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ABSTRACT 

This paper considers a symmetric positive definite inverse vibration problem for linear vibrating 
systems described by a vector differential equation with constant coefficient matrices and 
nonproportional damping. The inverse  problem of interest here is that of determining real 
symmetric and positive definite coefficient matrices assumed to represent the mass normalized 
velocity and position coefficient matrices. The approach presented here extends the previous 
results to include noncommuting (or commuting) coefficient matrices which preserve eigenvalues, 
eigenvectors, and definiteness.  
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INTRODUCTION 

Here we consider linear lumped parameter systems which can be modeled by a vector differential 
equation in the second order form given by 

                                                   ( ) ( ) ( ) 0=++ tqKtqDtqM &&&                                                    (1.1) 
where ( )tq is an n vector of time-varying elements representing the displacement of the masses in 
a lumped mass model of some structure or device. The vectors ( )tq&  and ( )tq&&  represent the 
velocities and acceleration, respectively. The coefficients DM ,  and K are matrices of constant 
real elements representing the various physical parameters of mass, damping and stiffness. The 
matrices DM ,  and K could in general be asymmetric, however, here we are concerned with the 
symmetric case and the case in which M is a positive definite. Since M  is positive definite and 
symmetric, and it has a matrix square root, with a symmetric, positive definite inverse denoted by 

2/1−M . Let us then consider the transformation ( ) ( )tuMtq 2/1−= . Substitution of this change of 
coordinates into Eq. (1.1) yields 

                                                 ( ) ( ) ( ) 0~~
=++ tuKtuDtu &&&                                                  (1.2) 

where 2/12/1~ −−= KMMK and 2/12/1~ −−= DMMD are necessarily symmetric. The matrices D~  and 
K~  referred to here as the mass normalized damping and stiffness matrices. The eigenvalue 
problem of the system described by (1.2) is defined by 

                                                ( ) 0~~2 =++ xKDI λλ                                                         (1.3) 

x is a nonzero vector of constants, called the eigenvector, and λ  is a scalar, called the eigenvalue. 
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From the spectral theory of matrix polynomials it is well known that the solutions of the system 
(1.2) are intimately connected with the algebraic properties of the matrix polynomials (Gohberg et 
al., 1982) of the form 
                                               ( ) KDIL ~~2 ++= λλλ                                                        (1.4) 

Here a scalarλ  and a nonzero vector x  are again called an eigenvalue and associated (right) 
eigenvector of ( )λL  if ( ) 0λLdet =  and ( ) 0=xL λ , respectively. This forms an obvious 
connection between (1.3) and (1.4). 

Previously, inverse spectral problems in vibration of lumped systems have been solved by 
Lancaster and Maroulas (1987), and Starek and Inman (1991, 1992, 1995 and 1997). The results 
presented here build on those of Lancaster and Maroulas (1987) and those of Starek and Inman 
(1992 and 1997). Lancaster and Maroulas have solved the inverse problem in vibration by means 
of the spectral theory of matrix polynomials. They defined Jordan pairs that determine a self-
adjoint matrix polynomial. Starek and Inman (1992) have solved the inverse spectral problems in 
the state-space form. They have defined the conditions for given spectral and modal data under 
which the inverse formulas determine real symmetric coefficient matrices K~  and D~ , but their 
state space solution requires that the given eigenvalues must all be complex valued and does not 
preserve given eigenvectors. 
The goal of this paper is to derive conditions under which spectral and modal data determine real 
symmetric positive definite coefficient matrices D~  and K~ , which do not necessarily compute. 
Symmetric systems are of particular interest in the eigenstructure assignment method of control, in 
the model updating problem of structural dynamics, and in fault detection problems for machine 
and structure diagnostics. Such inverse methods have been used in determining the condition of 
the bonding of the protective tiles to the space shuttle. 
 

