces between two electric charges, there is an

important difference.  Electric charges can be isolated (electron or proton), whereas  magnetic poles

cannot be isolated. It means, that  magnetic poles are always in pairs. No matter how many times a

permanent magnet is cut, each pieces will always have a north and south pole.

The relationship between magnetism and electricity have discovered in 1819 by Danish scientist

Hans Oersted. He found that electric current in a wire deflected a nearby compass needle. Thereafter,

Andre Ampere obtained quantitative  laws of  magnetic  force between current-carrying conductors.  In

1820,  further  connections  between  electricity  and  magnetism  have  demonstrated  by  Faraday  and

independently by Joseph Henry. They showed that an electric current could be produced near the circuit

or by changing the current in another, nearby circuit. 

10.1  Properties of magnetic field. Magnetic force

Experiments  on  the  motion  of  various  charged  particles  moving  in  magnetic  field  give  the

following results:

1. The magnetic force is proportional to the charge q and speed v of the particle.

2. The magnitude and direction of the magnetic force depend on the velocity of the particle and on the

magnitude and direction of the magnetic field.

3. When a charge particle moves in a direction parallel to magnetic field vector, the force on the charge

is zero.

4. When the velocity  vector  makes  an  angle   with magnetic  field,  the  magnetic  force acts  in  a

direction perpendicular to both  and .
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5. The magnetic force on positive charge is in the direction opposite the direction of the force and on a

negative charge moving in the same direction.

6. If the velocity vector makes an angle  with the magnetic field, the magnitude of the magnetic force

is proportional to .

These observations can be summarized in the form

, (10.1)

where the direction of the magnetic force is given by direction of  , it means that its direction is

given by right-hand rule as is shown in Fig.10.1 for a positive and negative charge.

The magnitude of the magnetic force has value 

, (10.2)

where  is the angle between  and . Furthermore, the force has its maximum value

, (10.3)

where  is perpendicular to  and minimum value

, (10.4)

if  is the same direction (or opposite direction) as . In this case a particle with velocity  moves

along the magnetic field . The SI unit of magnetic field is weber per square meter (W/m2) also called

the tesla (T). For example, conventional laboratory magnets can produce magnetic field as large 2.5 T,

supperconducting magnets can generate magnetic field as high as 25 T. The magnetic near the earth`s

surface is about .

10.2 Magnetic force on a current-carrying conductor
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Let us consider a straight segment of wire of length l and cross-sectional area A, carrying a current I

in a uniform magnetic field  as in Fig.10.2.

The magnetic force on a charge q moving with the velocity  is . To find the total force

on a wire, we multiply this force by the number of charges in the segment

,

where n is the number of charges per unit volume and lA is the volume segment. This expression can be

written in a more general form using the equation . Therefore  is expressed as

, (10.5)

where   is a vector in the direction of the current  I. The magnitude of   equals the length  l of the

segment.

Now consider an arbitrary shaped wire of a uniform cross section in external magnetic field, as is

shown in Fig.10.3. It follows from eq(10.5) that the magnetic force on a very small segment  in the

magnetic field  is given by

. (10.6)

To get a total force  on the wire, we integrate this equation over the length of the wire

, (10.7)

where a, b represent the end points of the wire. Note, this expression is valid for the steady I (I=constant).
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10.3 Biot-Savart law

Jean Babtiste Biot and Felix Savart found that a conductor carrying a steady current produces a

force on a magnet. From their experimental results, Biot and Savart were able to arrive at an expression

that gives the magnetic field at some point in space in term of current that produces the field. Biot-Savart

law says that if a wire carries a steady current, I, the magnetic field  at a point P associated with an

element  equals (see Fig.10.4)

, (10.8)

where  is a constant,  is the vector pointing from the element  to the given point. The constant

 is usually written as 

, (10.9)

where   is constant, called  permeability of free space and its value is  .

Hence the Biot-Savart law can be written

. (10.10)

To find the total magnetic field   at some point due to a conductor of finite size,  we must sum up

contributions from all current elements making up the conductor

, (10.11)

where the integral is taken over the conductor. The magnetic field  has the following properties:

1. The vector  is perpendicular both to  (which is in the direction of current) and to the vector 

directed from the element  to the point P.

2. The magnitude of  is inversely proportional to , where r is the distance from the element to the

point P.

3. The magnitude of  is directly proportional to the current I and to the length  of the element.

4. The magnitude of   is  directly proportional  to the  ,  where   is  the angle between the

vectors  and .

5. The direction of  (or unit vector ) is given by the right-hand rule.

Example

Calculate  the  magnetic field at  the point  P located at  the distance  a from the wire  carrying a

constant current I and placed along x axis, as is shown in Fig.10.5.

130



Solution:

An element is at distance r from point P. Then 

.

