
RIGID BODY MECHANICS

Up to now we have been concerned with the motion of a single particle. We have assumed that our

particle is approximated an ideal particle. It means we have assumed that it under went only translation

motion.  Real  bodies,  however,  can undergo rotational  motion as well.  The mechanical  system can be

either a system of particles or an extended body. We describe the overall  motion of any  mechanical

system in terms of a special point called the center of mass.   We shall see that the mechanical system

moves as if all its mass is concentrated at the center of mass.

Center of mass

Consider a mechanical system consisting of a pair of particles of masses   and   located

along the x axis as in Fig.4.1. The x coordinate of the center of mass in this case is defined to be

 (4.1)

From this equation we can see that the center of mass lies closer to the more massive particle.

We can extend the center of mass concept to a system of n  particles lying along x axis as

Where   is  the  x  coordinate  of  the  ith  particle  and  M is  the  total  mass  of  the  system of  particle.

This result may be extending to a system of many particles in three dimensions:

(4.2)
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Where is the total mass of the system,  are coordinates of the ith particle and n is

number of particles.

The center of mass can be also located by its vector position

, (4.3)

Where  is the position vector of ith particle and M is the total mass of the system of particles.

A real body is made up of a large number of particles. The particle separation is very small and so

the body can by considered to have a continuous mass distribution (Fig.4.2). By dividing the body into

elements of mass  , with coordinates   we see that the  x- coordinate of center mass is

approximately

.

If we let the number of elements, n, approach infinity, then  will be given precisely. In this limit, we

replace the sum by an integral and replace  by differential element , so that

(4.4)

and likewise for  and 
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.

We can express the vector position of center of mass of a rigid body in the form

(4.5)

Where  is vector position of element 

Note: 1.  The  center  of  mass  of  various  homogenous,  symmetric  bodies  must  lie  on  an  axis  of

                      symmetry.

2. Since a rigid body is a continuous distribution of mass, each portion is acted upon by the

                     force of gravity. The net effect of all of these forces is equivalent to the effect of a single

                     force, , acting through a special point, called center of gravity. If a rigid body is

pivoted

                     at its center of gravity, it is balanced in any circulation.

Example

Determine the center of mass of a uniform hemisphere of radius R.

Solution:

We choose the coordinate system so that the origin is at center of the sphere and  y axis is along the axis of

symmetry, i.e. along the y axis (seeFig.4.3). Then . To find  we divide the hemisphere into

the infinite number of infinitesimal cylinders. Each of the cylinders has the elementary volume

Where x is the radius of cylinder,  is the height of cylinder. From Pythagora`s theorem we have

       or
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 .

Inserting this expression into equation for determination of  gives

.

By definition of y coordinate of the center of mass we have

Where   is the density of the hemisphere. Remember the density for a homogeneous body is

defined by the expression . Therefore, the total mass M of hemisphere is equal to the density 

times the total volume V . It means

.

Inserting this value into  gives

.

Motion of a system of particles

Centre of mass and translation motion

We examine the motion of a system  n particles of total mass  M. From definition of the position

vector of the center of mass we have (see eq.(4.3))

.

Now we differentiate this equation with respect to time and we give

                                                                                                 (4.6)

or

                                                                                                       (4.7) 

Where  is the velocity of ith particle of mass ,  is the velocity of the center of

mass.

We take the derivative of the expression 4.7 with respect to time again
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                                                                                                        (4.8)     

Where   is  the acceleration of the  ith  particle  and the acceleration of the  center  of  mass is

 By the Newton`s second law the force acting on the particle of mass mi  equals

Using this expression we can rewrite eq.4.8 into form

                                                                      (4.9).

 this equation says that  the vector sum all external forces acting on the system is equal to the total

mass of the system times the acceleration of its centre of mass . This equation concludes that the centre

of mass a system of particles or body of total mass  M moves like a single particle of mass  M, on

which acts the same net force.

Linear momentum and impulse. Law of conservation of linear momentum

There is another physical quantity describing the motion of a particle of mass m moving with the

velocity v. This quantity is called the linear momentum. The linear momentum of a particle of mass m

moving with velocity  is defined to be the product of its mass and its velocity:

                                                                                                                   (4.10)      .

