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ABSTRACT 

This paper presents a diagnostic method of a hydrostatic drive. The diagnostic method is applied 
to a rotational hydrostatic drive. The basis of the method used is the design of a mathematical 
model of the dynamic behaviour of the hydrostatic drive in C-code, and adapted in 
MATLAB/Simulink® as S-functions. After completing the simulation model, real states of the 
system can be simulated. To have an accurate and verified model, the torque and volumetric losses 
have been determined by comparing the simulation model behaviour with real system output. This 
procedure is repeated with real system outputs from the other measurements using different 
conditions of the drive’s wear. There have been discrepancies between previous simulation data 
and real system behaviour, when handling the same input values. To achieve the best accuracy of 
the model, torque and volumetric losses have to be changed. These changes of losses relate to the 
amount of wear of a component.  
The values of volumetric losses at monitored time intervals are inputs into the training process of 
the artificial neural network. These neural networks are able to make prognoses without defining 
the mathematical function between input variables. The values of volumetric losses over time, the 
number of failures per year and the operating life recommended by the producer were used to 
train the 2D neural networks. The outputs from the 2D neural networks were used as inputs to the 
3D neural network. The networks predict the trend of the volumetric losses. 
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INTRODUCTION 

This paper presents a diagnostic method for a hydrostatic drive, and the mathematical model of 
dynamic behaviour of that hydrostatic drive. Results from the model were compared with output 
parameters from real hydraulic systems. Models of volumetric and torque losses were fitted to the 
values of losses acquired through measurement. Some output parameters of the mathematical 
model and outputs from artificial neural networks are presented in this paper. Figure 1 shows the 
block diagram of the hydrostatic drive with inputs, outputs and the flow of signals.  
 

 
 

Fig. 1 Block diagram of hydrostatic drive with the flow of signals. 
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MATHEMATICAL MODEL OF COMMUTATOR MOTOR 

The rotary mechanical system is defined by the torque equation: 
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where ME – represents the driving torque of the electric motor, 
 MG – represents the torque of the hydraulic generator, 
 nG – represents the speed of the hydraulic generator, 
 IE – represents the moment of inertia of the electric motor. 

 
The torque of commutator motor ME was calculated as a function of speed nG and control 
parameter R based on approximation: 
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where R represents the control parameter of the electric motor. 
The coefficients E1 - E9 were calculated from measured data with least squares method. 

MATHEMATICAL MODEL OF PUMP 

The generator is defined by flow equation and moment equation. The flow equation of the 
generator: 
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where αG  represents the control parameter ( displacement ratio ), 

 V0G  represents the geometrical volume of the hydraulic generator, 
 CG represents the hydraulic capacity of the hydraulic generator, 
 pG   represents the pressure drop of the hydraulic generator, 
 QLG  represents the volumetric losses of the hydraulic generator. 
 

Assuming a fixed bond between electric motor and generator MG = ME.  Then torque MG was given 
by: 
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where IG represents the moment of inertia of the hydraulic generator, 

 MLG represents the hydraulic-mechanical losses of the generator. 
 

The data on efficiency obtained by measurements was transformed into the behaviour of volumetric 
losses and hydraulic-mechanical losses. After some simplification, the volumetric losses 

( )GGGLG pnfQ α,,=  and hydraulic-mechanical losses of the generator 
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( )GGGLG pnfM α,,=  were calculated as a function of speed nG, pressure drop pG and control 

parameter αG based on approximation. 

MATHEMATICAL MODEL OF HYDRAULIC LINES 

The mathematical model of hydraulic lines was defined by flow and pressure equations: 

. G
M G P

dp
Q Q C

dt
= − ,       (5) 

 
where QM represents the flow of the hydraulic motor, 
 QG represents the flow of the hydraulic generator, 
 CP represents the hydraulic capacity of the hydraulic lines. 
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where RP represents the resistance against motion of liquid, 
 HP represents the resistance against acceleration of liquid, 
 pM represents the pressure drop of the hydraulic motor, 
 pG represents the pressure drop of the hydraulic generator. 

MATHEMATICAL MODEL OF HYDRAULIC MOTOR 

The basic equations for the motor were torque equations and flow equations. The equation of flow 
for a motor: 
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where nG  represents the speed of the hydraulic motor, 
 pM represents the pressure drop of the hydraulic motor, 
 V0M represents the geometrical volume of the hydraulic motor, 
 QLM represents the volumetric losses of the hydraulic motor, 
 CM represents the hydraulic capacity of the hydraulic motor. 
 
The output moment of the motor was calculated as a function of speed nM, geometrical volume 
V0M, moment of inertia IM and hydraulic-mechanical losses MLM :  
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where IM represents the moment of inertia of the hydraulic motor, 
 MLM represents the hydraulic-mechanical losses of the hydraulic motor. 

After some simplification the volumetric and hydraulic-mechanical losses of the motor were 
calculated as a function of speed nM and pressure drop pM based on approximation. 
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 MATHEMATICAL MODEL OF DYNAMOMETER 

The dynamometer was used as the ballast of the hydrostatic drive. The torque of the dynamometer 
had a constant value. The dynamometer was defined by this differential equation: 
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π= ⋅ ⋅ ⋅ ,       (9) 

 
where MD  represents the torque of the dynamometer, 
 IM represents the moment of inertia of the dynamometer. 