Substituting this expression into Biot-Savart law (eq.10.10) gives

(1)

where  is a unit vector pointing out of the paper. In order to integrate this expression, we must relate

the variable , x and r. From geometry in Fig.10.5 we obtain 

(2)

 or 

and (3)

Substituting (2) and (3) into (1) gives

.

We can now obtain the total field at point  P by integrating this equation over all elements subtanding

angles ranging from  to . Then

(4)

Consider  a special  case  of  an infinitely long,  straight  wire.  In  this  case   and  .  Since

, equation (4) becomes 
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. (10.12)

Example

Calculate the magnetic field at an axial point P at a distance x from the center of loop of wire of

radius R located in the (x, y) plane and carrying a steady current I (Fig.10.6).

Solution:

In  this  case,  any  element   is  perpendicular  to   (unit  vector  oriented  toward  a  point  P).

Furthermore, all elements around the loop are at the same distance r from point P given by

 .

Hence, the magnitude of  due to the element  is given by

.

The direction of  is perpendicular to the plane formed by  and . This vector can be resolved

into a component , along the x axis and component , which is perpendicular to x axis. When

the components perpendicular to x axis are summed over the whole loop, the result is zero. It is given by

the symmetry any element on one side of the loop. Therefore, the resultant field at P must be along x axis

and can be found by integrating the components

as 

.

Since , x and R are constants for all elements of the loop and since

we get
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, (1)

where we have used the fact that . To find the magnetic field at the center of loop, we set

 into (1) and then

. (10.13)

10.4 The  magnetic  force  between  two  parallel  conductors.  Definition  of

ampere.

We know that when the current carrying conductor is  placed in an external magnetic field the

magnetic force will  act on it.  It is easy to understand that two current-carrying conductors will  exert

magnetic forces upon each other. As we shall see, such forces can be used as the basis for defining the

ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carrying currents  and

 in the same directions, as is shown in Fig.10.7.

Wire (2),  which carries  a current  ,  set  up a magnetic field   at  the  position of  wire  (1).  The

direction of  is perpendicular to the wire. According to eq. (10.5), the magnetic force on the length l

of the wire is  . Since   is perpendicular to  ,  the magnitude of   is given by

. Since the field due to wire (2) is given by equation 

. (10.14)

We see that 

. (10.15)

We can rewrite this in terms of the force per unit length as
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. (10.16)

The direction of  is perpendicular toward wire (2), since  is oriented toward the wire (2). If

one considers the field set up at wire (2) due to wire (1), the force  on wire (2) is found to be equal to

and opposite . This is what one would be expected, because Newton`s third law of action and reaction

must be obeyed. When the currents are in opposite directions, the forces are reversed. We can say that

parallel conductors carrying currents in the same directions attract each other.  The force between

two parallel wires each carrying a current is used to definition of the ampere as follows:

If two long, parallel wires 1 m apart carry the same current and force per unit length on each wire is

,  then  the  current  is  defined  to  be  1  A.  This  numerical  value  of   is

obtained from eq. (10.16), with  and .

The SI unit of charge, the coulomb, can now be defined in terms of the ampere as follows:

If a conductor carries a steady current of 1 A, then the quantity of charge that flows through a cross

section of the conductor in 1 s is 1 C.

10.5 Ampere`s law
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A simple experiment carried out by Oersted (in 1820), demonstrate the fact that a current-carrying

conductor produces a magnetic field. This observation showed that the direction of  is consistent with

right-hand rule, as is shown in Fig.10.8.

When the wire carries a strong, steady current, the compass needles will all deflect in a direction tangent

to the circle. When there is no current in the vertical wire, all compass needles point in the same direction

given by the earth`s magnetic field.

Now let us evaluate the product   and the sum of these products  over the closed circular

path centered on the wire as

(10.17)

because the   (the vector   and   are parallel at each point, and   is the

circumference of the circle. This result is known as Ampere`s law. It says that the line integral of 

around any closed path equals  , where  I is the total steady current passing through any surface

bounded by the closed path

. (10.18)

Note that Ampere`s law is valid only for steady current.

Example

Calculate the magnetic field a long, straight wire of radius R carries a steady current I at a distance

r from the center of wire in the regions  and rR.

I = 0 I

a l l  c o m p a s s  
n e e d l e s  a r e  o r i e n t e d
t o  a  d i r e c t i o n  t a n g e n t
t o  t h e  c i r c l e  a r o u n d  
t h e  w i r e

Fig.10. 8
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Solution:

Situation is shown in Fig.10.9. In region, where  we choose a circular path of radius r centered at

the wire. From symmetry, we see that   must be constant in magnitude and parallel to   at every

point on the path. Ampere law applying to the path gives

or 

.