The  linear  momentum  is  vector  quantity  and  its  direction  is  along  .In  the  SI  system,  the  linear

momentum has the unit kgms-1.

Using eq.4.10 we can rewrite the Newton’s second law of motion as follows

or

                                                                                                                        (4.11)             

The equation 4.11 is the more general form of the Newton’s second law than eq(3.2) because it

includes the situation in which the mass of the particle can be changed. The eq.(4.11) may be written as

                                                                                                                      (4.12)

We can integrate this equation to find the change in the momentum of a particle. If the momentum

of the particle changes from  at time  to  at time , then integrating eq.(4.12) gives
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.

The  quantity  on  the  right  side  of  equation  is  called  impulse  of  the  force  for  the  time  interval

. Impulse is a vector defined by

. (4.13)

The unit of impulse is N.s.

This statement, known as the impulse-momentum theorem, is equivalent to Newton`s second law.

The theorem says that the impulse of force equals the change in momentum . From the definition, we

see that the impulse is a vector quantity having a magnitude equal to the area under the force- time curve

(Fig.4.4 a).

Since the force can generally vary in time (as is shown in Fig.4.4 a), it is convenient to defined a

time-average force , given by (see Fig.4.4 b)

.

Therefore, we can express eq. (4.13) as

(4.14)

This  average force can be thought  of  as  the  constant  force in  the  time interval  .  Remember  the

equation is applied to a single particle.

Let us now consider a system of n particles of total mass . Let us assume

the  particles  have  linear  momentum  ,  ,  ...,  ,  where

 are the velocities of the particles of the masses m1, m2, …
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The total momentum  of our system is given as the sum of the moment of the particles of the

system

. (4.15)

Comparing this equation with eq. (4.7) leads to

. (4.16)

So, we may say, the total linear momentum of a system of particles is equals to the product of the

total mass M and the velocity of the center of mass of the system . If we differentiate eq. (4.16) with

respect to time, we obtained (if M=constant)

or

, (4.17)

Where  is the net external force on the system. This equation is Newton`s second law of motion for a

system of particles.

If the net external force acting on a system is zero, then we have

. (4.18)

from this equation follows that constant, i.e. the linear momentum is independent on the time.

The equation (4.18) is called the law of conservation of linear momentum. It stays that, when the net

external force on a system is zero, the total linear momentum remains constant. 

A system on which no external force is acting on it is called the isolated system.

Collisions in one dimension

The collision process may be the result of the physical contact between two objects. We shall use

the term collision to represent the event of two particles coming together for a short time, producing

impulsive forces on each other.  The impulsive force due to the collision is assumed too much large

than any external forces present. These collisions are divided into two group elastic and inelastic, one.

We shall  take an interest  in  collisions in one dimension.  These collisions  are always called  head-on

collisions.
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When the two particles of masses  and  (Fig. 4.5) collide the impulse forces may vary in

time in a complicated way. If  is the force on  due to , and we assume no external forces act

on the particles, then the change in momentum of  due to the collision is given by

.

Likewise, when  is the force acting on  due to . The change in momentum of  is given

by

.

However, Newton`s third law states

and we conclude that 

      or      

Since  the  total  momentum of  the  system is  ,  we  conclude  that  the  change  in  the

momentum of the system of particles due to the collision is zero, that is

constant                                                                                      (4.19)

That is precisely what we expect if there are no external forces acting on the system. However, the

result is also valid if we consider the motion just before and just after the collision. Since the impulsive

forces due to the collision are internal, they do not affect the total momentum of the system. Therefore, we

conclude that for any type of collision, the total momentum of the system just before the collision

equals the total momentum of the system just after collision.

We have seen that  the total  momentum is always conserved in a collision.  However,  the total

kinetic energy is generally not conserved when a collision occurs because some of the kinetic energy is

converted into thermal energy and internal elastic potential energy when the bodies are deformed during

the collision.