  

ASSEMBLY OF FINAL MATHEMATICAL MODEL OF HYDROSTATIC DRIVE´S 
DYNAMIC BEHAVIOUR 

A reduction in the number of differential equations was needed in the process of assembly. The 
simplification did not cause a reduction in the exactitude of the model. The previous number of 
differential equations was ten but after reduction became five. 

EQUATIONS OF HYDROSTATIC DRIVE´S FINAL SIMULATION 

After some mathematical operations the equations for the final simulation model of the hydrostatic 
drive were deduced. After modification for the generator we get:  
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where NG represents the constants. 
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where PG represents the constants. 
 
For the motor we get:  
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where QM represents the constants. 

 

1 2 3 4M
M M M

dp
PM Q PM n PM p PM

dt
= ⋅ + ⋅ + ⋅ + ,   (13) 

 
where  PM represents the constants. 
 

The final equation for the torque of the generator MG was deduced from the moment equation of the 
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generator (4) and the moment equation of the commutator motor (1). After mathematical 
modification: 
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SIMULATION 

The mathematical models were created in C-code and adapted for Matlab-Simulink as S-functions.  
The numerical simulation was realised by equations of states. Equations of states were transformed 
from linearized differential equations. Figure 2 shows the model built in Matlab-Simulink and 
Figure 3 shows the mask of the model built in Matlab-Simulink.    

 

 
 

Fig. 2 Model built in Matlab-Simulink. 
 

Fig. 3 Mask of the model built in Matlab-
Simulink. 

 
 
 

  
Fig. 4 Comparison of simulated and 

measured revolution of pump. 
Fig. 5 Comparison of simulated and measured 

pressure of pump. 



SCIENTIFIC PROCEEDINGS 2009, Faculty of Mechanical Engineering, STU in Bratislava 

  
Fig. 6 Comparison of simulated and 

measured torque of pump. 

Fig. 7 Volumetric losses of pump for separate 
different wears of the hydrostatic drive in the first 

operating point. 
 

The output signals of the simulation model were compared with measured values. Possible errors 
in accuracy between simulations and measured values, reflected changes in the system behaviour 
during operation.  The changes in properties were quantified using the component’s model 
parameters block, where the parameters of the volumetric and torque losses were defined. Figure 4 
shows the time behaviour of revolution, Figure 5, the time behaviour of pressure and Figure 6 the 
time behaviour of torque.  

PROGNOSIS 

Comparing the output signals of the simulation model and measured values produced a set of data 
which characterized the wear of the hydrostatic drive. This data showed the values of volumetric 
and torque losses. Figure 7 shows the volumetric losses of the pump for different wear conditions 
of the hydrostatic drive in the first operating point, and Figure 8 in the second operating point. 
These values at monitored time periods were the inputs into the training process of the artificial 
neural network. The goal of this project is to create a forecasting method able to make an accurate 
estimation of the future trend in degradation.  

MULTILAYERED PRECEPTRON USED FOR PROGNOSIS 

The role of the artificial neural network is to find the relationship between the vector of volumetric 
losses over time, the number of failures per year and the operating life recommended by the 
producer. In the training phase the Levenberg–Marquardt algorithm was used because this 
algorithm is able to obtain lower squared errors. Demuth and Beale consider that the Levenberg – 
Marquardt algorithm is an algorithm with the fastest convergence. The collected data is used to 
train the network with the aim of producing future values of the volumetric losses. The first step of 
prediction was the comparing of the measured values and the outputs from the simulation for four 
separate different instances of wear of the hydrostatic drive at two different operating points. Then 
the values of the volumetric losses over time, the quantity of failures per year and the operating 
life recommended by the producer were used to train the 2D neural networks. Figure 9 shows 
prediction of volumetric losses in the first operating point and Figure 10 shows prediction of 
volumetric losses at the second operating point.  The outputs from the 2D neural networks were 
used as inputs to the 3D neural network. The networks predict the trend of the volumetric losses. 
Figures 9 and 10 display the 2D outputs from double layered neural networks with two neurons in 
the hidden layer and one in the outer layer. Figure 11 depicts the outer of the three layers 
multilayered feed forward neural network with two and two neurons in the hidden layers and one 
neuron in the outer layer. 
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CONCLUSIONS 
The hydrostatic drive’s simulation model is a diagnostic element. There are differences between 
outputs and real system behaviour, for the same inputs. To achieve the best accuracy of the model, 
torque and volumetric losses have to be changed. These changes of losses reflect the wear of the 
component. The values of volumetric and torque losses define the wear of the hydrostatic drive. 
These values at monitored times were inputs to the training process of the artificial neural 
networks. These neural networks are able to make prognoses without defining the mathematic 
function between input variables. Target values during the training process will be set to 
volumetric loses obtained from simulation and measured value comparisons. Figure 12 shows 3D 
neural network prediction in hours 3D view and Figure 13 shows the 2D view. 

 

  
Fig. 8 Volumetric losses of pump for separate 
different instances of wear of the hydrostatic 

drive at the second operating point. 

Fig. 9 Prediction of volumetric losses at 
the first operating point. 

 
 

Fig. 10 Prediction of volumetric losses at the 
second operating point. 

Fig. 11 3D Neural network prediction 
3D view. 
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Fig, 12 3D Neural network prediction in hours 
3D view. 

Fig. 13 3D Neural network prediction in 
hours 2D view. 
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