This result is identical to eq.(10.12). Now consider the interior of the wire, it means rR. In this case the

current  enclosed by the path is less that the total current I. Since the current is assumed to be uniform

over the cross section of the wire, we see that the fraction of the current enclosed the path of radius rR

must be equal the ratio of the area  enclosed the path rR and the cross sectional area  of the

wire. Then

 or .

Now we apply Ampere`s law to path rR.. This gives

or

 for rR.
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The magnetic field B versus r is drawn in Fig.10.10.

Note that inside the wire   as  . This result is similar to that of the electric field inside the

uniformly charge rod.

10.6 A current loop in a uniform magnetic field. Torque. Torque on a current

loop in uniform magnetic field

Consider rectangular loop carrying a current  I in the presence of a uniform magnetic field in the

plane of the loop as is shown in Fig.10.11. The forces on sides a are zero since these wires are parallel to

the magnetic field  and hence

(10.19)

for these sides. The magnitude of the forces on the sides of length b is equal

(10.20)

Since . The direction of  (the force acting on the left side of the loop)

is out of the paper and that of  (the force on the right side of the loop) is into the paper. Remember

that these directions are determined by the right-hand rule. Situation is shown in Fig.10.12.
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If you can see from this figure, the forces  and  on the sides of length b create a torque that tends

to twist the loop clockwise. The magnitude of this torque, , is given by 

, (10.21)

where the moment arm about  O equals   for each force. Since the area of the loop is  , the

torque can be expressed as

. (10.22)

Remember that this result is valid only when the field  is perpendicular to the plane of loop.

Now suppose the magnetic field makes an angle  with respect to line perpendicular to the plane

of loop, as is shown in Fig.10.13.

We shall assume that the field   is perpendicular to the sides of length  b. In this case, the magnetic

forces   and   on the sides of length  a cancel each other and produce no torque. However, the

forces  and  acting on the sides of length a form a couple and hence produce a torque about any

point, as is shown in Fig.10.14. We note that the moment arm of the force  equals the moment arm of

force  and equals . Since the forces  and  are equal in magnitude

, (10.23)

therefore the net torque about O has a magnitude given by 
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,

where  is the area of the loop.

This results shows:

1. the torque has the maximum value  , when the field is parallel to the plane of loop   the

angle 

2. the torque is zero when the field is perpendicular to the plane of loop  .

A convenient vector expression for the torque is the following cross-product relationship

, (10.24)

where  is the vector perpendicular to the plane of loop and having the magnitude equal to the area of

the loop. The sense of  is given by the right-hand rule: by rotating the fingers of the right hand in the

direction of the current in the loop, the thumb points in the direction of .

We shall defined the magnetic moment  of the loop as

. (10.25)

The SI unit of magnetic moment  is A.m2. Using this equation, the torque can be expressed as

. (10.26)

Notes:

1. This result is analogous to the torque acting on an electric dipole moment  in the presence of an

external electric field , where .

2. Although the torque was obtained for a particular orientation of   with respect to the loop, eq.

(10.26) is valid for any orientation.

3. Although the torque expression was divided for a rectangular loop, the result is valid for a loop af any

shape.

10.7 Motion of the charged particle in a magnetic field

We found that the magnetic force (given by eq.(10.1)) acting on a charged particle in a magnetic

field is always perpendicular to the velocity.

Consider the special case of a positively charged particle moving in a uniform magnetic field with

its initial velocity vector perpendicular to the field, as is shown in Fig.10.15. 
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Figure shows that the particle moves in a circle whose plane is perpendicular to the magnetic field. This is

because the magnetic force  is at right angles to  and  and has a constant value . If the

particle is deflected by the force the directions of  and  are continuously changing. Therefore the

force  is centripetal force. The sense of the rotation in this case is counter-clockwise for a positive

charge.

From Newton`s second law follows

(10.27)

or 

. (10.28)

We see, that the radius of the circle is proportional to the momentum  of the particle and is inversely

proportional to the magnetic field. The angular frequency of the rotating particle is given by eqs.(2.27-

2.30)

(10.29)

and the period

. (10.30)

These results show that the angular frequency and period of the circular motion do not depend on the

speed of particle or the radius of the orbit.

10.8 Motion of charged particle in both an electric field and the magnetic

field. Lorentz`s force

For many situations,  the charge under consideration will  be moving with a velocity   in the

presence  of  both  an  electric  field   and  a  magnetic  field  .  Therefore,  the  charge  particle  will

+

+ +

+ +

+

++++ +

+

+

++++

+

+
+

+

+
B

v

v

r

F

F

F

q

q

q

Fig.10. 15

140



experience both electric force  and a magnetic force , and so the total force on charge will

be given by 

(10.31)

This force is known as Lorentz`s force.

10.9 The magnetic field of solenoid

A solenoid is a long wire wound in the form of helix. With this configuration, one can produce a

reasonably  uniform  magnetic  field  within  a  small  volume  of  the  solenoid`s  interior  region  if  the

consecutive turns are closely spaced. The net magnetic field is the vector sum of the fields due to all the

turns.

