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ABSTRACT 

In this paper an analytical solution of a stress field generated by a non-stationary temperature 
field of an infinite long thick-walled pipe under conditions of co-current cooling using a fluid 
medium is presented. The analytical solution of the temperature field with some simplification of 
thermal process conditions has been found in the form of an infinite series [1]. Utilizing the 
derived formulas, the stress field of the body can be determined. The solution is applicable to all 
technological processes that employ heat exchange. 
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INTRODUCTION 

Thermal stresses generated by a non-stationary temperature field of a body play an important role 
in all technological processes that employ heat exchange. They directly affect the quality of the 
processed products as well as the costs of their production. The stress field of the body is usually 
determined by a sequentially coupled thermal-structural analysis [2], [3].  In this paper an 
analytical solution of a thick-walled pipe of infinite length under conditions of co-current 
cooling/heating is presented, assuming some simplifications of the thermal process conditions [1]. 

 

TEMPERATURE FIELD OF THE PIPE 

When determining the temperature field of the tick-walled pipe/cylinder the following 
assumptions were made. The processed extruded pipe, outer radius R and inner radius R1, (Figure 
1) of an ideal cylindrical shape enters into the calculation at the origin of the coordinate system. 
The body of the pipe is uniformly heated and has an initial temperature of Ts0. There is a perfectly 
isolated co-axial cylindrical chamber around the pipe, where the co-current flow of the fluid 
medium takes place with one end of the chamber located at the origin of the coordinate system. 
The coolant‘s initial temperature is Tf0 at the origin of the coordinate system and it is in direct 
contact with the extruded body of the pipe. Both the pipe and the fluid medium move linearly in an 
axial direction along the axis of the coordinate system, where due to ideal mixing the later 
temperature is constant at all points of any cross section of the chamber. No heat generation rate 
per unit volume is considered inside the solid phase and all thermo-mechanical properties of the 
pipe material and the coolant, such as cf, cs, λf, λs, the heat transfer coefficient α , the mass flow of 
the fluid Mf and the solid phase Ms are assumed to be constant in the analysis.  
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MATHEMATICAL FORMULATION AND SOLUTION OF THE PROBLEM 
Using cylindrical coordinates, the conservation of energy inside the body of the pipe during the 
cooling/heating process can be expressed with the Fourier-Kirchhoff equation: 

2

2
T T 1 Ta
t r rr

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂∂⎝ ⎠

.       (1) 

At the beginning of the analysis the solid and the fluid phase are uniformly heated using different 
temperatures. Then the initial conditions take the forms: 

t = 0, Ts = Ts0, Tf = Tf0.       (2) 
Assuming that the inner surface of the pipe is perfectly insulated, the boundary condition on the 
inner radius can be written as 

1

s

r R

T 0
r =

∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
.        (3) 

Considering the heat transfer between the solid and the fluid, the boundary condition on the outer 
radius can be [4] expressed as 

( ) s
f s sr R

r R

TT T
r=

=

∂⎡ ⎤⎡ ⎤α − = −λ ⎢ ⎥⎣ ⎦ ∂⎣ ⎦
,      (4) 

where the surface temperature is also denoted as:  ( )s spr R
T T

=
= .  After introducing the average 

calorimetric temperature of the solid phase 

( )1 1

1 1

sc s s2 2
1R1

R

1 r dr 2T 2 T T d
R R 1R1

R
ρ

= = ρ ρ
− ρ⎛ ⎞− ⎜ ⎟

⎝ ⎠

∫ ∫ ,    (5) 

the conservation of energy between the pipe and the fluid under co-current cooling/heating can be 
expressed as 
 

Ms cs (Tsc - Ts0) = Mf cf (Tf 0 - Tf).      (6) 
 
Let’s  us introduce the following dimensionless variables: 

Bi = 
s

R
λ
α

  Biot number, 

Fo = 2
at
R

  Fourier number, 

m = s s

f f

M c
M c

  thermal capacitance ratio of the contact phases, 

r
R

ρ =    dimensionless coordinate, 1 1ρ∈ ρ( ; ) ,  (7) 

s s0
s

f 0 s0

T T
T T

−
Θ =

−
  relative temperature difference of the solid phase, 

sc s0
sc

f 0 s0

T T
T T

−
Θ =

−
 average calorimetric relative temperature difference of the solid 

phase, 
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sp s0
sp

f 0 s0

T T
T T

−
Θ =

−
  surface relative temperature difference of the solid phase, 

f s0
f

f 0 s0

T T
T T

−
Θ =

−
 relative temperature difference of the fluid phase, 

Let us also launch the following substitutions 
( ) ( ) ( ) ( ) ( )0 i 1 i 1 0 i 1 i 1 0 iV k Y k J k J k Y kρ = ρ ρ − ρ ρ ,    (8) 

