
9. ELECTRIC CIRCUITS

We shall now consider situations involving electric charges in motion. The term electric current is

used to describe the rate of flow of charge through some region of space. To define current precisely,

suppose the charges moving perpendicular to a surface area A, as is shown in Fig.9.1. The current is the

rate at which charge flows through this surface. If  is the charge that passes through this area in a

time interval , the average current, , is defined as

. (9.1)

If the rate of charge flows varies in time, the current also varies in time and we defined the instantaneous

current, I, as the differential limit of the eq.(9.1)

. (9.2)

The SI unit of current is C/s which is called ampere. 1A of current is equivalent to 1C of charge passing

through the surface in 1s.

When charges flow through the surface (see Fig.9.1), they can be positive, negative or both. It is

conventional to choose the direction of the current to be in the direction of flow of positive charges. In a

conductor such as copper, the direction of the current will be opposite the direction of flow of electrons. If

we consider a beam of positively charge protons in accelerator,  the current is in direction of motion

protons. In some case, the current is the result of the flow of both positive and negative charges. This

occurs, for example, in electrolytes or semiconductors.

It is instructive to relate the current to the motion of the charged particles. Consider the current in a

conductor of cross-sectional area A, as is shown in Fig.9.2. The volume of an element of the conductor of

length   is  . If  n represents the number of mobile charge carriers per unit volume, then the

number of mobile charge carriers in this volume element is . Therefore, the charge  in this

element is given by
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. (9.3)

If we divide both sides of this equation by , we have

, (9.4)

where  is actually an average velocity which is called the drift velocity. To understand this velocity,

consider a conductor in which the charge carriers are free electrons. In isolated conductor, these electrons

undergo random motion similar to the motion of gas molecules. When a potential difference is applied

across the conductor, an electric field is set up in conductor, which creates an electric force on the electric

charges (electrons) and hence a current. In reality, the electrons do not simply move in slight line along

the conductor. They undergo collisions with the metal atoms, which result is complicated zigzag motion.

The energy transferred from the electrons to the metal atoms causes an increase in the vibrational energy

of  the  atoms and corresponding increase in the temperature of the conductors.  However,  despite the

collisions,  the  electrons  move  slowly  along  the  conductor  with  an  average  velocity  called  the  drift

velocity, . The field does work on the electrons that exceeds the average loss due to collisions, which

result is a net current. We see that drift velocities are much smaller that the average speed between

collisions.

Example

Find the drift velocity of a copper wire of cross-sectional area  carriers of 10 A.

The density of copper is  and atomic weight of copper .

Solution:

At first we calculate the volume V occupied by 8.95 g of copper as

.

If we now assume that the copper atom contributes one free electron to the body of material, we can

calculate the number of electrons in m3 as

Using eq.(9.4) we can determine the drift velocity as

 m/s.

We can see that the typical drift velocities are very small.
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9.1 Ohm`s law

Charges move in a conductor to produce current under the action of an electric field inside the

conductor. An electric field can exist in the conductor in this case since we are dealing with charges

motion,  a nonelectrostatic  situation.  This  is  in  contrast  with the  situation  in  which a  conductor  in

electrostatic equilibrium can have no electric field inside.

Consider a conductor of a cross-sectional area A carrying a current I.  The current density  in

the conductor is defined to be the current per unit area. Since , the current density is given by

  (A/m2) (9.5)

This expression is valid only if the current density is uniform and the surface is perpendicular to the

direction of the current. In general, the current is a vector quantity. That is

. (9.6)

A current density  and the electric field  are established in a conductor when a potential difference

is maintained across a conductor. If the potential difference is constant, the current across the conductor

will also be constant. Very often the current density in a conductor is proportional to the electric field in

the conductor given by

, (9.7)

where the constant of proportionality is called the conductivity of the conductor. This equation is called

Ohm`s law (1787-1854) and says that for many materials (including most metal) the ratio of the current

density and electric field is constant, , which is independent of the electric field producing the current.

For practical applications can be obtained another form of Ohm`s law by considering a segment of

straight wire of cross-sectional area A and length l as is shown in Fig.9.3. A potential difference 

is maintained across the wire, creating an electric field in the wire and current. 

If the field in the wire is constant (uniform field), the potential difference is related to the electric field as
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. (9.8)

Therefore, we can expressed the magnitude of current in the wire as

. (9.9)

Since , the potential difference can be written 

. (9.10)

The quantity  is called the resistance R of the conductor

  (V/A=). (9.11)

From this expression we see that resistance has SI units of volts per ampere. One volt per ampere is

defined to be one ohm ().