We define the inelastic collision as a collision in which momentum is conserved but kinetic energy

is not. 
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Properties of inelastic and elastic collision:

1. An inelastic collision is one in which momentum is conserved, but kinetic energy not 

2. A perfectly inelastic collision between two objects is an inelastic collision in which the two

objects stick together after the collision, so their final velocities are the same.

3. An  elastic  collision  is  one  in  which  both  momentum  and  kinetic  energy  is  conserved.

Rotation motion of a rigid body about a fixed axis.

We shall take an interest in rotational motion of rigid by rotational bodies. By  a rigid body we

mean a body that has a definite shape it means that does not deform under application of external forces.

That is, all parts of a rigid body remain at a fixed separation with respect to each other when subjected to

external forces.  By rotational motion about a fixed axis  we mean that all points in the body move in

circle and that the centers of these circles lie on a line called axis of rotation.

Kinetics of rotational motion.

Consider a planar rigid body of arbitrary shape confined to the xy plane and rotating about a fixed

axis through O perpendicular to the plane. A particle on the body at point P is at fixed distance r from the

origin and rotates in a circle of radius r about O (Fig.4.6). 

It is convenient to represent the position of the point  P with its polar coordinate  . In this

representation, the only coordinate that changes in time is the angle  ,  r   remains constant.  As the

particle moves along the circle from the positive x axis to the point P, it moves through an arc length l,

which is related to the angular position  through the relation

 

The angle  is the ratio of an arc length and the radius of the circle, and hence is a pure number.

However, we commonly refer to the unit of  as a radian (rad). One rad is the angle subtended by an arc

length equal to the radius of the arc. (To convert an angle in degrees to an angle in radians, we can use the
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expression ).

As the particle travels from one point to another in the time , the radius vector sweeps out an angle

,  which  equals  the  angular  displacement.  The  average  angular  velocity  of  the  moving

particles is by the definition

and the instantaneous angular velocity equals

If the instantaneous angular velocity of a particle changes from  to  in the time interval , the

particle has an average angular acceleration given by

Therefore, the instantaneous angular acceleration is given by 

.

 For rotation about a fixed axis every particle on the rigid body has the same angular velocity and

the same angular acceleration. These quantities are relate to the velocity and acceleration (see eqs.(2.27,

2.28, 2.29) as

(4.20)

Where r is the perpendicular distance between any point and the axis of rotation  It is clear, that 

are different for particles at different distances r from the axis of rotation.

The frequency of rotation f is related to the angular velocity as

.

Rotational kinetic energy. Moment of inertia.
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Let us consider a rigid body as a collection of small particles and let us assume that the body rotates

about the fixed axis with the angular velocity . Each particle has some kinetic energy, determined by

its mass and velocity. If the mass of ith particle is mi  and its speed is vi  the kinetic energy of this particle

is

(4.21)

To proceed further, we must recall that every particle in a rigid body has the same angular velocity ,

the individual linear velocity depends on the distance  from the axis of rotation according to expression

.

The total kinetic energy of the rotating rigid body is the sum of the kinetic energies of the individual

particles

, (4.22)

Where we have factored  from the sum. 

The quantity in parentheses is called the moment of inertia

(4.23)

Using this notation, we can express the kinetic energy of the system of particles as

(4.24)

Dimension of the moment of inertia is kgm2. It plays the role of mass in all rotational equations.

Now we can use the definition (4.23) for the body, which is divided into volume elements . If

we take the limits of this sum as  then

. (4.25)

Generally, the volume density of the body is defined as
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Rearrangement of this equation gives 

.

Therefore, the moment of inertia can be expressed in the form

. (4.26)

If the body is homogeneous i.e.  the expression for determination the moment of inertia can

by rewrite into form

. (4.27)

 The eq.4.27 defines the moment of inertia of a solid body about the fixed axis of rotation. Note that r

is the distance of the element  from the axis of rotation.

Example

A uniform solid cylinder has a radius  R, mass  M and length  l. Calculate the moment of inertia of the

cylinder rotating about its axis of the symmetry (Fig.4.8).

Solution:

It is convenient to divide the cylinder into cylindrical shells of radius r, thickness  and length l. In this

case, cylindrical shells are chosen because one wants all mass elements dm to have a single value for r. 