( ) ( ) ( ) ( ) ( )1 i 1 i 1 1 i 1 i 1 1 iV k Y k J k J k Y kρ = ρ ρ − ρ ρ ,    (9) 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

2
i 1 1 i 1 1 i 1

i 2 2 2 2 2 2 2 2
1 i 1 1 i 1 1 i 0 i 1 i 1 0 i 1 1 i 1

2k 1 V k V k
D

4m V k V k 1 k V k V k V k V k

− ρ − ρ ρ
=

⎡ ⎤− ρ ρ + − ρ + − ρ ρ + ρ⎢ ⎥⎣ ⎦

,     (10) 

then the relative temperature difference, the average calorimetric relative temperature 
difference of the solid phase and the relative temperature difference of the fluid phase can be 
determined using the equations below:   
relative temperature difference of the solid phase:  

( )
2
ik Fo

s i 0 i
i 1

1 D e V k
1 m

∞
−

=

Θ = − ρ
+ ∑ ,     

 (11) 
average calorimetric relative temperature difference of the solid phase: 

( )
( ) ( )2

i 1 i 1 1 i 1k Fo
sc i2

ii 11

V k V k1 2 D e
1 m k1

∞
−

=

⎡ ⎤− ρ ρ
Θ = + ⎢ ⎥

+ − ρ ⎢ ⎥⎣ ⎦
∑ ,   (12) 

relative temperature difference of the fluid phase: 

 
( )

( ) ( )2
i 1 i 1 1 i 1k Fo

f i2
ii 11

V k V k1 2m D e
1 m k1

∞
−

=

⎡ ⎤− ρ ρ
Θ = − ⎢ ⎥

+ − ρ ⎢ ⎥⎣ ⎦
∑ ,   (13) 

 
where ki  for i 1, 2,...,= ∞  are the roots of the following transcendental equation:  
 

( ) ( ) ( ) ( )2
i 1 i 1 i i 0 i2

1

2mBi0 k V k V k Bik V k
1

= − + +
− ρ

.    (14) 

 
STRESS FIELD DETERMINATION OF THE THICK-WALLED CYLINDER/PIPE 

In the determination of the thermal stresses we assumed that the pipe material was isotropic and its 
loading generated by the non-stationary temperature field of the body was elastic. We also 
assumed that the temperature field of the pipe was one-dimensional and that the temperature 
distribution in the radial direction adequately determined the loading of the body [1]. The 
temperature gradient and the corresponding loading in axial direction were ignored.  

The force equilibrium in both radial and axial directions using a cylindrical coordinate system can 
be formulated as (Fig. 1):  
 

 ( )r r
t r t

r
r 0

r r
∂ σ ∂σ

− σ = σ − σ + =
∂ ∂

                   (15)     
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∂ ∂
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Fig. 1 Displacement and stress components of the pipe element in cylindrical coordinates. 
 

Neglecting the shear component of the Cauchy stress tensor in equation (16) the force equilibrium 
in axial direction takes the following form 

o
o0   ,        const.

z
∂σ

= ε =
∂

. 

Combining eqns. (15) and (16) we then have 
 

 t r r

r r
σ − σ ∂σ

=
∂

  .       

 (17)          The one-dimensional temperature field defined earlier generates a spatial stress 
field (Fig. 2). After combining the radial, tangential and axial strain components,  
 

 r t o
u u w ,      ,    
r r z

∂ ∂
ε = ε = ε =

∂ ∂
,                            (18) 

       
the elastic constitutive equations of the corresponding components of the Cauchy stress tensor and 
equation (17) 

              ( )r r r t o s
E2G T ,

1 2 1 2
υ⎡ ⎤σ = ε + ε + ε + ε − ϑ∆ Θ⎢ ⎥− υ − υ⎣ ⎦

              (19)         

 

              ( )t t r t o s
E2G T ,

1 2 1 2
υ⎡ ⎤σ = ε + ε + ε + ε − ϑ∆ Θ⎢ ⎥− υ − υ⎣ ⎦

      (20) 

 