NON-NEGATIVE MATRIX POLYNOMIAL CONDITION-SOLUTION 1 

A matrix polynomial is said to be non-negative (or positive) if for every R∈λ  and 
xLxCx n )(, * λ∈ ≥ 0 (or > 0). From the theory of matrix polynomials it is well known that since 

D~  and K~ are Hermitian, ( )λL is a self-adjoint matrix polynomial and thus can be decomposed 
into a product of two linear factors, i.e., there are nn× complex valued matrices Z  and T , such 
that ( ) ( )( )ZITIL −−= λλλ . The eigenvalues of Z and of T  make up the eigenvalues of ( )λL . 
The eigenvectors of Z are also eigenvector ( )λL . The first of the above-mentioned result gives the 
relation between the eigenvectors of T  and ( )λL  as follows 

Theorem 1 (Lancaster and Maroulas).  

Let ( ) ( )( )ZITIL −−= λλλ , and assume that the set of eigenvalues of matrices T and Z make up 

disjoint parts of the spectrum of ( )λL , and let 1−= ZZZ XJXZ where ZJ  is the Jordan normal form 
of the matrix Z . Let [ ]YXV Z ,= and [ ]TZ JJdiag ,=Λ  be a Jordan pair for ( )λL . Then there is 

a nonsingular matrix TX such that 1−= TTT XJXT where 

                                         YZJYX TT −=                                                                  (2.1)  
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In theorem 1 we may set ( ) ∗∗−== ZZZ XJXZT 1  and it is easily seen that ( ) PXX ZT
∗−= 1 . 

Substituting 1−= ZZZ XJXZ we get the following result (Lancaster and Maroulas (1987)). 

Theorem 2.  
Let ( ) ( )( )ZIZIL −−= ∗ λλλ . The set of eigenvalues of matrices ∗Z and Z make up disjoint parts of 

the spectrum of ( )λL , and 1−= ZZZ XJXZ , where ZJ is a Jordan normal form. Let Ŷ be the 
unique solution of 

                                         ( ) 1−∗∗ =− ZZZZ XXYJJY
))

                                                   (2.2) 

The goal here is to derive the conditions under which spectral and modal data determine real 
symmetric positive definite coefficient matrices D~  and K~ of Eq.(1.2) for the case where all 
eigenvalues are complex. Then there is a Jordan matrix Λ  such that (the case when all 
eigenvalues are complex)                            

                                                  [ ] [ ]ZZTZ JJdiagJJdiag ,, ==Λ                                              (2.3) 

Where ZJ  is the matrix with all its eigenvalues in the upper half of the complex plane. The modal 
matrix V  is partitioned in a compatible way as (2.3), i.e 

                                                      [ ] [ ]ZZZ XXYXV ,, ==                                                        (2.4)  

To this end substitute UXY Z=  into YPXY Z
1ˆ −=  and then substitute Ŷ  into (2.2). After some 

manipulation this results in 
                                                           ( ) .IUXZZX ZZ =−∗                                                          (2.5) 
The question remains of how to choose eigenvalues and eigenvectors of a matrix Z such that (2.5) 
will be valid. The procedure for determining real symmetric matrices D~  and K~  is summarized as 
follows (using MATLAB, but other software could be used here): 
a)  Select the required eigenvalues of the system  (they are give by the matrix ZJ ). 
b)  Choose the orthonormal matrix C . 
c) Use the MATLAB code =X lyap ( )FE, for computing the matrix X which must be a positive 

definite matrix. 
d) Use the MATLAB code =ZrX chol ( )X  which produces an upper triangular ZrX  so that 

.Zr
T
Zr XXX =  

e)   Determine the coefficient matrices and either by inverse formulas (Starek and Inman (1992) ) 
                                                     [ ] 12~~ −Λ=−− XVDK                                                      (2.6) 
here the modal matrix V and the spectral matrix Λ  are given by the Eq.(2.3) and (2.4). ) and the 

                                                                     ⎥
⎦

⎤
⎢
⎣

⎡
Λ

=
V
V

X                                                              (2.7) 

or from the formulas that follow from the definition of a nonnegative matrix polynomial 
( ) ( )( )ZIZIL −−= ∗ λλλ  which is given by the Theorem 2, i.e., 