If the turns are closely spaced and the solenoid is of finite length, the field lines are shown in

Fig.10.16.  The  field  inside  the  solenoid  is  nearly  uniform  and  strong.  An  inspection  of  this  field

distribution exterior to the solenoid shows a similarity with the field of a bar magnet. It means, one end of

the solenoid behaves like the north pole of a magnet while the opposite end behaves like the south pole.

As  the  length  of  the  solenoid  increases,  the  field  within  it  becomes  more  and  more  uniform.  One

approaches the case of an ideal solenoid when the turns are closely spaced and length is long compared

with the radius. In this case, the field outside the solenoid is weak compared with the field inside the

solenoid and the field inside is uniform over a large volume.

We can use Ampere`s law to obtain an expression for the magnetic field inside an ideal solenoid. A

longitudinal cross section of part of our ideal solenoid, as is shown in Fig.10.17, carries a current I. For an

ideal solenoid,  inside the solenoid is uniform and parallel to the axis and  outside is zero. Consider

a rectangular path of length l and width . We can apply Ampere`s law to this path as 

(10.32)
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where contribution along side (3) is clearly zero, since  in this region and contributions from sides

(2) and (4) are both zero since  is perpendicular to  along this path.

The right side of Ampere`s law involves the total current that passes through the area bound by the

path of integration. In our case, the total current through the rectangular path equals the current through

each turn multiplied by the number of turns. If  N is the number of turns in the length  l, then the total

current through the rectangle equals . Therefore, Ampere`s law applied to this path gives

(10.33)

or

, (10.34)

where  is the number of turns per unit length. This equation is valid only for points near center of

a very long solenoid. 

10.10 Lines of induction. Magnetic flux

Just as we represented the electric field by electric lines we can represent magnetic field by lines of

induction as follows:

1. The tangent to a line of induction  at any point gives the direction of  at that point.

2. The lines of induction are drawn so that the number of lines per unit cross-sectional area   is

proportional to the magnitude of .

There is, however, a great difference between lines of  which represent the electric field and lines of

induction.  The lines of induction they can never start  and they never stop.  They will  close  back on

themselves, making closed loops.
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Consider an element of area  on an arbitrary shaped surface, as is shown in Fig.10.18. If the

magnetic field at this element is , where  is the vector perpendicular to the area . Hence,

the magnetic flux  through the surface is given by 

. (10.35)

Consider the special case of a plane of area A and a uniform field , which makes an angle 

with the vector . The magnetic flux through the plane in this case is given by 

. (10.36)

If the magnetic filed lies in the plane (see Fig.10.19.a) then  and flux is zero. If the field is

perpendicular to the plane (see Fig.10.19.b), then  and the flux equal .

Since  has units of Wb/m2, or T, the unit of flux is Wb.

10.11 Gauss` law of magnetism

We found that the flux of the electric field through the close surface surrounding a net charge is

proportional to that charge (see eq.8.44). In order words, the number of electric filed lines leaving the

surface depends only on the net charge within in. This property is based on the fact that electric field lines

originate on electric lines.
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The situation is different for magnetic field lines, which are continuous and form closed loops.

Magnetic field due to currents do not begin or end at any point. The magnetic field lines of the bar magnet

is shown in Fig.10.20. Note that for any close surface, the number of line entering that surface equals the

number leaving that surface, and so  the net magnetic flux is zero. This is in contrast to the case of a

surface surrounding one charge of an electric dipole as is shown in Fig.10.21. In this case the net electric

flux is not zero. 

Gauss` law in magnetic field states that the net magnetic flux through any close surface is always

zero

. (10.37)

This statement is based on the experimental fact that isolated magnetic poles (or monopoles) have not

been detected. The only known sources of magnetic fields are magnetic dipoles-current loops, even in

magnetic materials. In facts, all magnetic effects in matter can be explain in terms of  magnetic dipole

moments associated with electrons and nuclei.

10.12 Electric and magnetic field in matter

10.12.1 Electric field in matter

The simplest way of introducing the problem of the effects of matter in electrostatic is to consider

the capacitor. Now we use the capacitor, instead of having the space between plates filled with the some

non-conducting material or dielectrics.

First of all we shall try to understand in atomic terms, what happens when we place a dielectric in

an electric field. There are two possibilities:

1. The molecules of some dielectric have the asymmetric arrangements of their atoms. For instance, the

molecule of water (H2O) has asymmetric arrangement (as is shown in Fig.10.22) of hydrogen and

oxygen atoms. There is an average positive charge on a hydrogen and negative charge on the oxygen.