                ( )o o r t o s
E2G T

1 2 1 2
υ⎡ ⎤σ = ε + ε + ε + ε − ϑ∆ Θ⎢ ⎥− υ − υ⎣ ⎦

,       (21) 

 
we arrive at the following partial differential equation 
 

           sr r r z1 E2G T .
r 1 2 r 1 2 r r 1 2 2G r

⎡ ⎤⎡ ⎤ ∂Θ∂σ ∂ε ∂ε ∂ε− υ υ ϑ⎛ ⎞= + + − ∆⎢ ⎥⎢ ⎥⎜ ⎟∂ − υ ∂ − υ ∂ ∂ − υ ∂⎝ ⎠⎣ ⎦⎣ ⎦
  (22) 
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Similarly, as in the case of the temperature field, dimensionless Cauchy stress tensor components 
and boundary conditions can be defined in terms of Fourier, Biot numbers and other dimensionless 
variables, such as dimensionless displacements, dimensionless coordinates and the thermal 
capacitance ratio of contact phases. Using the definitions (7)-(13) equation (18) can be rewritten 
as, 

             
2

s
2 2

1 u 1 u uT
1 r r rr r

∂Θ+ υ ∂ ∂
ϑ∆ = + −

− υ ∂ ∂∂
,       (23)      

 
which after introducing the dimensionless radial displacement ξ  and the dimensionless radial 
coordinate ρ , can be expressed with the following non-homogenous second order linear 
differential equation 
 

            sT
∂Θ∂ ξ ∂ξ ξ + ν

+ − = ϑ∆
ρ ∂ρ − ν ∂ρ∂ρ ρ

2

2 2
1 1

1
  .     (24)       

 
The general solution of (24) using variation of parameters takes the following form  
     

2
1 s

C 1 1C T d
1

⎡ ⎤+ υ
ξ = ρ + + ϑ∆ ρΘ ρ⎢ ⎥ρ − υ ρ⎣ ⎦∫  .    (25)    

 
After back substitution for the strain values we have  
 

           2
r 1 s s2 2

Cd 1 1C T d
d 1

⎡ ⎤ξ + υ
ε = = − − ϑ∆ ρΘ ρ −Θ⎢ ⎥ρ − υρ ρ⎣ ⎦

∫ ,    (26)     

 

           2
t 1 s2 2

C 1 1C T d
1

⎡ ⎤ξ + υ
ε = = + + ϑ∆ ρΘ ρ⎢ ⎥ρ − υρ ρ⎣ ⎦

∫  .    (27)     

 
Similarly, the constitutive relations defined by eqns. (19)-(21) can be combined in the forms:  
 

           2
r 1 s z2 2

C1 1 12G C T d
1 2 1 1 2
⎡ ⎤⎡ ⎤+ υ υ

σ = − − ϑ∆ ρΘ ρ + ε⎢ ⎥⎢ ⎥− υ − υ − υρ ρ⎢ ⎥⎣ ⎦⎣ ⎦
∫ ,   (28)  

 

         2
t 1 s s z2 2

C1 1 12G C T d
1 2 1 1 2

⎡ ⎤⎡ ⎤+ υ υ
σ = + + ϑ∆ ρΘ ρ −Θ + ε⎢ ⎥⎢ ⎥− υ − υ − υρ ρ⎢ ⎥⎣ ⎦⎣ ⎦

∫ ,   (29)     

 

z 1 s z
2 1 12G C T

1 2 1 1 2
υ + υ − υ⎡ ⎤σ = − ϑ∆ Θ + ε⎡ ⎤⎣ ⎦⎢ ⎥− υ − υ − υ⎣ ⎦

.    (30) 

 
In order to determine the missing integration constants, equations (28)-(30) have to be 
supplemented with boundary conditions that meet the following requirements: 
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The radial component of the Cauchy stress tensor must be zero on the inner and outer surface of 
the pipe. Then we have 
 

           1ρ = ρ   0rσ =  
                          ρ 1=     0rσ = .       (31) 
 
The third boundary condition comes from the static force equilibrium in axial direction  

1

1

o d 0
ρ

σ ρ ρ =∫  .       (32) 

After solving the aforementioned system of equations, we arrive at the following formulas for the 
Cauchy stress components 
 

2 2
1

r sc s2 2
E 1T d

1 2

⎡ ⎤ρ − ρ
σ = ϑ∆ Θ − ρΘ ρ⎢ ⎥

− υ ρ ρ⎢ ⎥⎣ ⎦
∫ ,      (33) 

 
2 2

1
t sc s s2 2

E 1T d
1 2

⎡ ⎤ρ + ρ
σ = ϑ∆ Θ + ρΘ ρ −Θ⎢ ⎥

− υ ρ ρ⎢ ⎥⎣ ⎦
∫  ,    (34) 

o sc s
E T

1
σ = ϑ∆ Θ −Θ⎡ ⎤⎣ ⎦− υ

,       (35) 

which can also be expressed in dimensionless forms using equations (7)-(11) and (12)  

