
8. ELECTRIC FIELD

A number of simple experiments can be performed to demonstrate the existence of electric and

forces. There are two kinds of electric charges, which were given the names positive and negative by

Benjamin Franklin (1706 -1790). Electric forces between charged objects were measuring quantitatively

by Coulomb using the torsion balance. Coulomb confirmed that the electric force between two small

charged spheres is proportional to the inverse square of their separation that is ~ . From a number

of experiments was concluded that electric charge has the following properties:

1. There are two kinds of charges in nature, with the property that unlike attract one another and like

charges repel one another.

2. The force between charges varies as the inverse square of their separation.

3. Charge is conserved.

4. Charge is quantized, it means that any charge is multiple of the charge of electron.

8.1 Insulators, conductors and semiconductors

It is convenient to classify substances in terms of their ability to conduct electric charge:

1. Conductors are materials in which electric charges move quite freely (copper, silver, ...).

2. Insulators are materials that not readily transport charge (glass, rubber, ...).

3. Semiconductor are third class of materials, and their electrical properties are somewhere between

these of insulators and conductors (silicon, germanium, ...).

8.2 Coulomb`s law

In 1785 established the fundamental law of electric force between two stationary, charged particles.

Experiments show that an electric force has the following properties:

1. The force is universally proportional to the square of the separation, r, between the two particles.

2. The force is proportional to the product of the charges  and  on the particle.

3. The force is attractive if the charges are of opposite sign and repulsive if the charges have the same

sign.

From these observations we can expressed the magnitude of the electric force between the two charges as

, (8.1)
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where k is the constant called Coulomb`s constant. This constant depends on the choise of units. In SI

units it has the value . The unit of charge in SI units is the Coulomb (C). It is

defined in terms of a unit current called ampere (A). The constant k can be also written

, (8.2)

where  the  constant   is  known  as  the  permitivity  of  free  space and  has  the  value

.

The smallest unit  of charge in nature is the charge on an electron or proton and has the value

. Therefore, 1C of charge is equal to the charge of   electrons (

). This can be compared with the number of free electrons in 1cm3 of copper, which is of the order

of 1023.

We  must  remember  that  force  is  vector  quantity  and  must  be  treated  accordingly.  Note  that

Coulomb`s law applies exactly only to point charges or particles. The Coulomb`s law can be expressed in

vector form as

, (8.3)

where  is a unit vector directed from  to  as in Fig.8.1.

Since Coulomb`s law obeys Newton`s second law, the electric force on  due to  is equal in

magnitude to the force on  due to  and in opposite direction

. (8.4)

From eq.(8.3) we see that if  and  have the same sign, the product is positive and force is

repulsive. On the other hand, if   and  are opposite sign, as is in Fig.8.2,  the product   is

negative and force is attractive.
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When more than two charges are  present,  the forces between any pair  of  charges is  given by

equation (8.3) (Fig.8.3). Therefore, the sum of the force on any one of them equals the vector sum of

forces due to the various individual charges. 

This principle of superposition for four particles is given by 

. (8.5)

Example

Three charges lie along the x axis. The positive charge  is at m, and the positive

charge  is at the origin (Fig.8.4). Where must a negative charge  be placed on the x axis

such that the resultant force on it is zero?

Solution:

Since  is negative and both are positive, the forces  and  are both attractive, as

is shown in Fig.8.4. If we let x be the coordinate of , then the forces  and  have magnitudes

given by 

.

If the resultant force on  is zero, then

or

.

Solving this quadratic equation for x, we find that . The second root of quadratic equation

 is not conform to our example.
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8.3 The electric field

The gravitational field at any point was defined to be  , where   is the test mass. In

similar manner, an electric field at a point in space can be defined in terms of the electric force acting on 

the test charge  placed at that point

. (8.6)

Note that the  is the field external to the test charge - not the field produced by the test charge.

The direction of   is in direction of   since we have assumed that   acts on  the positive test

charge. When eq.(8.6) is applied, we must assume, that test charge  is small enough such that it does

not disturb the charge distribution responsible for the electric field.