Since the effective center of the negative charge and the effective center of the positive charge do not

coincide the total charge distribution of the molecule has a dipole moment  . Such a molecule is

called  a polar molecule. When materials, called polar, are placed in an external electric field, the

electric dipole moments   tend to align themselves with an external electric field as is shown in

Fig.10.23. Because the molecules are in constant thermal agitation, the degree of alignment will not

be complete but will increase as the electric field is increased or as the temperature decreases.
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2. The molecules of some gases, like oxygen, will have a symmetric pair of atoms in each molecule.

They have no inherent dipole moment because the effective center of the positive and negative charge

is the same. These molecules are called non-polar molecules.

We shall  discuss the simplest  case,  monoatomic gas,  for instant  helium. When this atom is an

electric field, the electrons are pulled one way by the field while the nucleus is pulled the other way.

There is a slight net displacement of the effective center of charge and a dipole moment is induced.

We shall now study from the macroscopic view what happens if a dielectric is placed in the electric

field. Faraday in 1837 first investigated the effect of filling the space between the plates of a parallel-plate

capacitor with a dielectric. This experiment showed that the capacitance of such a capacitor is increased

when a dielectric material is put between the plates.

Let us imagine that we have two identical capacitors in one of which we placed a dielectric. Let the

capacitance of capacitor with dielectric be C and the capacitance of the second capacitor be . Let us

place the same charge on both of them. From definition (eq.8.75)

or

. (10.38)

From this equation we have for V

. (10.39)

Let us denote . If you can see  is the dimensionless constant. Then the eq.(10.39) is in form

. (10.40)
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From this equation follows the potential difference V between two plates of capacitor with dielectric is

smaller that for a capacitor without a dielectric by a factor .

Let us go explain this fact.  We consider  a dielectric slab,  showing the random distribution of

positive and negative charges, as is shown in Fig.10.24a. An external field  separates the center of

positive charge in the slab slightly from the center of negative charge, resulting in the appearance of

surface charges as is shown in Fig10.24b. After any time no net charge exists in any volume element

located in the interior, as is shown in Fig.10.45c. The surface charges set up a field , which oppose the

external field. The positive induced surface charge must be equal in magnitude to the negative induced

surface  charge.  Note  that  in  this  process  electrons in  dielectric  are  displaced  from their  equilibrium

positions  by distances that are considerably less that an atomic diameter  (10-11 m). The resultant

field  in the dielectric is the sum of  and , that is

. (10.41)

Its direction is in the same direction as  but smaller. From this we can see that if we place a dielectric

in an electric field,  induced surface charges  appear and tend to  weaken the original  field within the

dielectric.

Let us apply Gauss` law to the parallel-plate capacitor without dielectric (see Fig.10.25)

Thus we obtain
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or 

(10.42)

If the dielectric is present (see Fig.10.26), Gauss` law gives 

(10.43)

or

, (10.44)

where  is the induced charge. It must be distinguished from q. These charges, both of which lie within

a gaussian surface, are opposite sign.  is the net charge within a gaussian surface.

We know that  for a parallel-plate capacitor we can write with respect to eq.(10.40)

(10.45)

or

. (10.46)

Inserting the value of  gives

. (10.47)

Then from eq.(10.44) we have

(10.48)

or

. (10.49)
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This expression shows that the induced surface charge  is always less in magnitude than the free

charge  and is equal to zero if no dielectric is present (it means if ).

Let us substitute eq.(10.49) into eq.(10.43). We give

(10 50)

and after rearrangement we obtain 

. (10.51)

This equation is valid generally. From this equation follows 

a) The electric flux now contains a dielectric constant 

b) The charge   contained within gaussian surface is taken to be free charge only. Induced surface

charge is taken into account by the introduction of .

Now we rewrite eq.(10.48) as

. (10.52)

The quantity in parentheses is the electric field   in the dielectric. The last term is induced surface

charge per unit area. We introduce the electric polarization  as

   (C/m2). (10.53)

Then the equation (10.48) is in form

. (10.54)

The quantity on the right side named electric displacement D, or

. (10.55)

Since  and  are vectors,  must be vector too, so we have

. (10.56)
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Fig.10.27 shows vectors ,  and  in the dielectric (upper right) and in the gap (upper left) for a

parallel late capacitor with dielectric. 

From the eq.(10.56) follows:

1. vector  is connected with the free charge only

2. vector  is connected with the polarization charge only

3. vector  is connected with all charges there are actually present

4. vector  vanishes outside the dielectric.  has the same value in the dielectric and in the gap and

 has different values in the dielectric and in the gap.

5. vectors  and  can both be expressed in the terms of  alone as

(10.57)

. (10.58)

These equations can be obtained using eqs.(10.46), (10.42) and .

          10.12.2 The magnetic moments of atom. Magnetic field in matter

We shall use a classical model of the atom in which electrons move in circular orbits about the

much more massive nucleus. In this model, an orbiting electron is viewed as a tiny current loop, and

atomic magnetic moment is associated with the orbital motion.