The inverse of the conductivity of a material is called the resistivity 

. (9.12)

Using eq.(9.11), the resistance can be expressed as

, (9.13)

where   has the unit  .m. Every ohmic materials has a characteristic resistivity that depends on the

properties of the material and on the temperature. For example, resistivity of copper is 

and iron is  .  Ohmic materials, such a copper, have a linear current-voltage relationship

over a large range of applied voltage. The slope of the I versus V curve in the linear region yields a value

for R. Nonohmic materials have a nonlinear current-voltage relationship as is shown in Fig.9.4.

The resistivity of a conductor depends of a number of factors, one of which is temperature. For

most  metals,  resistivity  increases  with  increasing  temperature  in  an  approximately  linear  fashion

according to the expression
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, (9.14)

where  is resistivity of some temperature in C,  is the resistivity at some reference temperature 

(usually taken to be 20C) and is called the temperature coefficient of resistivity. From eq.(9.14) we

see that 

 (1/C). (9.15)

Equation (9.15) is the definition of the temperature coefficient of resistivity where   is the

change of resistivity in a temperature interval  . For example, the temperature coefficient of

resistivity of copper is .

Since the resistance of a conductor is proportional to the resistivity according to equation (9.13),

the temperature variation of the resistance can be

. (9.16)

9.2 Electrical structure of matter

We know that the basic constituens of all atoms of matter are charged particles. For example, when

a metalic filement is heated, it emits electrons, just as molecules are vaporized when a liquid is heated.

This phenomenon is called thermionic emission.

Another interesting phenomenon is  the electrolysis.  Let us suppose that an electric field   is

produced  in  molten  salt  (KHF2)  or  a  salt  (NaCl)  as  is  shown in  Fig.9.5.  The  field  is  produced by

immersing in the solution two oppositely plates charged called electrodes. Then we observed that electric

charges flow so that the negative charged atoms move to positive electrode (anode) and the positive

charged particle move to the negative electrode (cathode). This phenomenon suggests that the molecules

of dissolved substance have separated (or dissociated) into two kind of charged parts, ions. For example,
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in case NaCl, Na atoms go to the cathode and therefore are positive ions, called  cations, while the Cl

atoms go to the anode and negative ions, called anions. The dissociation may be written in the form

.

Each of the two parts is thus an ion. We have indicated that all charges are multiple of a fundamental unit

charge e. Let us assume that the positive ions carry a charge  and the negative ions a charge ,

where  is  an  integer  to  be  determined later.  When the  ions  arrive  at  each  electrode,  they  become

neutralized by exchanging their charge with the charge available at the electrodes. Usually there follows a

series of chemical reactions that are of no concern to use here.

After a certain time t a number N of atoms of each kind has gone to each electrode. The total charge

Q transferred at each electrode is then in absolute value, . If we assume that m is the mass of

each molecule, the total mass M deposited at both electrodes is . Dividing the first relation by

the second, we have

. (9.17)

If  is Avogadro`s constant (the number of molecules in one mole of any substance), the mass of one

mole of the substance is 

. (9.18)

Therefore eq.(9.17) can be written

. (9.19)

The quantity  is a universal constant called the Faraday constant. It represents the charge of

one mole of ions having . Its experimental value is . From this value

and the value of e, we obtained for Avogadro`s constant  in agreement with

other calculation of this constant. Equation (9.19) has been verified experimentally, and it has been found

that  is equal to the chemical valence of the ion concerned. The fact that  is the chemical valence

suggests that two atoms, when they bind together to make a molecule, exchange the charge  , one

becoming a positive ion and other a negative ion. The electrical interaction between the two ions holds

them together.

9.3 Power 

Consider a simple curcuit consisting of a battery connected to a resistor R as is shown in Fig.9.6.

The positive terminal of the battery is at the higher potential,  while the negative terminal is at  lower

potential. 

The rate at which the average losses potential energy is going through the resistor is given by 
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, (9.20)

where we used the expression .

As the charge moves from point 1 to 2 through the resistor, it losses this electrical potential energy

as it undergoes collisions with atoms in the resistor, thereby producing thermal energy. Note that we

neglect the resistance of the interconnecting wires there is no loss in energy for path 3-4 and 1-2. When

the charge returns to point 3, it must have the same potential energy (zero-reference point of grounded) as

it had at the start.