Consider the Coulomb`s law we find that the electric field at the position of  due to the charge

 is given by

. (8.7)

In order to calculate the electric field due to a group of point charges, we first calculate the electric

field vectors at the point P individually using eq.(8.7) and then add them vectorially. We can say that the

total electric field due to a group of charges equals the vector sum of the electric fields of all charges

, (8.8)

where  is the distance from i-th charge, , to the test charge,  is a unit vector directed from 

toward .

Example
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An electric dipole consists of a positive charge   and a negative charge   separated by a

distance 2a. Find the electric field  due to these charges along the y axis at point P, which is a distance

y from the origin (Fig.8.5). Assume that .

Solution:

At point  P, the fields   and   due to the two charges are equal in magnitude, since point  P is

equidistant from the two equal and opposite charges as is shown in Fig.8.5. The total field by the principle

of superposition equals

,

where the magnitudes of  and  are given by

.

The  x components are equal since they are both along the  x axis. The y components of   and  

cancel each other. Therefore, lies along the x axis and has a magnitude

,

where we used

.

Using the approximation , we can neglect  in the denominator and write

. (8.9)
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We see that along the y axis the field of a dipole at distant point varies as , whereas the more

slowly varying field of a point charge goes as . The variation in E for the dipole is also obtained

for a distant point along the x axis and for a general distant point. The dipole is a good model of many

molecules, such as HCl. These molecules are permanent dipoles (HCl is an H+ ion combined with a Cl-

ion).

8.4 Electric field of a continuous charge distribution. Electric field

lines

To evaluate the electric field of a continuous charge distribution, we divide the charge distribution

into small elements each of which contains a small charge , as is shown in Fig.8.6. 

Next we use the Coulomb`s law to calculate the electric field due to one of these elements at a point

P and finally, we evaluate the total field at P due to charge distribution by summing the contribution of all

the charge elements. The electric field at P due to one element given by 

. (8.10)

The total electric field at P due to all elements in the charge distribution is given by 

, (8.11)

where  is the distance from charge element to point P and  is a unit vector directed from the charge

element toward the  P. If the separation between elements in the charge distribution is small compared

with the distance to P, the charge distribution can be approximated to be continuous. Therefore, the total

field at P in the limit  becomes

. (8.12)

If a charge Q is distributed through out a volume V, the charge per unit volume, , is defined as
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. (8.13)

If a charge Q is distributed on a surface of area A, the surface charge density, , is defined by 

. (8.14)

Finally, if a charge Q is distributed along a line of length l, the linear charge density is defined by

. (8.15)

A convenient aid for visual electric field patterns is to draw lines pointing in the same direction as

the electric field vector at any point. These lines, called electric field lines, are related to the electric field

in any region of space in the following manner:

1. The electric field vector  is the tangent to the electric field line at each point.

2. The number of lines per unit area through a surface perpendicular to the lines is proportional to the

strength of the electric field in that region.

Some representative electric field lines for a single positive point charge are shown in Fig.8.7.

3. The lines start only on positive charges and only on negative charges Fig.8.8.

8.5 Motion of charged particle in a uniform electric field

When a particle of charge q is placed in an electric field , the electric field on the charge is 

. If this is the only force exerted on the charge, then Newton`s second law applied to the charge gives

. (8.16)

The acceleration of the particle is therefore given by 

. (8.17)

We know that 

, (8.18)

then the equation (8.17) is in the form

(8.19)
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or

. (8.20)

Integrating eq. (8.20) we obtain

. (8.21)

Suppose a particle  q entering the uniform electric field   with velocity  .  The vector  

makes an angle  with the horizontal, as is shown in Fig.8.9.

We  can  write  the  initial  conditions  as  ,  ,  ,  where

.  Electric  field  is  oriented  along  the  y axis,  i.e.  it  has  the  nonzero  y

component only ( , ).