Consider an electron with constant speed  v in a circular orbit of radius  r about the nucleus as is

shown in Fig.10.28. Since the electron travels a distance  in a time T (the time for one revolution),

the orbital speed of the electron is . The current associated with the orbiting electron equals

, (10.59)

e , m

v

e


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where we use expressions  and . The magnetic moment associated with this current loop

is given by  (see eq.(10.25)). Therefore,

. (10.60)

Since the orbital angular momentum

(10.61)

the magnetic moment can be written as

, (10.62)

where  is the mass of an electron. Its value is . From this result we can see, that

the magnetic moment of electron is proportional to its orbital angular momentum. Note that since

the electron is negatively charged, the vectors  and  point in opposite directions. Both vectors are

perpendicular to the plane of orbit.

A fundamental  outcome of  quantum physics  is  that  the orbital  angular momentum must be

quantized as

where the integer  ,  h is called as  Planck`s constant.  Hence the smallest

nonzero value of the magnetic moment of atom is 

. (10.63)

The magnetic moments of atoms or ions are in order to 10-24 J/T.

Since all substances contain electrons, you may wonder why all are not magnetic. The main reason

is that in most substances, the magnetic moment of one electron in an atom is canceled by the moment of

another electron in the atom orbiting in the opposite direction. The net result is that the magnetic effect

produced by orbital motion of electrons is either zero or very small.

Note  that  the  nucleus  of  an  atom has  also a  magnetic  moment  associated  with  its  constituent

protons and neutrons. However, the magnetic moment of proton or neutron is small compared to the

magnetic moment of electron and can be usually neglected.

Last time we saw that if a dielectric is placed in a electric field, polarization charges will appear on

its surface. These surface charges, which find their origin in the elementary electric dipoles (permanent or

induced) that make up the dielectric, set up a field that modifies the origin field. In magnetism is similar

situation. If magnetic materials are placed in an external magnetic field, the elementary magnetic dipoles
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 will act to set up a field of their own that will modify the origin field. To describe this situation

we find it  useful  to  introduce two other  magnetic  vectors,  the  magnetization   and  the  magnetic

strength .

The magnetic state of a substance is distributed by a quantity called  the magnetization vector,

. The magnitude of this vector is defined as the magnetic moment per unit volume

. (10.64)

Consider  a  region  where  there  exists  a  magnetic  field   produced  by  the  current-carrying

conductor, such as the interior of solenoid. If we now fill that region with a magnetic substance, the total

field  in that region will be given by

, (10.65)

where  is the field produced by the magnetic substance. This contribution can be expressed in terms

of magnetization vector as

.  (10.66)

Hence the total field in the substance becomes

    (10.67)

The SI unit of both terms in this equation is T.

It is convenient to introduce another field quantity , called the magnetic field strength. This

vector quantity is defined by the relation

  (A/m) (10.68)

or

(10.69)

To better understanding these expressions, consider the region inside a solenoid with current I. If

the interior region is vacuum, then , . Since  inside a solenoid, where n

is the number of turns per unit length in its windings, then  or

. (10.70)

That is,  the magnetic field strength inside the solenoid is due to the current in their windings. If the

solenoid is filled with some substance, and the current is kept constant, then  inside the substance will

remained unchanged,  with a  magnitude  nI.  However,  the  total  field strength   changes.  From eq.
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(10.69) we see that the part of  arises from  associated with the current across the solenoid. The

second contribution to  is the term  due to the magnetization of the substance.

For  a  charge  class  of  substances,  specially  paramagnetic  and  diamagnetic  substances,  the

magnetization is proportional to  as

, (10.71)

where  is a dimensionless factor called the magnetic susceptibility.

If the substance is diamagnetic,  is negative, and  is opposite to . For example,  for

copper has value of .

It is important to note that this linear relationship does not apply to ferromagnetic substances.

If the substance is  paramagnetic,   is positive, and   is in the same direction as  . For

example,  for platinum is .

Inserting eq.(10.70) into eq.(10.71) gives

(10.72)

or

, (10.73)

where the constant  is called permeability of the substance and has the value

. (10.74)

Substances may also be classified in their permeability  compared to  as follows

paramagnetic  

diamagnetic  

ferromagnetic  . 

For ferromagnetic substances  is several thousand times larger than .