                                                                      ∗−−= ZZD~                                                           (2.8) 
                                                                      ZZK ∗=

~                                                                (2.9) 
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NON-NEGATIVE MATRIX POLYNOMIAL CONDITION-SOLUTION 2 

From an examination of the above procedure it follows that the proposed solution designs 
a system, which has the desired eigenvalues. The disadvantage is that the solution is limited to 
choices such orthogonal matrices  C , that the solution of Lyapun equation will give symmetric 
and positive definite matrix r

T
r XXX = . So, the goal of the next part of the paper is to give 

a better solution. 

Theorem 3.  
A Jordan pair (X, J) corresponds to a self-adjoint monic matrix polynomial if, and only if, there is 
a )(JAT I∈ (That denotes the subalgebra of invertible matrices that commutes with J) and 
a canonical matrix CP  such that 

                                   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

− I

XTTP

XJ

XJ
X

C

n

.
0
0

)(
.

**

1

                                                                 (3.1)  

with T= I and n=2  Eq.(3.1) takes the form 
                                           0=++ T

CCC
T
RRR

T
CCC VPVVPVVPV                                       (3.2) 

                                      0=++ T
CCCC

T
RRRR

T
CCCC VPJVVPJVVPJV                                 (3.3) 

To simplify the conditions (3.2) and (3.3) let the imaginary part of the modal matrix be presented 
as the product CVV ri = , where the n n×  matrix C is real valued and nonsingular. We remind the 
reader that CrC XiCIVV =+= )(  and the vibrating system is underdamped (real parts of modal 
and spectral data don’t exist). Substituting that value into conditions (3.2) and (3.3)  we yield 
                                                                       02 =T

rr EVV                                                           (3.4) 

                                                         IFVV T
rr =2                                                            (3.5) 

where I is the identity matrix and E and F are defined by 
                                                                    T

CC CCPPE −=                                                       (3.6) 

                                              T
Cr

T
CiCiCr CPCJCPJPCJPJF −−−=                                        (3.7) 

Note that Eq. (3.6) will be  satisfied if   E=0. This means, that the matrix C must be orthonormal.    
Upon futher examinations F must be symmetric. If iJ  is chosen to be in the lower part of the  
complex plane, then the matrix F is seen to be positive definite. Consider a product of matrices 
resulting in matrix L defined by 
                                                                    T

rr FVVL 2=                                                             (3.8) 
Upon examination we can see that matrix L is symmetric and positive definite and so it has 
Cholesky decomposition i.e. there exists a nonsingular matrix T such that TTL T= . Hence Eq. 
(3.8) becomes 
                                                                  T

rr
T FVVTT 2=                                                          (3.9) 

Premultiplying this expression by 1)( −TT and postmultiplyig by 1)( −T   yields 

                                                      ITVFVT T
rr

T =−− 11 )()(2                                                    (3.10) 
A comparison of Eqs. (3.10) and (3.5) yields that if rV  is chosen to be 

                                                               r
T

rr VTV 1)( −=                                                            (3.11) 
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then rrV  is a matrix of  real parts of eigenvectors such that the choice of D~  and K~ given by Eqs. 
(2.8) and (2.9) will be symmetric and positive definite. 
 

EXAMPLE 

Consider the design of both proportional and a nonproportional symmetric positive definite inverse 
problem with two degrees of freedom. Let the system have the following eigenvalues 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

i
i

JZ 310
01

 

Choose the orthogonal matrix C  to be   ⎥
⎦

⎤
⎢
⎣

⎡ −
=

8944.4472.
4472.8944.