Let us write the vector  given by eq. (8.21) as the two scalar equations

. (8.22)

With respect to initial conditions we obtain 

. (8.23)

By the definition of the velocity is

 and .

Then for x component of the velocity we have

. (8.24)

Inserting the value of  from eq.(8.23) and integrating we obtain
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or

. (8.25)

Similar procedure for y component of velocity gives

. (8.26)

Eliminating t from (8.25) and inserting this value into (8.26) we obtain

, (8.27)

which is the equation of parabola. The influence of electric field on the motion of charged particle is used,

for example, in cathode-ray oscilloscope for detection of electron beam.

8.6 A dipole in an electric field

In the proceeding section 8.4 we have seen that the electric field due to the dipole (see eq.(8.9)) is

given by

,

where 2a is the distance between charges  and  of the dipole and y is the distance between the

center of the dipole and the point P lying on the axis of symmetry of the dipole, as is shown in Fig.8.10.

The product  2aq is  called  electric  dipole  moment and  is  represented by the  symbol  p.  The dipole

moment can be considered to be vector, that points from the negative to positive charge as is shown in

Fig.8.11. Then the vector form of the dipole moment is

. (8.28)

Then the equation (8.9) can be rewrite for distant points along the perpendicular bisector as

(8.29)
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Let us consider a dipole placed in uniform external field  as is shown in Fig.8.12. The dipole

moment makes an oriented angle  with the external electric field . The forces on two charges are

equal and opposite, as is shown in Fig.8.12. They have the magnitudes 

. (8.30)

We see that the net force on the dipole is zero.

However, the two forces produce a net torque on the dipole, so that the net torque about O is given

by

(8.31)

or

, (8.32)

where  is the moment of the dipole. It is convenient to express the torque in vector form as the

product of the vector  and . Then the equation (8.31) can be written in a vector notation as

. (8.33)

Thus electric dipole placed in a external electric field  experiences a torque. The effect of the torque is

to try to turn the dipole so is parallel to .

8.7 Electric flux and Gauss` law

The concept of electric field lines we described qualitatively in section 8.5. We shall now use the

concept of electric flux to put this idea on a quantitative basis. Electric flux is a measure of the number of

electric  field  lines  penetrating  some  surface.  The  number  of  lines  that  go  through  the  surface  is

proportional to the net charge within the surface.

Consider a general surface divided into a large number of small elements, each of area  as is

shown in Fig.8.13. The variation in the electric field over the element can be neglect if the element is

small. It is convenient to define a vector  whose magnitude represents the area of the i-th element

and whose direction is defined to be perpendicular to the surface. The electric flux   through this

small element is defined by
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, (8.34)

where we have used the definition of the scalar product of two vectors. By summing the contributions of

all elements, we obtain the total flux

. (8.35)

The integral is surface one, which must be evaluated over the hypothetical surface in question. In

general, the value of  depends both on the field pattern and on the specified surface. From the SI units

of E and A, we see that electric flux has the unit of Nm2/C.

We shall be interested in the flux through a closed surface, as is shown in Fig.8.14. At each point

the vectors  are normal to the surface and, by convention, always point outward. At the elements 1

and 2 is outward and  then the flux through these elements is positive . For

element such as 3, where the field lines are directed into the surface,  and the flux is negative

with . Then the net, or total, flux through the surface is proportional to the net number of field

lines leaving the volume surroundings the surface mines the number of field lines entering the

surface. Using the symbol to represent an integral over a closed surface, we can write the net flux,

, through the closed path as

. (8.36)

Now we find the relation between the net electric flux through a closed surface and the charge

enclosed by the surface. This surface is often called a gaussian surface. This relation, knows as Gauss`

law, is of fundamental importance in the study of electric fields.
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Let us consider a positive point charge q located at the center of the sphere of radius r as is shown

in Fig.8.15. From Coulomb`s law we know that the magnitude of the electric field everywhere on the

surface of the sphere is

. (8.37)

The electric lines are radial outward, and hence are perpendicular to the surface at each point. It means at

each point  is parallel to the vector . Therefore 

(8.38)

and from eq.(8.36) we find that the net flux through the gaussian surface is given by 

. (8.39)

Since E is constant over the surface and given by eq.(8.37). For a spherical gaussian surface is 

. (8.40)

Hence the net flux through the gaussian surface is 

(8.41)

Recalling that , we can write this in the form

. (8.42)

Note that this result, which is independent of r, says that the net flux through a spherical gaussian surface

is proportional to the charge inside the surface.