The magnetization of a ferromagnetic substance depends on the history of the substance as well as

the strength of the applied field. All ferromagnetics materials contain microscopic regions called domains

within which all magnetic moments are aligned. These domains have volumes af about 10 -12 to 10-8 cm3

and contains 1017 to 1021 atoms. In an unmagnetized sample, the domains are randomly oriented such that

the net magnetic moment is zero. When the sample is placed in an external magnetic field, the domains

tend to align with the field by rotating slightly, which result is magnetized sample. When the external

field is removed, the sample may retain a net magnetization in the direction of the original field. This

effect  is  called  magnetic  hysteresis for  a  ferromagnetic  material.  Its  shape  and size  depend on  the

properties of the electromagnetic substance and on the strength of the maximum applied field. This curve
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is  shown in Fig.10.29.  Note that  at point  b,  the field,  ,  is  not zero, although the external  field is

. This is explained by the fact that the iron is now magnetized due to the alignment of a large

numbers of domains (  ). At this point, the iron is said to have a permanent magnetization. If the

external field is reversed in direction and increased in strength by reversing the current,  the domains

reorient until the sample is again unmagnetized at point c, where . A further increase in the reverse

current causes the iron to be magnitized in the opposite direction at point d. Then the magnetization curve

follows the path def. If the current is increased sufficiently, the magnetization curve returns to point  a.

The area enclosed by the magnetization curve represents the work required to take the material

through the hysteresis cycle.

10.13  Faraday`s law of induction

We shall take an interest in electric fields that originate from changing magnetic field.

Experiments provided by Michael Faraday in England in 1831 and independently by Joseph Henry

in United States showed that an electric current could be induced in a circuit by a changing magnetic

field. As we shall see, an induced emf can be produced in many ways. For instance, an induced emf and

an induced current can be produced in a closed loop of wire when the wire moves into magnetic filed.

Let  us  describe an  experiment,  first  conducted  by Faraday that  is  shown in  Fig.10.30.  In  this

experiment when the switch in the primary circuit at the left is close, the galvanometer in the secondary

circuit at the right deflects. The emf induced in the secondary circuit is caused by the changing magnetic

field  through the  coil  in  this  circuit.  At  the  instant  the  switch  in  the  primary  circuit  is  closed,  the

galvanometer in the secondary circuit deflects in one direction and then returns to zero. When the switch

is  open,  the  galvanometer  deflects  in  the  opposite  direction  and  again  returns  to  zero.  Finally,  the

galvanometer  reads  zero  when  there  is  steady  current  in  the  primary  circuit.  As  result  of  these

observations, Faraday concluded that an electric current can be produced by the changing magnetic field.

H

B
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b
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Fig.10. 29
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This statement, known as Faraday`s law, can be written

, (10.75)

where  is the magnetic flux threading the circuit, which can be expressed as

, (10.76)

where the integral is taken over the area bounded by the circuit. We can derive the Faray`s law by the

help of the moving conductor slides along a stationary U-shape conductor as is shown in Fig.10.31. From

the previous analysis  it  is  clear  that  the  current  I  will  be  established within the  U-shape conductor.

Because of the existence of this current, the field exerts a force toward the left on the moving conductor,

and therefore an external force provided by some working agent is needed to maintain the motion. The

work done by this agent is the work done on the circulating charge.

The force exerted by the magnetic field on the moving conductor is by the definition

, (10.77)

where I is the current in the circuit, B is the external magnetic field,  is the unit vector oriented toward

left.

The force exerted by an external agent has an equal magnitude but opposite direction. So

. (10.78)

We know that  the  electromotive  force  (emf)  is  defined  as  the  ratio  of  the  work  done  on  the

circulating charge to the quantity of this charge as

, (10.79)

where .  Because that  is in the same direction as  then the work equals

. (10.80)
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Inserting eq.(10.78) into eq.(10.80) gives

(10.81)

where  and . Then we have for the work expression

. (10.82)

Therefore, the electromotive force given by eq.(10.79) equals

. (10.83)

The magnetic flux through the area  bounded by the circuit is by the definition

. (10.84)

Combining eqs. (10.83) and (10.84) gives the Faraday`s law

.

The direction of the induced emf in eq.(10.75) can be found from Lenz`s law (1804-1865), which

can be stated as follows:

The polarity of the induced emf is such that it tends to produce a current that will create a magnetic

flux to oppose the change in magnetic flux through the loop. In order to obtain a better understanding of

Lenz`s law we use the example of a bar moving to the right in presence of a uniform magnetic filed, as is

shown in Fig.10.31. As the bar moves to the right, the magnetic flux through the circuit increases with

time since the area of the loop increases. Lenz`s law says that the induced current must be in a direction

such that the flux it produces oppose the change in the external magnetic flux. Since the flux due to the

external  field is  increasing into the paper, the induced current must  produce a flux out  of  the paper.

Hence, the induced current must be counterclockwise when the bar moves to the right (use the right-hand

rule to verify this direction).

