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ABSTRACT 

In this paper a universal constitutive equation with internal damping [1] is presented for materials 
under dynamic and cyclic loadings. The model adapts the idea of a spring dashpot system 
connected in parallel for continuum, utilizing appropriate deformation measures, which are 
independent of rigid body motion thus enabling more precise numerical simulation of a 
deformable body. In the presented work the model application is shown in numerical examples 
using cyclic tension of a prismatic bar and free vibration of a cantilever beam. The examples were 
solved within the framework of small strain elastoplasticity [2], employing the extended NoIHKH 
material model for cyclic plasticity of metals [3], [4].  
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damping 

 INTRODUCTION 

An engineering construction, during its period of operation, has to withstand various loadings, the 
majority of which can be characterized as dynamic or cyclic. To properly model the behaviour of 
such constructions internal damping of their material has to be taken into account. In 
contemporary computational mechanics the Rayleigh damping [5] model is used exclusively to 
model energy dissipations originating from material damping. The major disadvantage of the 
model is that it does not differentiate between rigid body motion and deformation. Recently a new, 
universal constitutive equation with internal damping was proposed [1] to solve the 
aforementioned problem. The model adapts the idea of a spring dashpot system connected in 
parallel for continuum, utilizing appropriate deformation measures, which are independent of rigid 
body motion, thus enabling more precise numerical simulation of a deformable body.  

THEORETICAL  BACKGROUND 

The conservation of linear momentum of a solid deformable body of volume Ω and surface ∂Ω , 
idealized as non-polar continuum can be written in the following variational form 

 

 : .dv dv dv dsρ δ δ δ δ
Ω Ω Ω ∂Ω

+ = +∫ ∫ ∫ ∫v v σ d b v t v&� � �  (1) 

   
In equation (1) , , , , ,ρ v σ d b t  denote the material density, the velocity vector, the Cauchy stress 
tensor, the strain rate tensor, the body force and the surface traction vector at a material point of 
the body. Considering the analogy between continuum and a spring dashpot system connected in 
parallel, where the spring force/damping force depends on the relative displacement/relative 
velocity of the spring ends, the Cauchy stress tensor of a material with internal damping can be 
expressed within the framework of small strain elastoplasticity [2] , [6]  in the following 
incremental form  
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where 
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Equation (3) determines the elastic part of the Cauchy stress tensor(2), and equation (6) defines its 
damping part. In the elastic Cauchy stress update calculation the conventional small strain   
elastoplasticity theory was used, where the elastic Cauchy stress increment is either expressed with 
formula (4) in elastic loading and unloading, or with formula (5) in plastic loading. Here the left 
superscripts , 1 / 2, 1n n n+ + denote the variable value at discrete times corresponding to previous, 
mid and current configurations of the body within the current time step t∆ . We assume that the 
material is isotropic, and that the strain rate tensor has the additive decomposition el pl= +d d d  into 
an elastic part eld  and a plastic part pld . In this work the St. Venant-Kirchov material is used, the 
elastic material tensor C of which can be expressed with formula(7). In equation (7) G and λ  
denote the shear modulus and the Lame’s constant, ,1I stand for a fourth-order unit tensor and a 
second-order unit tensor respectively and , Eν  are the Poisson ratio and the Young modulus. The 
fourth-order damping tensor dampC is formally constructed in the same way, equation (8) as the 
elastic material tensor using two independent variables ,damp dampEν , which ensures isotropy.  
Equations (1)-(6) are supplemented with the following constitutive and evolution equations: 

 0,eq yf Rσ σ= − − ≤  (9) 
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Equations (9)-(14) represent the extended NoIHKH material model for cyclic plasticity of metals 
[3] based on the NoIHKH material model [4]. The model uses combined isotropic and kinematic 
hardening and employs associative plasticity in the elastic-plastic material tensor derivation. 
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Equation (9) defines the yield surface and formulas (11) and(12) define the NoIH rule for isotropic 
hardening and the NoKH rule for kinematic hardening. Here , , ,p pε εΣ X & stand for the deviatoric 
component of the Cauchy stress tensor, a back stress tensor, an accumulated plastic strain and an 
accumulated plastic strain rate. The remaining symbols denote constant material parameters. The 
fourth-order cyclic material tensor cyclC  is formally constructed in the same way (14) as the elastic 
material tensor using two independent variables ,cycl cyclE ν , which ensure isotropy. 
 