We  can  extend  this  equation  to  the  generalized  case  of  many  point  charges  or  a  continuous

distribution of charge. We shall make use of the superposition principle, which says that the electric field

due to many charges is the vector sum of the electric field produce by the individual charges. Consider the

system of charges shown in Fig.8.16. The surface A surround only one charge . Hence the net flux

through A is . The flux through A due to the charges outside it is zero since each electric field
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line that enters at one point leaves it at another. The surface  surrounds charges  and . Hence

the net flux through  is . Generally

. (8.43)

Gauss` law states that the net flux through any closed surface is given by

, (8.44)

where  represents the net charge inside the gaussian surface and  represents the electric field at

any point on the gaussian surface. In words,

Gauss` law states that the net electric flux through any closed gaussian surface is equal to the

net charge inside the surface divided by 0.

Example

Electric  charge   is  distributed  uniformly  throughout  a  nonconducting  sphere  of  radius  R.

Determine the electric field

a) outside the sphere (rR)

b) inside the sphere (rR).

Solution:

a) The volume density  has a constant value. Since the charge is distributed symmetrically the

electric field at all points of the sphere must be also symmetric that  is directed radially outward. The

vector  is perpendicular to the surface so that the angle between  and  is zero. Therefore
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.

Thus we have 

.

b) Inside the sphere we choose for gaussian surface a concentric sphere of radius rR. Then from

Gauss` law we have 

, (8.45)

where  is the part of charge Q which is contained within the sphere of radius r. For a uniform charge

distribution we can write

.

From these equations may be calculated the charge  inside the gaussian sphere of radius r as

.

Inserting this value into eq.(8.45) gives

.
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Magnitude of the electric field as a function of the distance r from the center of a uniformly charged non-

conducting sphere is shown in Fig.8.18.

Example

Find the electric field due to a non-conducting, infinite plane with uniform charge per unit area 

(Fig.8.19).

Solution:

It is convenient to choose for our gaussian surface a small cylinder whose axis is perpendicular to the

plane whose ends each have an area A. Using Gauss` law we give

,

where . Then 

.

Notes: 

a) because  is perpendicular to the cylindrical surface, there is no flux through this surface

b) since the distance of the surfaces from the plane does not appear we conclude that 

at any distance from the plane. It means that the field is uniform everywhere.

8.8 Electric field and conductors. Coulomb`s equation

A good electrical conductor contains electrons that are not bound to any atom and are free to move

about within material.  Where there is no net  motion of charge within conductor,  the conductor is  in

electrostatic equilibrium. A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.

2. Any excess charge on a isolated conductor must reside entirely on its surface.
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3. The electric field just outside a charge conductor is perpendicular to the conductor`s surface and has

magnitude .

We shall return to first property. The free charges would accelerate under the action of electric field.

Before  the  electric  field is  applied,  the  electrons are uniformly distributed throughout the conductor.

When the external field is applied, the free electrons accelerate to the left and of positive charge on the

right, as is shown in Fig.8.20. These charges create their own electric field, which opposes the external

field. The surface charge density increases until the magnitude of the electric field set up by these charges

equals that of external electric field, giving net field of zero inside the conductor. In a good conductor, the

time it takes the conductor to reach equilibrium is of the order . 

Note to second and third property. We can use Gauss` law to verify these properties of a conductor

in electrostatic equilibrium.

The fact that the electric field inside the conductor equals zero has one interesting consequence that

is any net charge on conductor distributes itself on the outer surface. This can be easily shown using

Gauss` law.