The volume of each shell is

Where   is  its  cross-sectional  area  of  the  shell

Using the definition of the volume density we can express the mass element of the cylinder in form

.

Substituting this into equation for the moment of inertia I, we get 
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If you can see the moment of inertia of a uniform solid cylinder depends of its mass M  and radius R ,

only.

Parallel-axis theorem.

Suppose a body rotates in the x, y plane about an axis through O and the coordinates of the center of

mass are . The moment of inertia about the z axis through O is

,

Where  is the distance of the element  from z axis.

We can relate the coordinates x,  y to the coordinates of the center of mass . From the

Fig. 4.9. follows

.

Therefore, the moment of inertia of the body about the axis through O is given by

The first term on the right is, by the definition, the moment of inertia about an axis parallel to the z axis.

The  second  two  terms  on  the  right  are  zero,  since  by  the  definition  of  the  center  of  mass

 (  and  are the coordinates of the mass element relative to center of mass).

The last term on the right equals , where .

Therefore, the moment of inertia equals

(4.28)
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This equation is called parallel-axis theorem. It states that the moment of inertia about any axis that

is parallel to and a distance d away from the axis that passes through the center of mass is given by

eq.(4.28).

Example

Consider a uniform rigid rod of mass M and length l (see Fig.4.10). Find the moment of inertia of the rod

about an axis perpendicular to the rod passes

a) Through the center of mass

b) Through the end of the rod.

Solution:

a) By the definition of the moment of inertia is

Where , A is the cross-sectional area of the rod, x is the distance between mass element 

and

            the axis of rotation.

b) We shall use the parallel axis theorem to calculation of the moment of inertia of the rod about an

axis perpendicular to the rod passes through the its end

or

Where  is the distance between two parallel axes.

Torque.

When a force is exerted on a rigid body pivoted about some axis, the body will tend to rotate about

that axis. The tendency of a body to rotate a body about some axis is measured by a quantity called

torque. Consider a force  acting on a rigid body at the vector position  as is shown in Fig.4.11. The

torque is defined as 
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(4.29)

The magnitude of the torque due to the force relative to the origin O is , where  is the angle

between  and . .The axis about which the body would tend to produce rotation is perpendicular to

the plane formed by  and .Because the direction of the torque is given by the right-hand rule the

torque tends to rotate the body counterclockwise. The quantity  is called the arm of the force

 and represents the perpendicular distance from the rotation axis to the line of action of . 

The torque is vector quantity and its unit is N.m in SI units . If there are two or more forces acting on

the rigid body, then each has the tendency to produce a rotation about the pivot O (Fig.4.12). We shall use

the convention that  the sign of the resulting torque of the force is  positive if its  turning tendency is

counterclockwise and negative if its turning tendency is clockwise. Hence, the net torque acting on the

rigid body about O is

(4.30)

The rotating tendency increases as   increases and  d increases as follows from the definition of the

torque.

If we have a system of particles (which could be the particles making up the rigid body) the total

torque is the sum of the torque on the individual particles as

(4.31)

Where  is the position vector of the ith particle,  is the net force on the ith particle.
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Torque and rotational inertia.

Let  us  consider  a  particle  of  mass  m rotating  in  a  circle  of  radius  r under  the  influence  of  a

tangential force , as is shown Fig.4.13.

The torque which gives rise to its angular acceleration  is

(4.32)

or

,

Since the angle between vectors   and   is   and  . If we use the relation between

tangential and angular acceleration in form , we can write the Newton’s second law of motion for

our particle as

Therefore, the torque is now given by

. (4.33)

This equation represents a relation between torque and angular acceleration for a single particle.

The quantity  represents the moment of inertia for this particle.

Now we consider a rotating rigid body. We can write the torque on  ith particle of the body as

          , (4.34)

Where  and  are the mass of the ith particle and its distance from the axis of rotation, respectively

and  is the angular acceleration which is the same for all particles.