 NUMERICAL EXAMPLE NO. 1 – CYCLIC TENSION OF A PRISMATIC BAR 

As a numerical example a prismatic bar of 1 m  1 m  3 m× ×  was studied, applying cyclic 
tension. One end of the bar was fixed and the second end underwent a prescribed axial 
deformation determined by a sine function and an amplitude of 2.5 / 3.5 mm  corresponding to 
elastic/elastic-plastic loading case, while it was guided in the remaining two directions. In the 
numerical experiment one loading cycle was realized using 15 degree angular increments in each 
time step. Cases with and without internal dampings were studied, using 0.04Hz , 4.16Hz  and 
41.66 Hz  loading frequency, corresponding to1.0 s , 0.01 s  and 0.001 s  time step values. The 
numerical simulations were run as transient static ones using implicit time integration. As a 
simplification, all material properties were considered to be constant. Table 1 contains the used 
material parameters. 

 
 

Fig. 1 Maximum axial deformation in one longitudinal cross section of the bar in elastic-plastic 
loading case. 

 

Tab. 1 Material properties of the prismatic bar. 

 

 

 [Pa]E   [Pa]cyclE  [Pa s]dampE ⋅  [-]cycl dampν ν ν= =   [Pa]yσ  
112.1 10⋅  52.1 10⋅  0.0 / 82.1 10⋅  0.3  82.0 10⋅  

 [Pa]Q   [-]b  [-]γ∞  0 [-]γ   [-]ω  
75.0 10⋅  3.0  20.0  10.0  10.0  
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Fig. 2 Von Mises stress in one longitudinal cross section of the bar in elastic-plastic loading case. 
 
 

 
 

Fig. 3 Accumulated plastic strain in one longitudinal cross section of the bar in elastic-plastic 
loading case. 

 
Figures 1-3 show the axial deformation, Von Mises stress and the accumulated plastic strain 
distribution in one longitudinal cross section of the bar at maximum tension corresponding to the 
elastic-plastic loading case with internal damping and 41.66 Hz  loading frequency.  
Figures 4-5 show the axial deformation versus axial stress curves at selected nodes at the bar end 
N30, and in its middle part at node N149 (See fig. 1 for the exact location of the nodes) 
corresponding to elastic/elastic-plastic loading. As can be seen in figure 4, there was no energy 
dissipation in elastic loading cases without damping, the system remained conservative and the 
axial deformation versus axial stress curve was linear. When internal damping hysteresis loops 
were applied, the material curve was no longer linear. Figures 4 and 5 imply that the area of the 
hysteresis loop is proportional to the deformation rate, i.e. the higher the deformation rate the 
greater the loop area as well as the amount of dissipated energy. Also, in limiting state, as the 
deformation rate approaches zero, the effect of internal damping vanishes. 
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Fig. 4 Hysteresis loops at nodes N31, N149 using elastic loading. 
 

 
 

Fig. 5 Hysteresis loops at nodes N31, N149 using elastic-plastic loading. 
 

NUMERICAL EXAMPLE NO. 2 – FREE VIBRATION OF A CANTILEVER BEAM 
 
As a second numerical example a cantilever beam of length 12m and rectangular cross section, 
size 1m x 1m was studied. One end of the beam was fixed and the second end was loaded 
dynamically, applying a stepped load at its free end as pressure between 0.0  and1.0 MPa . The 
loading was determined in such way that no plastic deformations took place in the material of the 
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body. Figure 6 depicts the beam geometry, the boundary conditions and the applied pressure at the 
beam fee end as red arrows. 

 
Fig. 6 Geometry of the cantilever beam. 

 

In the numerical example free vibration with/without internal damping of the cantilever beam was 
studied using implicit dynamic analysis and constant, 0.01 st∆ = time step size. Table 2 lists the 
material properties of the beam. 

 
Fig. 7 Vertical displacement time history of the bar free end. 

 
Table 2   Material properties of the cantilever beam. 
 

3 [kg m ]ρ −⋅  7800.0 
 [GPa]E  210.0 

 [GPa]dampE  2.1/0.0 
 [-]ν  0.3 

[-]dampν  0.3 
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Figure 7 shows the vertical displacement time history of the free end of the cantilever beam. As 
can be seen, mechanical energy dissipation took place if internal damping was applied, resulting in 
the beam to reaching the static equilibrium after a few cycles. On the other hand the system 
remained conservative without mechanical energy dissipation if no internal damping was applied.  

CONCLUSION 

In this paper a universal constitutive equation with internal damping for cyclically and 
dynamically loaded deformable bodies using small strain elastoplasticity was presented. Cyclic 
tension of a prismatic bar and free vibration of a cantilever beam was studied. The presented 
mathematical model is the only one in contemporary computational mechanics that can simulate 
the true energy dissipations originating from internal damping. As the model is independent of 
rigid body motion, it significantly improves the accuracy of the analyses. This applies in particular 
to problems with high deformation rates. 
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