Consider charge conductor of a arbitrary shape,  A,  as is shown in Fig.8.21, which carries a net

charge Q. Let us choose the gaussian surface  (dashed line) inside the conductor. The electric field is

zero at all points on this gaussian surface when it is in electrostatic equilibrium. Since the electric field is

also zero at every point on the gaussian surface the net flux through surface is

. (8.46)

We can see that the net charge inside this gaussian surface must be zero too.

Now we choose the gaussian surface  , outside the conductor in equilibrium (see Fig.8.21).

Because this surface encloses the charge Q we can write the Gauss` law as 
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(8.47)

If we calculate the limit case for  we have 

(8.48)

and

. (8.49)

From these results we can see that the charge cannot be inside the conductor. It is only on the surface of

the conductor.

Gauss` law allows us to determine the magnitude of electric field E just outside the surface of any

conductor  of  arbitrary  shape  as  is  shown  in  Fig.8.22.  We  choose  the  gaussian  surface  as  a  small

cylindrical surface, , which is very small in hight with end faces parallel to the surface. Part of the

cylinder is just outside the conductor, and part is inside. There is no flux through the face on the inside of

the cylinder  since   inside the conductor.  There  is  no flux through the cylindrical  face of  the

gaussian surface since  is tangent to this surface. Hence, the net flux through the gaussian surface is

only . Applying Gauss` law to this surface gives

, (8.50)

where  is the surface charge density. Thus the magnitude of electric field at surface of conductor

we obtain

. (8.51)

This  is  very  useful  result,  which  is  valid  for  any  shape  conductor.  This  expression  is  known  as

Coulomb`s equation.

A 1
A 2

A

Fig.8. 21

+

+

+

+

+

++

d A

d A
E

E
E

E

E
E

Fig.8. 22

106



8.9 Electric potential. Equipotential surfaces

Last time we showed that the gravitational force is conservative one. Since the electric force, given

by Coulomb law, is of the same form as the universal law of gravity, it follows that electric force is also

conservative. Therefore, it is possible to define a potential energy function associated with this force.

When a charge   is placed in a electric field  , the electrostatic force on the test charge is

. This force is the vector sum of the individual forces exerted on  by the various charges

producing the field . It follows that this force is conservative one. 

Work done by it is equal

(8.52)

By the definition, the work done by a conservative force equals the negative of the change in

potential energy . Then

or

. (8.53)

For finite displacement of the test charge between points A and B, the change in potential energy is given

by 

(8.54)

The integral is performed along the path by which  moves from point A to point B and is called a path

integral or line integral. Since force  is conservative, this integral does not depend on the path

taken between A and B.

The potential difference, , between points A and B is defined as the change in potential

energy divided by the test charge 

(8.55)

or

. (8.56)

The unit of potential in SI units is J/C. We shall usually choose the potential to be zero for a point at

infinity. Which this choise, we can say that the electric potential at an arbitrary point equals  the work

required per unit charge to bring a positive test charge from infinity to that point

(8.57)
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Since potential difference is a measure of energy per unit charge, the SI unit of potential is joule per

Coulomb, defined to be equal to a unit called the volt (V); 1V=1 J/C. From this follows that the SI unit of

electric field (N/C) can also be expressed as volt per meter; 1N/C=1 V/m. Note that a unit of energy

commonly used in atomic and nuclear physics is the electron volt, which is defined as the energy that an

electron (or proton) gains when moving through the potential difference of magnitude 1V. The electron

volt (eV) is related to the joule through the definition .

The electric potential can be graphically represented in three dimensions by equipotential lines,

which are named equipotential surfaces. An equipotential surface is one on which all points are at the

same potential.  That  is,  the  potential  difference  between any two points  on  the  surface  is  zero.  An

equipotential surface must be perpendicular to the electric field at any point.