Since the rate of which the charge losses energy equals the power P lost in the resistor, we have

. (9.21)

In  this  case  the  power  is  supplied  to  a  resistor  by  a  battery.  However,  eq.(9.21)  can  be  used  to

determination of the power transferred to any device carrying a current I and having a potential difference

between its terminals.

Using eq.(9.21) and Ohm`s law for a resistor, we can expressed the power in the form

, (9.22)

where I is in amperes, V in volts and R in ohms. The SI unit of power is the watt. The power lost as heat

in a conductor of resistance R is called joule heating.

9.4 Electromotive force

In order for a current to be maintained on a circuit, there must be device of curcuit element that is

capable of continuously converting some form of energy into electrical energy. Such a device is called a

seat  of electromotive force.  This force is  abbreviated  emf.  A source of  emf is  any device that  will

increase the potential energy of charges circulating in a curcuit.

The seat of emf, , will take a charge  that is at the point A at the negative terminal of the emf

and move it to the point B at the positive terminal. In order to this, the emf will not flow back to point A
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by way of the resistor R, waless point B is at the higher potential than point A (see Fig.9.7). If the amount

of work done is , then emf is given by 

. (9.23)

This equation is taken to be the definition for emf, . If you can see the emf, , of a source describes

the work done per unit charge. Unit of electromotive force is 1 V. In the case of battery, the energy results

from an exothermic chemical reaction that occurs in the battery. 

Consider a circuit shown in Fig.9.8. We shall assume that connecting wires have no resistance. The

positive terminal of battery is at a higher potential that the negative one. If we were to neglect the internal

resistance of the battery, the potential difference across the battery would equal to  emf of the battery.

However, because a real battery always has some internal resistance r, the terminal voltage is not equal to

the emf of the battery. Then curcuit shown in Fig.9.8 can be described by the curcuit in Fig.9.9. As the

charge passes from the negative to the positive terminal of the battery, its potential increases by . 

However, as it moves through the resistance  r, its potential decreases by an amount  Ir, where  I is the

current in the circuit. Thus, the terminal voltage of the battery  is given by

. (9.24)

From  this  expression  the  terminal  voltage  equals  ,  when  the  current  is  zero.  In  this  case   is

equivalent to the open-curcuit voltage. 
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Graphical  representation of  the changes in potential  is  in Fig.9.10.  From this  figure  we see that  the

terminal voltage  V  must be equal the potential difference across the external resistance R,  called load

resistance. That is, . Inserting this value into eq.(9.24) gives

(9.25)

or

. (9.26)

This equation shows that the current in the simple curcuit depends on both the resistance external to the

battery and the internal resistance. If  R r, we can neglect  r in eq.(9.26). In many curcuits we shall

neglect this internal resistance.

If we multiply eq(9.25) by the current I we have 

(9.27)

This  equation  says  that  the  total  power  output  of  the  source  of  emf,  ,  is  converted  into  power

dissipated as joule heat in the load resistance,  , plus power dissipated in the internal resistance,

.

9.5 Kirchhoff``s rules

The procedure for analyzing more complex curcuits is greatly simplified by the use of two simple

rules called Kirchhoff`s rules:

1. The sum of the current entering any junction must equal the sum of the currents leaving that

junction. This rule is a statement of  conservation of charge. That is, whatever current enters a given

point in a curcuit must leave that point, since charge cannot build up at a point. If we apply this rule to the

junction shown in Fig.9.11 we get

  or generally  (9.28)
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2. This rule follows from law of conservation of energy. That is: any charge moves around any

closed loop in a circuit must gain as much energy as it losses 

(9.29)

or

. (9.30)

As we can applied the second rule, the following calculational tools should be noted:

a) If a resistor traversed in the direction of the current, the change in potential across the resistor is

 (Fig.9.12)

b) If a resistor is traversed in the direction opposite the current, the change in potential across the resistor

is .

c) If a source of emf is traversed in the direction of the emf (from - to +) the change of potential is ,

as is shown in Fig.9.13.

d) If a source of emf is traversed in the direction opposite to emf (from + to -), the change in potential is

Complex networks with many loops and junctions generate large number of independent, linear

equations and a corresponding large number of unknowns. From these equations we can calculate the

unknowns by neither matrix algebra or computers programs.
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