C  ,     ⎥
⎦

⎤
⎢
⎣

⎡
=

75.0
09.

dC .       

and note that ICCT = as it should . Then compute 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

3663.58944.
8944.7887.1

F                ⎥
⎦

⎤
⎢
⎣

⎡
=

0625.40
061.1

dF  

     ⎥
⎦

⎤
⎢
⎣

⎡
=

8997.69472.
9472.3947.3

L                 ⎥
⎦

⎤
⎢
⎣

⎡
=

5286.41501.1
1501.19894.3

dL  

For computing correction matrices we use Eq. (3.9) and Cholesky decompositon. We yield 
 

    ⎥
⎦

⎤
⎢
⎣

⎡
=

5759.20
5141.8425.1

T                  ⎥
⎦

⎤
⎢
⎣

⎡
=

0487.20
5758.9973.1

dT  

so that ZX  becomes 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.3183i + 0.2271   0.1288i - 0.2575- 
0.0183i - 0.2238   0.5370i + 0.4885 

ZX  

 The matrix 1−= ZZZ XJXZ  becomes 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

2.8401i - 0.6021-  0.7377i - 0.1160- 
0.7378i - 0.7902-  1.1599i - 1.3979-  

Z  

so 

                                                                                      
9.59730.0i - 4.1255

0.0i + 4.1255  0.0i + 3.8573
 ~

⎥
⎦

⎤
⎢
⎣

⎡
== ∗ZZK  

 

⎥
⎦

⎤
⎢
⎣

⎡
=−−= ∗

1.20420.0 + 0.9062 
0.0i + 0.9062 2.7958~ ZZD  

Thus, if the set desired eigenvalues are chosen to be complex with negative real parts, and the 
eigenvectors are complex valued the inverse algorithm presented here will produce symmetric and 
positive definite mass normalized damping and stiffness matrices. 
 

Note regarding the choice of eigenvectors 

If conditions (3.4) and (3.5) are fulfilled, then the chosen eigenvectors must be in the subspace 
spanned by the columns of Z. This subspace is of dimension n which is equal to the rank (Z). If we 
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choose an eigenvector which lies precisely in the subspace spanned by columns of Z, in that case 
the proposed method will preserve both eigenvalues and eigenvectors (the matrix L=I, Eq.3.8). In 
general, however, a desired IL ≠ eigenvector will not reside in the prescribed subspace and 
hence the matrix. In that case the eigenvectors will not be preserved. 

For the case of  IL ≠  it is possible to find a choice for an achievable eigenvector. This best 
possible eigenvector is the projection of the desired eigenvector onto the subspace spanned by the 
columns of  Z.  

CONCLUSIONS 

This manuscript presents a solution to the inverse vibration problem for the case where the desired 
coefficient matrices are symmetric, and the resulting system contains the desired or specified 
eigenvalues and eigenvectors. This is an improvement over symmetric inverse problem solutions 
which do not preserve the eigenvectors. This is useful for vibrating systems where it is known in 
advance that the system described by the equations of motion should be symmetric. Furthermore, 
if the real part of the eigenvalues are all negative, the resulting inverse solution produces positive 
definite matrices. In this paper the condition (2.5) for given spectral and modal properties is 
defined. When this condition is fulfilled then inverse formula (2.6) or alternately Eqs. (2.8) and 
(2.9) determine real symmetric matrices for linear lumped parameter nonconservative systems. 
The synthesized system must be of simple structure (i.e., diagonal spectral matrix) and each mode 
of the system is underdamped. The system identified by this inverse vibration problem will have 
proportional damping if the eigenvectors are chosen to all be real. In general, however, 
nonproportional damping results. 
The weak point of the proposed method is clearly the choice of the orthogonal matrix C in step b . 
This choice is somewhat arbitrary and little guidance is provided by the theory. The numerical 
methods work well for any size of problem, except that as the order becomes larger the choice of 
C  becomes more illusive. Our approach is to choose a simple form of C , such as the identity 
matrix, keeping in mind that diagonal C  will produce a proportionally damped system. Likewise, 
a nondiagonal C  will produce a nonproportionally damped system with complex mode shapes. 
A sparse matrix is used in the example simply because it is the first level of complexity past 
a diagonal matrix. The nature of the matrix C , and precise methods for constructing C form the 
topics of future research. 
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