8.10 Electric potential due to point charges

Consider an isolated positive charge q as is shown in Fig.8.23. Note that such a charge produces an

electric field that is radially outward from the charge. The general expression for the potential difference

is given by 

(8.58)

We know that the electric field due to the point charge q is given by 

, (8.59)

where  is the unit vector directed from the charge to the field point. Then

. (8.60)

The dot product  , where  is the angle between  and . We

note that  is the projection of  onto , so that . Inserting eq.(8.60) gives

(8.61)

We can see that the integral is independent on the path between A and B.

If we choose the reference of potential to be zero at   then the electric potential due to a

point charge at any distance r from the charge is given by 

. (8.62)
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From this equation we see that V is constant on a spherical surface of radius r. We can conclude, that the

equipotential  surface  for  an  isolated charge  consists  of  number  of  spheres  concentric  with  the

charge, as is shown in Fig.8.23.

The electric potential of two or more point charges at point P is obtained by applying principle of

superposition

, (8.63)

where the potential is again taken to be zero at infinity and  is the distance from the point  P to the

charge .

8.11 Electric potential due to continuous charge distribution

The electric potential due to a continuous charge distribution can be calculated using eq.(8.62). We

can consider the potential due to a small charge element , treating this element as a point charge, as is

shown in Fig.8.24. Then the potential  at some point P is given by 

(8.64)

and the total potential at point P is then

. (8.65)

8.12 Obtaining E from the electric potential 

We know that the potential difference  between two points at distance  apart as

. (8.66)

If the electric field has only one component,  , then . Therefore eq.(8.66) becomes
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or

. (8.67)

That is the electric field is equal to the negative of the derivate of the potential with respect to some

coordinate. If the charge distribution has spherical symmetry, where the charge density depends only on

the radial distance r, then electric field is radial. In this case

. (8.68)

Therefore

. (8.69)

Note that the potential changes only in the radial direction, not in a direction perpendicular to r. Thus V is

a function r. This is consistent with the idea that the equipotential surfaces are perpendicular to field lines.

When a test charge is displaced by a vector  that lies within any equipotential surface then by

the definition  . From this equation we see that  the equipotential surfaces must be

always perpendicular to the electric field lines.

In general, the electric potential  is a function of all three spatial coordinates x, y, and z and

then the electric field components ,  and  can readily be found from . We shall

consider the value of potential at two near by points  and . The change

in V going from the first point to the second one is

. (8.70)

On the other hand from the definition of potential we have 

, (8.71)

where the infinitesimal vector displacement  is  and .

Using eq.(8.70), (8.71) we have

(8.72)

or

, , . (8.73)

in these expressions the derivates are called partial derivates. This means that in the operation  one

takes a derivate with respect to x while y and z are held constant. In vector notation  is written

, (8.74)
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where  is called the gradient operator (grad). The mines sign in this equation came in because the

electric field points from a region of positive potential toward a region negative, whereas vector 

is defined so that it points in the direction of increasing V.

Example

Find the electric potential, V, and electric field, , along axis of uniformly charged disk of radius

R and the charge surface density  (Fig.8.25).

Solution:

We divide the disk into a series if infinitesimal rings of radius r and width . The potential of each ring

is given by the definition

,

where x is the distance between point P and center of the disk. The area of the ring is  and

hence the charge on the ring is . To find the total potential at point P we sum over

all rings making up the disk. That is, we integrate  form  to 

.

Using the relation between V and   in form . We can find the electric field at any axial

point by taking the negative of the derivate of V with respect to x (y and z components are zero)

.

8.13 Capacitance

Consider two conductors having a potential difference  V between them. Let us assume that the

conductors  have  equal  and  opposite  charges  as  is  shown  in  Fig.8.26.  Such  a  combination  of  two

d r

r

R

P xx

r 2 + x 2

Fig.8. 25
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conductors is called capacitor. The potential difference is found to be proportional to the magnitude of

the charge Q on the capacitor. The capacitance, C, of a capacitor is defined as the ratio of the magnitude 

of the charge on either conductor to the magnitude of the potential difference between them

. (8.75)

Note that by the definition capacitance is always a positive quantity and it is measured in unit of farad

(F).  The  farad  is  a  very  large  unit  of  capacitance.  Typical  devices  have  capacitances  ranging  from

microfarads (1F=10-6F) to picofarads (1pF=10-12F).