Then the net (total) torque on the body equals

(4.35)

Where n is the number of particles.

m

r

Ft

Fig.4. 13

52



 Where  is moment of inertia of the system of particles. Therefore, we can rewrite eq.4.35 into

form 

. (4.36)

We can evaluate this equation for an extended body by imagine that the body is divided into volume

element, each of mass  as is shown in Fig.4.14. Each element rotates in a circle about the origin and

has a tangential acceleration  produced by external tangential force . 

From Newton`s second law follows that the tangential force acting on this element is  .

Therefore, the torque  associated with the force  equals

.

Since the tangential acceleration is  the elementary torque on the mass element is

.

It is recognizing that although each point of rigid body may have a different , all mass elements have

the same angular acceleration, . The above equation can be integrating to obtain the net torque of the

external forces about O:

. (4.37)

Since the moment of the inertia of the body about the rotation axis through O is defined as 

,

then eq.(4.37) becomes 

. (4.38)

We see again that the net torque about the axis of rotation is proportional to the angular acceleration

of the body with the proportionality factor being I. This equation is valid for the rotation of a rigid

body about a fixed axis.
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We see that the moment of inertia of a body plays the same role for rotational motion that mass

does for translation motion. Equations (4.36), (4.38) are rotational analogy of the Newton`s second law

for translational motion.

Angular momentum and its conservation

The instantaneous angular momentum  of the particle relative to the origin O is defined as 

(4.39)

The unit of angular momentum is kg.m2/s. It is important to note that the magnitude and direction of

angular momentum depends on the origin choose. The direction of  (Fig.4.15) is perpendicular to the

plane formed by  and  and it since is given by the right-hand rule. 

We shall now show that Newton`s second law implies that the resultant torque acting on the particle

equals the time rate of change of its angular momentum. The torque is defined as

(4.40)

where we use the Newton’s second law in general form (see eq.4.11).

Let us differentiate equation (4.40) with respect to time

(4.41)

The last term on the right equals zero, since  is parallel to , i.e. the angle between  and 

is zero. Therefore 

. (4.42)

This result can be extended for a system of particles about some point. Let us consider

. (4.43)

Then the net external torque on the system equals
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. (4.44)

That is, the time rate of change of the total angular momentum of the system about some origin in a

inertial frame equals the net external torque acting on the system about the origin.

Conservation of angular momentum

If the resultant external torque acting on the system is zero then 

Using eq.4.44 we have

                                                                                                                                     (4.45)

The angular momentum  is independent on the time. as follows from this expression.

For a system of particles we write

.

This equation says that if the system is isolated, that is, not subjected to any external torques, its angular

momentum will remain unchanged. This law is called law of conservation of the angular momentum.

The conditions for equilibrium

In general, an object will be in rotational equilibrium only if its angular acceleration . Since y

 for rotation about a fixed axis, a necessary condition of equilibrium for an object is that the net

torque about any origin must be zero. 

We now have two necessary conditions for equilibrium of an object, which can be stated as follows:

1. The resultant external force must equal zero

. (4.46)

2. The resultant external torque must be zero about any origin

. (4.47)

The first condition is a statement of a translation equilibrium that is the linear acceleration of the

center of mass of the object must be zero when viewed from an inertial reference system. The

second condition is a statement of  rotational equilibrium, that is, the angular acceleration about
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any axis must be zero. In the special case of static equilibrium, which is the main subject of this

case, the object is at rest so that it is no linear or angular velocity.

Example

A uniform ladder of length  l and weight  W=50N rests against a smooth, vertical wall (Fig.4.16). If the

coefficient of static friction between the ladder and ground is , find the minimum angle 

such that the ladder will not slip.

Solution:

All the external forces acting on the ladder are showed on the free-body diagram. From the first condition

for equilibrium applied to the ladder, we have

Where  is force of friction.

To find the value of , we must find the second condition for equilibrium. When the torques are taken

about the origin O at the bottom of the ladder we get

This expression gives

It is interesting to note that the result does not depend on the length and the weight of the ladder.

Simple harmonic motion

If the force varies in time, the velocity and acceleration of the body will also change with time. A

very special kind of motion occurs when the force on the body is proportional to the displacement of the
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body from equilibrium. If the force always acts toward the equilibrium position of the body, a respective

back-and-forth motion will result about this position. The motion is called periodic or oscillatory motion.