RI
v

B

Fig.10. 31
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10.14 Inductance. Self inductance

We know that currents and emf are induced in a circuit when the magnetic flux through the circuit

changes with time. From Faraday`s law the induced emf is given by the negative time rate of change of

the magnetic flux (see eq.(10.75)). The magnetic flux is defined as (10.76). From this definition we can

see that the flux is proportional to the magnetic field, which in turn is proportional to the current of the

circuit. Therefore, the self-induced emf is always proportional to the time rate of change of the current. To

determination the value of L we consider a closed loop carrying a current I as is shown in Fig.10.32. 

The area of the circuit loop is A. magnetic flux through a surface A, which is bounded by this loop is

. (10.85)

To obtain magnetic induction  in the point of the surface we can use Biot-Savart law

.

Inserting this expression into expression for magnetic flux given by eq.(10.85) gives

. (10.86)

For a steady current (I= const) this equation can be rearanged into form

(10.87)

Denoting

(10.88)
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we can rewrite eq.(10.87) as

. (10.89)

Let us now imagine a time varying current  I passes through the loop. In this case a changing magnetic

flux is produced. In this case in loop induced emf oppose the change in flux. The value of it is given by

Faraday` law as

. (10.90)

We know that . Inserting this value into equation (10.90) gives

. (10.91)

 For a closely spaced coil of N turns of fixed geometry such as solenoid, we find that 

, (10.92)

where  the  constant  of  proportionality  L,  called  the self-inductance of  the  device,  depends  on  the

geometry of the circuit and other physical quantities. From eq(10.92) the inductance of coil containing N

turns is given by 

 , (10.93)

where it is assumed that the same flux passes through each turn. The SI unit of inductance is Vs/A = H

(henry).

Example

Find the inductance of a uniformly wound solenoid with N turns and length l. Assume that l is long

compared with the radius and that the core of the solenoid is air.

Solution:

In this case, we can take the interior field to be uniform and given by eq.(10.34)

,

where n is the number of turns per unit length. The flux through each turn is given by 

,

where area A is the cross-sectional area of the solenoid. Using expression (10.93) we find that 

.
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This expression shows that  L depends on geometry and is proportional to the square of the numbers of

turns. Since , the result can be also expressed in the form

(10.94)

where  is the volume of solenoid.

10.15 Mutual inductance

Consider two closely wound coils as is shown in Fig.10.33. The current   in loop (1),which

creates magnetic field lines, some of which pass through loop (2). The corresponding flux through loop

(2) produced by loop (1) is represented by . We defined the mutual inductance  of loop (2)

with respect to loop (1) as 

(10.95)

or

. (10.96)

The mutual inductance depends on the geometry of both circuits and on their orientation with respect to

one other. As the circuit separation increases, the mutual inductance decreases because the flux linking

circuits decreases.

If the current  varies with time, the induced emf in loop (1) due to loop (2) is given by Faraday`s

law

. (10.97)

Similarly, if the current  varies with time, the induced emf in loop (1) due to loop (2) is given by

. (10.98)
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These results are similar to expression for the self-induced emf .

If the rates at which the currents change with time are equal, it means

(10.99)

then from equations (10.97), (10.98) follows

. (10.100)

Although the constant of proportionality and  appear to be different, one can show that they

equal . Then these equations become

.

The unit of mutual inductance is Henry.

10.16 Energy in a magnetic field

We found that the induced emf set up by a battery had to do work against an inductor to create a

current. Part of energy supplied by the battery goes into joule heat dissipated in the resistor, while the

remaining energy is stored in the conductor.

Consider the circuit consisting of a resistor, inductor and battery shown in Fig.10.34. The internal

resistance of battery will  be neglect.  If the switch is close at time  , the current  I will  begin to

increase and the inductor will produce an  emf that is opposed the increasing current. The inductor acts

like a battery whose polarity is opposite that of the real battery in the circuit. The back emf produced by

the inductor is given by 

. (10.101)
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Since the current is increasing,  is positive and  is negative. We can apply Kirchoff`s rule to this

circuit as

, (10.102)

or

, (10.103)

where IR is the voltage drop across conductor. If we multiply each term of this equation by the current I,

we have 

(10.104)

This equation tell us, that the rate at which energy is supplied by the battery, , equal the sum of the

rate, at which joule heat is dissipated in the resistor, , and the rate at which energy is stored in the

inductor. This is an expression of energy conservation. If we denote the energy stored in the inductor as

 at any time, then the rate  can be written

(10.105)

To find the total energy stored in the inductor we must integrate this equation

. (10.106)

We can also determine  energy density .  For simplicity, consider a solenoid whose inductance is

given by eq.(10.94). We know that the magnetic field of a solenoid is given by . Substituting

the expression for L (eq.(10.94)) and  into eq.(10.106) gives

, (10.107)

where  is the volume of the solenoid. Then the energy stored per unit volume in a magnetic field

is 

. (10.109)
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Although the eq.(10.109) was derived for the solenoid, it is valid for  any region of space in which a

magnetic field exists. The SI unit of energy density is J/m3.
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