The capacitance of a device depends on the geometrical arrangement of the conductors. Let us

consider two large conducting plates which are parallel to each other and separated by a distance d small

compared with the plate dimension, as is shown in Fig.8.27. The plates will have surface charge density

 and   respectively. The electric field   for all points on each side of the plate is given by

equation

. (8.76)

To determine the electric field  between the plates it is possible to use the principle of superposition 

, (8.77)

where   and   are  the  electric  fields  caused  by  positively  and  negatively  charged  plates,

respectively. Then we obtain

+ Q - Q
+

+
+

- -
--

-

Fig.8. 26

+ 

 
E +

E +

E + E -

E -

E -

Fig.8. 28

+ + + + + +

------

+ 

 

E
d

A

A

Fig.8. 27
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. (8.78)

Note that the electric field outside the plate equals to zero.

The plates will have different potential  and . Potential difference  is called

voltage. This potential difference can be expressed as the work per unit charge

, (8.79)

where we used the expression  . Inserting eq.(8.79) into definition of capacitance given by eq.

(8.75)we have

. (8.80)

The capacitance is constant for a given capacitor. Its value depends on the geometry of capacitor and the

relative position of the two conductors and on the material that separates them (dielectric constant).

A single isolated conductor can also be said to have a capacitance. In this case C is defined as

the ratio of the charge to absolute potential U on the conductor that is relative to  at . If

we denote , therefore, for isolated conductor we have

, (8.81)

where Q is the charge on the isolated conductor. For example, the capacitance of conducting sphere of

radius R carrying charge Q is

. (8.82)

8.14 Energy stored in a charged capacitor

Consider a parallel-plate capacitor that is initially uncharged, so that the initial potential difference

across the plates is zero. Imagine that the capacitor is connected to a battery and develops a maximum

charge Q. We assume that the capacitor is charged slowly. The final potential difference of the capacitor

is .

113



Suppose that  q is the charge on the capacitor at some instant during the charging process. At the

same instant, the potential difference across the capacitor is . The work necessary to transfer of

charge  from the plate of charge -q to the plate of charge +q (which is at higher potential) is given by

(8.83)

and the total work done in charging the capacitor from  to some final charge Q is given by

. (8.84)

But the work done in charging the capacitor can be considered as potential energy U stored in capacitor.

Using , we can express the electrostatic energy stored in charged capacitor in this form

. (8.85)

This result can be applied to any capacitor, regardless of its geometry. From this equation we can see that

the stored energy increases as C increases and as the potential difference increases.

Example

A cylindrical conductor of radius a and charge +Q is concentric with a larger cylindrical shell of

radius b and charge -Q (see Fig.8.29). Find the capacitance of this cylindrical capacitor if its length is l.

Solution:

If we assume that  l is long compared with a and b, we can neglect and effects. In this case the field is

perpendicular to the axis of the cylinder. The electric field in the region a r b can be calculated using

Gauss` law as

.

Note, that  is parallel to  everywhere on the cylindrical surface. But the area of the curved surface

is , therefore 

-
-

-
-

-
-

-
-

-

-

-
-

+

+
+

Q
Q

b

a
r

E
 d r



g a u s s i a n
s u r f a c e

Fig.8. 29
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or

, (8.86)

where . Then the potential difference between the two cylinders is by the definition (see eq.

(8.58))

. (8.87)

Inserting eq.(8.86) into eq.(8.87) gives

.

Substituting this into definition of capacitance given by the eq.(8.75), we get

. (8.88)

Remarks

1. The potential   is the magnitude of the potential difference given by  ,  a

positive quantity. That is,  is positive since the inner cylinder is at higher potential.

2. From result we see that the capacitance is proportional to the length of cylinder and also depends on

the radii of the two cylindrical conductors.
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