Such a motion is the motion of a pendulum, the motion of the molecules in a solid about their equilibrium

position etc. Special case of the motion is simple harmonic motion in which an object oscillates between

two positions for an indefinite period of time, with no loss in mechanical energy. In real mechanical

systems, retarding (frictional) forces are always prevented. Such forces reduce the mechanical energy of

the system and the oscillations are said to be damped. If an external driving force is applied such the

energy balanced by the energy input, we call the motion a forced oscillation.

At this time we shall take interest in simple harmonic motion in which a particle moves along the x

axis. This displacement varies in time according to relationship

(4.48)

Where  A,  and   are constant of motion.  A is called the  amplitude of motion, it is the maximum

displacement of the particle in either the positive or negative x direction,  is called angular frequency

and   is  called  the  phase  constant.  In  order  to  give  physical  significance  to  these  constants  it  is

convenient to plot x as function of t, as is shown in Fig. 4.17. 

The constants  and A tell us what the displacement was at time . The quantity  is

called the phase of the motion and is useful in comparing the motion of two systems of particles. Note

that the function x is periodic and repeats itself when  increases by  radians.

The period, T, is the time to go the particle through one full cycles of its motion. That is, the value

of  x at time  t equals the value of  x at time  . We can show that period of the motion is given by

 by using the fact that the phase increases by  radians in time T :

.

Hence .

The  inverse  of  the  period  is  called  frequency of  the  motion,  f.  The  frequency represents  the

number of oscillations the particle makes per unit time
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.

The unit is sec-1 and it is called Herz (Hz).

Rearranging this equation gives

.

The constant  has a unit of rad/s.

We can obtain the velocity of a particle undergoing simple harmonic motion by differentiating

equation (4.48) with respect to time

(4.49)

The acceleration of the oscillating particles defined as the first derivative of the velocity of this particle,

that is

(4.50)

Since  we can rewrite this equation into form 

or

(4.51)

From eq.(4.49) we see that the sine and cosine function oscillate between . The extreme values

of  v are equal  .  Similar,  eq(4.50) tell  us that  the extreme values of acceleration are  .

Therefore, the maximum values of the velocity and acceleration are given by

(4.51)

(4.53)

We conclude this by pointing out the following important properties of a particle moving in simple

harmonic motion:

1. The displacement, velocity and acceleration vary sinusoidally with time but are not in phase.

2. The acceleration of the particle is proportional to the displacement, but in opposite direction.

3. The  frequency  and  period  of  motion  are  independent  on  the  amplitude.

          Now we shall apply these results in the special kind of the periodic motions, on the motion of the

simple and physical pendulum, respectively. 
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The simple pendulum

The simple pendulum is the mechanical system that exhibits periodic motion. It consists of a point

mass m suspended by a light string of length l, where the upper end of the string is fixed (Fig.4.18). The

forces acting on the mass are the tension, , acting along the string and weight of the mass . If we

displace the point mass from equilibrium position about the angle   then the torque about pivot  O is

equal ( ). Note that the component of weight   is balanced by the tension of the

string. Using the equation of motion for rotational motion:

(4.54)

We get

(4.55)

Where the moment of inertia of the point mass is I  and the value is  .   is the angular

acceleration.  The mines sign in this equation means that the tangential component, always act to

equilibrium  position.  Inserting  the  value  of  I into  equation  (4.55)  and  the  rearrangement  of  this

expression gives

(4.56)

If we assume that angle  is small, then the approximation  is valid and the equation reduces

to the form 

(4.57)

This equation is similar to the equation of simple harmonic motion given by eq.(4.51)
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Fig.4. 18
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(4.58)

From eq.4.58 we conclude that the motion of simple pendulum is simple harmonic motion. Therefore,

the solution of this equation can be written as

(4.59)

Where   is  the  maximum angular  displacement,   is  the  angular  frequency and  is  the  phase

constant. Comparing eqs.(4.57) and (4.58) gives the value of the angular frequency in form 

. (4.60)

The period of motion of the simple pendulum is by the definition

(4.61)

or       

From this expression we see that the period and the frequency of a simple pendulum depend only on the

length l of the string and the acceleration of gravity g.