( )
( ) ( )2

i

2
i

2 2
1 i 1 1 i 1k Fo1

i22
ii 11r

r

k Fo 1 i 1 1 i 1
i2

ii 1

V k V k11 D e
k11 T

E 1 V k V k1 D e
k

∞
−

=

∞
−

=

⎡ ⎤− ρ ρρ − ρ
−⎢ ⎥

ρ− ρ⎢ ⎥σ
ψ = = ϑ∆ ⎢ ⎥

− υ ⎢ ⎥ρ ρ − ρ ρ
+⎢ ⎥
ρ⎢ ⎥⎣ ⎦

∑

∑

( )

( ) ( )
,   (36) 

 

( ) ( )
( ) ( )

( )

2
i

2 2
i i

2 2 2 2
1 i 1 1 i 1k Fo1 1

i2 22
ii 11r

t

k Fo k Fo1 i 1 1 i 1
i i 0 i2

ii 1 i 1

V k V k1 11 D e
1 m k2 11 T

E 1 V k V k1 D e D e V k
k

∞
−

=

∞ ∞
− −

= =

⎡ ⎤− ρ ρρ − ρ ρ + ρ
+ − −⎢ ⎥

+ρ ρ− ρ⎢ ⎥σ
Ψ = = ϑ∆ ⎢ ⎥

− υ ⎢ ⎥ρ ρ − ρ ρ
− + ρ⎢ ⎥
ρ⎢ ⎥⎣ ⎦

∑

∑ ∑( ) ( )
,        (37) 

 

( ) ( )
( ) ( )2 2

i i 1 i 1 1 i 1k Fo k Foz
o i 0 i i2

ii 1 i 11

V k V k1 2T D e V k D e
E 1 k1

∞ ∞
− −

= =

⎡ ⎤− ρ ρσ ⎢ ⎥Ψ = = ϑ∆ ρ −
⎢ ⎥− υ − ρ⎢ ⎥⎣ ⎦
∑ ∑ .             (38) 

 
The parameters below were used in plotting the dimensionless Cauchy stress components: 
Bi = 2 
m = 1 
ρ1= 0.5 
∆T = Tf0 – Ts0 = 100 °C  
ϑ = 1 . 10-5  °C -1 

E = 106 MPa  
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υ  =  0.3. 
 

The problem was solved with the Mathemathica 5.1 commercial package using the first 
30 roots of the transcendent equation (15) in the solution. Figure 2 shows the relative temperature 
difference of the solid phase versus Fourier number on the inner, outer and mean radius of the pipe 
ρ=0.75, as well as the relative temperature difference of the fluid phase. The graph implies that as 
the time passes by, the temperature of the solid and the fluid phases equalize, and eventually 
approach a value at the thermal equilibrium state. Figure 3 depicts the dimensionless axial stress  
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Fig. 2  Relative temperature difference of the solid/fluid phase versus  Fourier number on 
the inner, outer and mean radius of the pipe. 

 

0

0.1

0.2

0.3

Fo

0.6

0.8

1
Ρ

�40

�20

0

20

�o

�4

�

0

 
                  

Fig. 3 Dimensionless axial stress time history in term of Fo number over the pipe wall. 
 



SCIENTIFIC PROCEEDINGS 2010, Faculty of Mechanical Engineering, STU in Bratislava 

 8

time history in term of Fo number over the pipe wall ( )0 5ρ∈ . ;  1 . Equation (32) implies that there 
is a significant increase in the axial stress value with opposite signs on the inner and outer surfaces 
at the beginning of the analysis. As the time passes by, the temperature difference between the 
solid and the fluid phase vanishes. Figure 4 depicts the dimensionless axial Cauchy stress 
component versus Fourier number curves on the inner, outer and mean radius of the pipe. The 
same graph is drawn in figure 5 using the tangential component of the Cauchy stress tensor. The 
dimensionless radial stress time history in term of Fo number over the pipe wall ( )0 5ρ∈ . ;  1 can 
be seen in figure 6. 
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Fig. 4 Dimensionless axial Cauchy stress component versus Fourier number curves 

for ρ=0.5, 0.75, 1.0 . 
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Fig. 5 Dimensionless tangential Cauchy stress component versus Fourier number 

curves for ρ=0.5, 0.75, 1.0 . 
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         Fig. 6 Dimensionless radial stress time history in term of Fo number over the pipe wall. 
 

CONCLUSION 

In the presented paper thermal stresses generated by the non-stationary temperature field of an 
infinite cylinder at co-current cooling/heating were investigated. The analytical solution of the 
temperature field was determined earlier [1] in a dimensionless form, using dimensionless 
temperatures, deflections, coordinates, the Fourier number, the Biot number and the temperature 
capacitance ratio of the contact phases. The same dimensionless variables were employed in the 
dimensionless Cauchy stress component determination. 
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