The physical pendulum

Physical  pendulum consists  of  any rigid body suspended from a  fixed axis  that  does  not  pass

through the body`s  center  of  mass.  The system will  oscillate  when is  displaced from its  equilibrium

position.

Let us consider a rigid body pivoted at a point  O that a distance  d from the center of mass as is

shown  in  Fig.4.19.  The  torque  about   O is  provided  by  the  force  of  gravity,  and  its  magnitude  is

. 

Using equation of motion (4.36), where I  is the moment of inertia about the axis through O , we get 

C M

m g

O

d s in 

d

axis  o f ro ta tion

Fig.4. 19
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. (4.62)

The mines sign on the left side indicates that the torque about O tends to decrease . If we again assume

that  is small (up to 5), then the approximation  is valid and the equation of motion reduces

to 

. (4.63)

We note that this equation is of the same form as eq.(4.51) for simple harmonic motion. So, the motion is

simple harmonic motion. That is, the solution of this equation is

, (4.64)

Where  is the maximum angular displacement and is the angular frequency given by

. (4.65)

The period, T, of its motion equals

. (4.66)

One can use this result to measure the moment of inertia of a planar rigid body. If the location of the

centre  of  mass,  and  hence  of  d ,  are  known,  the  moment  of  inertia  can  be  obtained  through  the

measurement of the period. Finally, note that this equation reduces to the period of a simple pendulum

when . That is the case when all the mass is concentrated at the center of mass.

Example

        The physical pendulum in the form of a uniform rod of mass M=1kg and length l=1m is pivoted

about one end and oscillates in a vertical plane (see Fig.4.20). Find the period  T of oscillations if the

amplitude of the motion is very small.

Solution:

A rigid rod oscillating about the pivot through one end is physical pendulum with .
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 The moment of inertia of the rod about an axis through its end is (see example

on the page 48)

.

Substituting these quantities into eq.(4.63) gives

.

If you can see from this result, the period T depends only on the length of the rod and the acceleration of

gravity. This result can be used to measurement of the acceleration of gravity:

                 

Rolling motion

In the previous chapter we learned how to tread the rotation of a rigid body about a fixed axis. Now

we shall take an interest in more general case, where  the axis of rotation is not fixed in space. The

general motion of a rigid body in space is very complex. However, we can simplify matter by the motion

of a rigid body having a high degree of symmetry, such as cylinder or sphere. We shall assume that the

body undergoes rolling motion in a plane.

Consider uniform cylinder of radius R rolling on rough, horizontal surface as is shown in Fig.4.21.

The center of mass moves in a straight line, while the point on the rim moves in a more complicated path,
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which corresponds to the path of a cycloid. We shall see this motion is a combination of rotation about the

center of mass and the translation of the center of mass.

Consider a uniform cylinder of radius R  rolling on the rough, horizontal surface. As the cylinder

rotates through an angle , its center of mass moves a distance . Therefore, the velocity of the

center of mass for pure rolling motion is given by the definition as 

(4.67)

and the acceleration of the center of mass

. (4.68)

Note that the linear velocity of any point is in a direction perpendicular to the line from that point to the

contact point. A general point on the cylinder, such as A, has both horizontal and vertical components of

velocity. However, contact point P  and the point P’ and the point at the center of mass are unique and of

special  interest.  Relative to surface on which cylinder is  moving,  the center  of  mass moves with the

velocity 

(4.69)

whereas the contact point has zero velocity. The upper point  has a velocity equal 

(4.70)

Since all points on the cylinder have the same angular velocity.

We can express the total kinetic energy of the rolling cylinder as 

(4.71)

Where   is the moment of inertia about the axis through  P. Applying parallel-axis theorem, we can

substitute

into eq.(4.71) to get

or

, (4.72)

Where  is  used  eq.(4.69).  From  this  equation  follows  that  the  total  kinetic  energy  of  an  object

undergoing rolling motion is the sum of rotational kinetic energy about the center of mass and the

translational kinetic energy of the center of mass.
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